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Single-Phase Concentrated
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Intrinsic Transport Properties and
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Single-phase concentrated solid-solution alloys (SP-CSAs), including high entropy alloys

(HEAs), are compositionally complex but structurally simple, and provide a playground of

tailoring material properties through modifying their compositional complexity. The recent

progress in understanding the compositional effects on the energy and mass transport

properties in a series of face-centered-cubic SP-CSAs is the focus of this review.

Relatively low electrical and thermal conductivities, as well as small separations between

the interstitial and vacancy migration barriers have been generally observed, but largely

depend on the alloying constituents. We further discuss the impact of such intrinsic

transport properties on their irradiation response; the linkage to the delayed damage

accumulation, slow defect aggregation, and suppressed irradiation induced swelling and

segregation has been presented. We emphasize that the number of alloying elements

may not be a critical factor on both transport properties and the defect behaviors under

ion irradiations. The recent findings have stimulated novel concepts in the design of

new radiation-tolerant materials, but further studies are demanded to enable predictive

models that can quantitatively bridge the transport properties to the radiation damage.

Keywords: solid-solution alloys, high entropy alloys, thermal conductivity, electrical resistivity, radiation damage,

diffusion

INTRODUCTION

High entropy alloys (HEAs) have gained increasing research attention since proposed in 2004
(Cantor et al., 2004; Yeh et al., 2004; Guo and Liu, 2011; Senkov et al., 2011; Lucas et al., 2012).
Different from conventional alloys (e.g., steels and Ni-based superalloys), HEAs contain multiple
alloying elements (usually more than four) in equal or near equal concentrations but form simple
structures. The outstanding properties for potential structural and mechanical applications have
attracted the majority of investigations on HEAs, including good thermal stability, high fracture
toughness, good creep behavior, as well as strong resistance to wear, oxidation and corrosion,
as been comprehensively reviewed in literatures such as Zhang et al. (2014) and Miracle and
Senkov (2017). Another important research focus on HEAs is their transport properties. For
example, the so-called “sluggish diffusion” effect, a mass transport property, has been considered
one of the core effects of HEAs, responsible to the outstanding high temperature properties (Tsai
et al., 2013; Dabrowa et al., 2016; Vaidya et al., 2016). In addition, interesting electrical transport
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properties such as superconductivity (Koželj et al., 2014) and
quantum critical behavior (Sales et al., 2016, 2017) have been
discovered, and the HEAs have been considered promising in
functional applications such as thermoelectric materials (Shafeie
et al., 2015; Fan et al., 2016) and soft ferromagnetic materials
(Zhang et al., 2013). Furthermore, recent studies have linked
the mass and energy transport properties to the enhanced
irradiation resistance (Zhang et al., 2015; Lu et al., 2016b; Zhang
Y. et al., 2017). Different from the traditional design strategies
of irradiation tolerant alloys that usually introduce extrinsic
defect sinks, such as grain boundary, secondary phases, and
nano particles (Ukai and Fujiwara, 2002; Was, 2007; Garner,
2012), HEAs allow the focus on the effects of intrinsic properties
determined by the major alloying elements on irradiation
response, as considered a new path of designing radiation
resistant alloys.

Although the early studies of HEAs have mainly targeted
on the alloys containing five or more elements, evidence has
suggested that their excellent properties do not necessarily
require the large number of alloying elements. For example,
the mechanical properties (e.g., strength, ductility, and fracture
toughness) of ternary alloy NiCoCr, a so-called medium entropy
alloy, have been reported superior to those of NiCoFeCrMn
(Gludovatz et al., 2016). In addition, sluggish diffusion have also
been found not merely related to the number of elements (Zhang
C. et al., 2017; Jin et al., 2018). Thus, the studies of HEAs have
been gradually broadened to amore general family—single-phase
concentrated solid-solution alloys (SP-CSAs).

Ni-containing SP-CSAs in a face-centered cubic (FCC)
structure form a family of alloys that enables varying the
number, type, and concentration of alloying elements in a
wide range without changing the structure, and thus an
ideal model system for studying the effects of compositional
complexity (Wu et al., 2014; Miracle and Senkov, 2017). This
review summarizes the recent progress in understanding the
compositional effects on the intrinsic transport properties, and
its connection to the irradiation response: Section Electrical and
Thermal Transport Properties summarizes the recent results on
electrical resistivity and thermal conductivity in SP-CSAs, and
compared them with some other transition metal alloys. In
section Mass Transport Properties: Atomic Diffusion Behavior,
Diffusion and Defect Dynamics in SP-CSAs are discussed and the
concept of “sluggish diffusion” is clarified. In section Irradiation
Resistance, experimental results of ion irradiation induced defect
evolution at low, room and elevated temperatures in SP-CSAs are
reviewed. In section Linkage Between the Transport Properties
and Irradiation Response, present understanding on how such
irradiation response is correlated to their intrinsic transport
properties are discussed.

ELECTRICAL AND THERMAL TRANSPORT
PROPERTIES

Electrical Resistivity
Extensive measurements have been performed in the early years
on the electrical resistivity of binary alloys, the simplest SP-CSAs,

with a number of elemental combinations, see e.g., Ho et al.
(1983). Later on, Ni-Fe-Cr system has been one of the most
studied ternary systems, probably due to their highly tunable
magnetic phases and their importance in many commercial
alloys, e.g., stainless steels (Banerjee and Raychaudhuri, 1994;
Nath and Majumdar, 1996; Chakraborty and Majumdar, 1998).
High electrical resistivity was proposed as feature of HEA in
its early development stage in 2006, with potential application
of high frequency communication materials (Wu et al., 2006;
Yeh, 2006). Nonetheless, NiCoFeCrAlx was among the first HEAs
with systematic electrical resistivity measurements reported a few
years after then (Chou et al., 2009; Kao et al., 2011). In its FCC
phase, the electrical resistivity increases with Al concentrations,
in the range of ∼100–150 µ� cm. Recently, the electrical
resistivity of a series of Ni-containing FCC SP-CSAs from binary
to quinary has been measured, as shown in Figure 1 (Jin et al.,
2016d). The addition of Cr was shown having themost significant
impact on the residual resistivity: the alloys containing Cr have
one order magnitude higher resistivity than those without Cr.
The NiCoFeCrAlx fall into the same resistivity range with those
Cr-containing alloys. The NiCoFe-based alloys containing other
alloying elements, e.g., Ti, and Si, have been observed to reach
higher electrical resistivity only when significant amounts of
intermetallics phases are formed (Zhang and Fu, 2012; Zuo et al.,
2014), which is beyond the scope of SP-CSAs.

As shown in Figure 1, single-phase HEAs (i.e., containing four
or more principal elements) do not necessarily have significantly
higher electrical resistivities than the conventional alloys or
the SP-CSAs containing less alloying elements: their electrical
resistivity is indeed slightly higher than the 304 and 316 stainless
steels, but close to Inconel 625, 718, and even the binary Ni-
20Cr alloys (Mooij, 1972; Chakraborty and Majumdar, 1998; Lee

FIGURE 1 | Electrical resistivity of Ni-containing FCC SP-CSAs, compared

with several conventional alloy systems and BMGs. Data adapted from Mooij

(1972), Chakraborty and Majumdar (1998), Yamasaki et al. (2005), Chou et al.

(2009), Kao et al. (2011), Lee et al. (2016), and Jin et al. (2016d).
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et al., 2016). It also needs to be noted that single-phase HEAs
usually have smaller electrical resistivities than the common bulk
metallic glasses (BMGs) containing Ni and multiple transition
metals (Yamasaki et al., 2005).

The complete picture of underlying physics is still challenging
for CSAs due to the integrated impact from chemical, magnetic,
and displacement disorder. The large difference in the (residual)
resistivity between the NiCoFeCrMn subsets with and without Cr
has been interpreted with the calculated Bloch spectral function
(BSF) using ab initio Korring-Kohn-Rostoker coherent potential
approximation (KKR-CPA) calculations (Jin et al., 2016d; Sales
et al., 2016). For the alloys that that only contain Ni, Co and
Fe, the d-band smearing is limited in the minority spin channel;
its majority spin channel, with large (or infinite) electron mean
free path, providing a short circuit and an overall low resistivity.
In contrast, both minority and majority states are smeared in
the alloys containing Cr, giving rise to the much larger overall
smearing and large resistivity.

Thermal Conductivity
The thermal conductivity in the NiCoFeCr-based HEAs and
its subsets has been systematically measured (Jin et al., 2016d,
2017). As shown in Figure 2, two groups can be clearly identified.
All tested SP-CSAs containing Cr, from binary to quinary,
have similar thermal conductivity values across the temperature
range. Their room temperature thermal conductivities are ∼10–
15 W/m·K, which is close to that for the Ni-Fe-Cr based
conventional commercial alloys such as stainless steels and
Inconel (Lee et al., 2016). It should also be noted that the SP-CSAs
have in general higher thermal conductivities than that for BMGs,
which have the values of ∼4–8 W/m·K at room temperature
(Yamasaki et al., 2005). For the alloys that only contain Ni,
Co, and Fe, the thermal conductivities are much higher, and
considerably depend on specific compositions. Similar to the case
of electrical resistivity, the number of alloying elements has little
impact on the thermal conductivities. For example, the thermal
conductivity of binary Ni-20Cr is similar to that of quinary
NiCoFeCrMn, but much lower than the ternary NiCoFe.

Thermal conductivity is composed of electronic (κe) and
lattice (κg) contributions, among which the electronic thermal
conductivity is usually estimated from the electrical resistivity
value based on the Wiedemann-Franz relationship, κe = LT/ρ,
where L is the Lorenz constant, T is the temperature, and ρ is the
electrical resistivity, since the direct measurement of this portion
is usually not feasible (Klemens and Williams, 1986). In pure
transition metals, the electronic contribution is dominant, i.e.,
the lattice contribution is negligible. In contrast, the fraction of
lattice contribution is greatly enhanced in SP-CSAs. The fraction
of lattice contribution to the total thermal conductivity is shown
in Figure 3, for a series of Ni-containing SP-CSAs. The lattice and
electronic contributions are comparable for most NiCr- alloys
(Chou et al., 2009; Jin et al., 2016d, 2017). Again, Ni-20Cr binary
alloy has basically the same behavior, compared with the other
quinary alloys.

Although the accuracy of Wiedemann-Franz relationship
remains arguable, the results in Figure 3 at least reveals that
the lattice thermal conductivity is an important transport

FIGURE 2 | Thermal conductivity of Ni-containing FCC SP-CSAs, compared

with several commercial alloys and BMGs. Data adapted from Yamasaki et al.

(2005), Lee et al. (2016), and Jin et al. (2016d, 2017).

FIGURE 3 | Fraction of lattice contribution to thermal conductivity in several

Ni-containing FCC SP-CSAs at 300K. Values calculated based on the data in

Chou et al. (2009), Kao et al. (2011), and Jin et al. (2016d, 2017).

property worth investigating. While directly determining the
lattice thermal conductivity is non-trivial, it can be achieved
from the phonon spectra since it is inversely proportional to
phonon bandwidth, which is affected by the mass and force
constant fluctuation. A recent theoretical work employing ab
initio calculations has systematically studied the impact of
these two kinds of disorders in a series of BCC equiatomic
alloys, from binary to quinary (refractory HEAs) (Körmann
et al., 2017). In this series of calculations, the mass fluctuations
have played a dominant role, although the impact from force
constant fluctuation could not be neglected. They have further
indicated that the specific alloy combinations, rather than
the configurational entropy, control the vibration properties.
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Coupling between different disorder sources and scattering
mechanisms have been found from calculations based on
Lennard-Jones potentials (Caro et al., 2015); it would be
interesting to learn the role of force constant fluctuations on
phonon broadening and further the lattice thermal conductivity
in the subsets of NiCoFeCrMn system, since the atomic mass
difference in this family of alloys is very small compared with that
in the BCC HEAs. Moreover, experimental measurement on the
phonon broadening in HEAs is desired to acquire experimental
lattice thermal conductivity.

Electrical and thermal conductivities of HEAs are further
related to their thermoelectric properties, with the figure of
merit (ZT) calculated from the Seebeck coefficient (S), electrical
resistivity (ρ), and total thermal conductivity (κ) from the
equation ZT = S2ρ−1κ−1T. For example, low lattice thermal
conductivities above room temperature in BiSbTe1.5Se1.5 (Fan
et al., 2016) and PbSnTeSe (Fan et al., 2017), ∼0.47 and 0.6
Wm−1K−1, respectively, have been reported to contribute to
their relatively high ZT values. Both studies have ascribed
such low κg values to the severe lattice distortion, while
further evidences may be necessary to validate this proposed
mechanism. The thermoelectric properties of NiCoFeCrAlx, have
been studied (Shafeie et al., 2015). Increasing Al concentration
up to x = 3 has been observed to enhance the absolute values of
Seebeck coefficient but reduce the electrical conductivity above
room temperature. The power factor and ZT reachmaximum at x
= 2.0 and 2.25, where the alloys no longer maintain single-phase
solid solution, and the ZT values still remain in the low regime.

MASS TRANSPORT PROPERTIES: ATOMIC
DIFFUSION BEHAVIOR

“Sluggish diffusion” has been considered one of the four “core
effects” in HEAs, with the three others being “high entropy,”
“severe lattice distortion,” and “cocktail effects” (Miracle and
Senkov, 2017), and has been usually referred to the hypothesis
that atomic diffusion is retarded in HEAs compared with in
pure metals and traditional alloys. This idea was proposed at the
invention of the HEAs (Yeh et al., 2004; Yeh, 2006), accounting
for its high temperature thermal stability. The first experimental
support to this hypothesis has become available in 2013 through
interdiffusion experiments in the NiCoFeCrMn systems (Tsai
et al., 2013). By comparing the diffusion coefficients and
activation energies between the HEA system, pure metals, and
conventional alloys, a positive relation between the normalized
activation energy and the number of alloying elements has been
proposed. It needs to be noted that all comparisons were made
with respect to homologous temperature in Tsai et al. (2013),
i.e., the difference in their melting temperatures was normalized.
This viewpoint was later supported by several revisits to the data
analysis, and another measurement on the NiCoFeCrAl system
(Beke and Erdélyi, 2016; Dabrowa et al., 2016). The first tracer
diffusion experiment regarding the diffusion in HEAs has been
reported in 2016 (Vaidya et al., 2016), pointing out that although
the diffusion in NiCoFeCrMn is indeed slower than in NiCoFeCr
under the same homologous temperature, it is faster with respect

to the same absolute temperature. The same point has also been
mentioned in a recent review on the HEAs concepts that the
diffusion coefficient inNiCoFeCrMn0.5 is actually higher than the
austenitic steels at the same absolute temperatures (Miracle and
Senkov, 2017).

A recent interdiffusion experiment has further shown that,
more alloying elements do not necessarily retard diffusion
process, even with respect to homologous temperatures (Jin et al.,
2018). Figure 4 shows the normalized activation energies for
a series of Ni containing SP-CSAs (Tsai et al., 2013; Vaidya
et al., 2016; Jin et al., 2018). The left panel shows the data from
interdiffusion experiments, and the right panel shows those from
tracer diffusions. The same color indicates the same number
of alloying elements. Different from the original proposal for
the sluggish diffusion (Tsai et al., 2013), no direct correlation
between the number of elements and the diffusion parameter
(even normalized to the melting temperatures) can be observed.
For example, the normalized activation energy for the quinary
NiCoFeCrPd is smaller than most other alloys containing less
alloying elements. Furthermore, it needs to be emphasized that
the uncertainties of diffusion parameters from different diffusion
experiments or data analysis procedures can be inevitably large,
as about one order for the diffusion coefficient and 15% for
the activation energy (Million et al., 1981; Dabrowa et al., 2016;
Miracle and Senkov, 2017; Jin et al., 2018). To this end, the
difference in diffusion kinetics with respect to the number of
alloying elements is further weakened.

Other than the difficulties on accurate experimental
quantification, the chemical disorder induced loss of translational
invariance brings in much challenge for theoretical description
of the defect transport behaviors in concentrated alloys. Defect
behavior depends on its local environment, which is different
from atom to atom due to the random distribution of chemical
species. Unlike in pure metals, the defect energies are no longer

FIGURE 4 | Normalized diffusion activation energy in several Ni-containing

CSAs. Data adapted from Tsai et al. (2013), Vaidya et al. (2016), and Jin et al.

(2018).
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single values but wide distributions in CSAs. Consequently,
correct understanding the defect transport properties require
large sampling effort, which is challenging especially to the first
principles calculations (Zhao et al., 2017b).

Despite such challenges, theoretical calculations have been
made recently to unveil the defect energies in a series of
NiCoFeCrMn sub-systems, including NiCo, NiFe, Ni-20Cr,
NiCoCr, and NiCoFeCr (Zhao et al., 2017a,b, 2018). The
migration barriers for different elements in NiCoFeCr are
shown in Figures 5A,B as a representative case (Zhao et al.,
2018). The compositional effects on the interstitial and vacancy
migration are qualitatively different. Compared with pure Ni, the
interstitials in the CSAs have overall greater migration barriers
(note again that the defect energies are distributions but not
single values), and lower diffusion coefficients (Osetsky et al.,
2016; Zhao et al., 2017a). On the contrary, the migration barriers
of vacancies in NiFe, NiCoCr, and NiCoFeCr are generally much
smaller than in pure Ni, especially through those preferable
diffusion channels such as Fe in NiFe, and Cr in both NiCoCr
and NiCoFeCr (Osetsky et al., 2016; Zhao et al., 2018) indicating
a faster vacancy migration. One of the dominant physical
origins has been proposed as the elemental-specific deformation
flexibility of d-electrons (Zhao et al., 2018).

The much faster vacancy migration revealed by the ab initio
calculations seem to be “contradict” to the thermal diffusion
experiments (through vacancy mediated diffusion mechanism),
at the first glance, that the experimental diffusion activation
energy in the CSAs is generally not lower than in pure Ni
although the number of element may not be a controlling factor;
the faster diffusion in CSAs has not been observed in the thermal
diffusion experiments. This “discrepancy” can be attributed to
that the activation energy derived from the diffusion experiments
is the addition of both vacancy migration barrier and the vacancy
formation energy (Janotti et al., 2004), and the vacancy formation
energy in the CSAs is higher than in pure Ni that compensates
the lower migration barrier, as shown in Figure 5C. The direct
quantification of the diffusion activation energy considering
both contributions through calculations has not been available,
probably because both energies are wide distributions and the
summation is not trivial.

In addition to the ab initio based investigations,
phenomenological methods such as the calculation of
phase diagrams (CALPHAD) have been used to understand
and, more importantly, to predict the diffusion behavior in
multicomponent system using the database parameters obtained
from its constituent lower-order systems (Zhang C. et al.,
2017). The Ni tracer diffusion coefficient in all possible Ni-
containing subsystems of NiCoFeCrMn has been calculated,
based on a series of assessment and validation on the mobility
database of the binary and ternary alloys in this family. The
calculated diffusion coefficients have little dependent on
the number of alloying elements, even with respect to the
homologous temperature. The qualitative comparison with
interdiffusion experiments has shown a good agreement, which
may suggest that the diffusion kinetics of HEAs can be reasonably
extrapolated from general concentrated solid-solution alloys
containing less alloying elements (Jin et al., 2018).

IRRADIATION RESISTANCE

Early systematic investigations on the irradiation response of
concentrated alloys, while not equiatomic and not necessarily
single-phase solid-solution, have been targeted primarily on the
Fe-Cr-Ni based alloys, which are the prototypes of varieties
of commercial alloys used or potentially used for nuclear
engineering (e.g., stainless steels and Inconel series). For example,
irradiation-induced swelling in about twenty Fe-Cr-Ni-based
commercial alloys, pure Ni, and four Fe-15Cr-Ni model alloys
with different Ni, Fe concentrations has been measured in
Johnston et al. (1974). The concerns have been focused on the
impacts of the concentration of these three alloying elements,
additional dilute alloying elements, and the microstructures.
These works have been comprehensively summarized in a
number of review articles and textbooks e.g., Garner (2012)
and Was (2007), and will not be further discussed in the
present review. Here we focus on the recent investigations of
the impact of principal alloying elements on irradiation response
in this new set of FCC SP-CSAs with various number, type,
and concentration of alloying elements that arises from the
past decade. The most studied high and medium entropy alloy
systems regarding irradiation effects in the past few years have
been the FCC transition metal alloys, primarily the NiCoFeCr-
M (M = Mn, Al, Cu, and Pd) and the binary and ternary
subsystems of NiCoFeCr. The BCC structured alloys have been
much less studied, although the studies on the thin film Zr-
Hf-Nb near-equiatomic ternary alloys (while not single-phase)
under MeV electron irradiation have been among the earliest
experimental investigations of the phase stability that argue
the high irradiation resistance of HEAs (Nagase et al., 2012,
2013).

Response to the Irradiation at Room and
Low Temperatures
NiCoFeCr and its SP-CSA subsets in single crystalline form
have been experimentally studied in response to Au and Ni
ion irradiations at room temperature (Zhang et al., 2015,
2016; Granberg et al., 2016; Jin et al., 2016a,b; Lu et al.,
2016a; Velişa et al., 2017a). All the studied alloys have shown
lower overall lattice distortion compared with pure Ni in the
relatively low dose regime, as characterized using ion channeling
techniques. Among the alloys, the irradiation response of NiCo
has been found the closest to pure Ni, followed by NiFe
and NiCoFe that have shown similar behavior. The two Cr
containing alloys, NiCoCr and NiCoFeCr, have shown the lowest
disorder level, suggesting the highest irradiation resistance.
The delay of damage accumulation in the compositionally
complex alloys has also been demonstrated to occur at low
temperature. At 16K, where long-range thermal migration of
defects is frozen, the damage accumulation is delayed from
Ni, NiFe, to NiCoFeCr, and the maximum disorder level is
decreased in the same sequence (Velişa et al., 2017b). These data
brought up an implication of the importance of Cr addition,
stimulating another experiments targeting on verifying this issue
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FIGURE 5 | Migration barriers of (A) interstitials and (B) vacancies, as well as (C) vacancy formation energies in NiCoFeCr. The dash lines indicate the values for pure

Ni. Data adapted from Zhao et al. (2018).

(Velişa et al., 2017a). Limited by the Cr concentration in the Ni-
containing FCC SP-CSAs, non-equiatomic Ni-20Cr and NiFe-
20Cr have been compared with corresponding Ni-20Fe and Ni-
60Fe. Unlike the difference found between NiCoFe and NiCoCr,
no significant difference was found between Ni-20Fe and Ni-
20Cr, and between Ni-60Fe and NiFe-20Cr, from channeling
measurements.

The damage accumulation process characterized by ion
channeling has been further investigated with combined
transmission electron microscopy (TEM), diffuse X-ray
scattering, and nanoindentation. For example, ion channeling
data have shown that the damage accumulation process
is delayed with increasing Fe concentration in the binary
Ni-xFe alloys up to 60 at%, the microstructure features of
which have been further revealed by TEM observations: the
average defect size (especially for interstitial loops) decreases
greatly with increasing Fe concentration (Figures 6b,c),
although the defect density is correspondingly increased
(Jin et al., 2016b). The combined effects of the increasing

density and decreasing size have been considered responsible
to the invariance of irradiation hardening with varying Fe

concentration, as characterized using nanoindentation (Jin
et al., 2016b). The decreased defect size from pure Ni has

also been observed using diffuse X-ray scatterings, even for
NiCo as the closest case: the averaged size is reduced from

6.8 to 4.6 nm and from 2.3 to 1.5 nm for interstitial and

vacancy type defects, respectively (Olsen et al., 2016). Moreover,
the presence of monovacancies has been reported, through

positron annihilation experiments, in NiCoFeCr under Ni ion

irradiations even to a high dose of ∼100 dpa (Abhaya et al.,
2016).

The phase stability of FCC SP-CSAs at room temperature
has been examined in both NiCoFeCr (Abhaya et al., 2016) and
NiCoFeCrAl0.1 (Xia et al., 2016) under high dose irradiations
up to ∼100 dpa. No observable secondary phase was observed
in both studies. Little swelling was reported, as expected at this
irradiation temperature.

Response to the Irradiations at Elevated
Temperatures
Comparisons on the irradiation induced swelling up to 53 dpa
have been made between Ni and a series of Ni-containing
FCC SP-CSAs in single crystalline form at 500◦C using step-
height measurements (Jin et al., 2016c). Pure Ni has shown
>6% overall swelling at this condition. In contrast to the
conventional austenitic stainless steels, which are usually subject
to higher swelling than pure Ni (Was, 2007), all the tested
FCC SP-CSAs have exhibited lower swelling. The swelling of
NiCo is about half of pure Ni, showing the weakest reduction
among the alloys. Alloying with Fe and Cr can both further
reduce the swelling of NiCo but to different extents: NiCoCr
only moderately suppresses the swelling, but little swelling
was observed in NiCoFe. The number of alloying elements is
again not a critical factor: the swelling in both binary NiFe
and quaternary NiCoFeCr is similar, and in between the two
ternary alloys. Little swelling was observed in the quinary HEA,
NiCoFeCrMn.

In addition to the overall swelling values, the void formation
has been observed under cross-sectional TEM observation (Lu
et al., 2016b; Yang et al., 2017). Two qualitatively different types
of depth distributions have been observed among these materials.
In pure Ni and NiCo, see Figure 7a as an example, the large
voids are located at in the first 1300 nm, corresponding well to
the predicted major displacement regime. In the other SP-CSAs,
however, majority of the voids (although small) are distributed
deeper than 1300 nm, beyond the displacement regime, as shown
in Figure 7b for NiCoFeCr as a representative case. Further
observations on the dislocation distribution have indicated that
the interstitial-type dislocations are located deeper than the void
regime in pure Ni and NiCo; for the other SP-CSAs the situation
is reversed.

The temperature dependence of microstructure evolution
under ion irradiations at elevated temperatures has been
performed in FeNiMnCr0.66 to 10 dpa at 400–700◦C (Kumar
et al., 2016), and in NiCoFeCrAl0.1 to 31 dpa at 250–650◦C
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FIGURE 6 | (a) Ion channeling spectra of several Ni-containing FCC SP-CSAs irradiated with 1.5 MeV Ni ions to the fluence of 1 × 1014 cm−2, adapted from Zhang

et al. (2016). Reproduced with the permission of the copyright holder (Cambridge University Press). (b,c) are the TEM images of Ni and NiFe, respectively, irradiated

with 1.5 MeV Ni ions to the fluence of 5 × 1015 cm−2. Adapted from Jin et al. (2016b). Reproduced with the permission of the copyright holder (Elsevier).

FIGURE 7 | Cross-sectional TEM images for the void distributions in (a) Ni and (b) NiCoFeCr, and elemental distribution around (c) dislocations and (d) voids in

NiCoFeCr, after 3 MeV Ni ion irradiations at 500◦C. Adapted from Lu et al. (2016b) and Lu et al. (2017).

(Yang et al., 2018). Unlike in Lu et al. (2016b), no voids have
been observed in both cases at all the test temperatures. For
the observable defect clusters, the density decreases but the
size increases with increasing irradiation temperature (Kumar
et al., 2016; Yang et al., 2018). However, the temperature
dependence in the FeNiMnCr0.66 is less significant compared
with the conventional Fe-Cr-Ni alloys. Moreover, considerably
higher loop density and lower loop size have been reported
in FeNiMnCr0.66, compared with those in the conventional
Fe-Ni-Cr alloys (Kumar et al., 2016). Furthermore, higher
fraction of faulted loops have been observed in the more
compositionally complex alloys, indicating that increasing
compositional complexity can extend the incubation period
and delay loop growth (Lu et al., 2017). Note that irradiation

temperature is a critical parameter for high temperature
irradiation induced effects, e.g., swelling, and the temperature
dependence varies with alloy compositions. The experimental
studies till present primarily have focused either on one HEA
at different irradiation temperatures (Kumar et al., 2016; Yang
et al., 2018) or on the effects of compositional complexity at
single irradiation temperature (Jin et al., 2016c; Lu et al., 2016b).
How the number and species of principal alloying elements affect
the temperature dependence of irradiation response in SP-CSAs
requires future systematic studies.

The phase stability under elevated temperature irradiation
has been another major topic studied for this series of SP-
CSAs. No secondary phases have been observed in any of the
above materials under ion irradiations (including NiFe, NiCoFe,

Frontiers in Materials | www.frontiersin.org 7 April 2018 | Volume 5 | Article 26

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Jin and Bei Transport Properties and Irradiation Response in Alloys

NiCoFeCr, NiCoFeCrMn, FeNiMnCr0.66, and NiCoFeCrAl0.1)
at all conditions, suggesting a great phase stability. However,
the electron-irradiated NiCoFeCrMn and NiCoFeCrPd thin
foils (TEM samples) have shown L10 (NiMn)-type ordering
decomposition and <001>-oriented spinodal decomposition
between Co/Ni and Pd, respectively, even at a low dose of 1
dpa (He et al., 2017). While not being single-phase by itself,
the FCC solid-solution phase portion in NiCoFeCrCu nano-
crystalline sample also maintains high phase stability against
electron irradiation at temperatures up to 500◦C (Nagase et al.,
2015).

The radiation-induced segregation (RIS) has been reported
much suppressed in FeNiMnCr0.66, as compared with the Fe-
Cr-Ni and Fe-Cr-Mn austenitic alloys (Kumar et al., 2016).
Furthermore, a trend of reducing RIS level has been observed
with increasing compositional complexity, from NiFe, NiCoFe,
NiCoFeCr, to NiCoFeCrMn (Lu et al., 2017). For all the observed
RIS cases, as representatively shown in Figures 7c,d, Ni and Co
tend to enrich, but Cr, Fe, and Mn prefer to deplete near the
defects (grain boundaries, loops, and voids) (He et al., 2017; Lu
et al., 2017; Yang et al., 2018).

LINKAGE BETWEEN THE TRANSPORT
PROPERTIES AND IRRADIATION
RESPONSE

Ion irradiation generally involves atomic displacement and
thermal spikes. Therefore, the (energy and mass) transport
properties may affect the irradiation response of materials. Since
external defect sinks appear minimum in the SP-CSAs, they
provide a way to directly bridge the intrinsic transport properties
to the irradiation response.

One of the contributions to the delayed damage accumulation
in SP-CSAs under room temperature irradiation has been
proposed as the reduced thermal conductivity (Zhang et al.,
2015). The physics picture has been intuitively described as
follows: the reduced thermal conductivity can slow down
the dissipation of the deposited heat, lengthen the thermal
spike, which enhances the lifetime of thermally enhanced
recombination stage (Ullah et al., 2016; Zhang Y. et al., 2017).
Experimental support of this hypothesis has been seen from
the correlation between thermal conductivity and damage level
of the Ni-containing equiatomic SP-CSAs under low dose
room temperature irradiations (e.g., comparing Figures 2, 6a).
Both thermal conductivity and irradiation-induced damage level
decreases from Ni, NiCo, NiFe/NiCoFe, to NiCoFeCr/NiCoCr.
This hypothesis has also been supported by the two-temperature
model in molecular dynamics simulation, showing that reduced
thermal conductivity can potentially contribute to the quenching
and annealing of the damage, leading to decreased number of
point defects (Zarkadoula et al., 2016). However, the impact
of thermal conductivity has also been reported not dominant,
in a simpler comparison, for example, although Ni-20Fe has
much higher thermal conductivity than Ni-20Cr, they seem to
have similar damage accumulation rate from the view of ion

channeling, which suggests other controlling factors (Velişa et al.,
2017a).

The defect evolution during irradiation contains stages of
defect production from collision cascades, in-cascade vacancy-
interstitial recombination, and the subsequent prolonged
migration process that causes the aggregation or annihilation of
defects. Thus, the mass transport properties, i.e., defect diffusion
kinetics can critically affect the eventual irradiation response of
materials. As discussed in section Mass Transport Properties:
Atomic Diffusion Behavior, the most apparent feature among the
mass transport properties observed in SP-CSAs is the reduced
separation, or even overlapping, of the migration barriers
between interstitial and vacancies, compared with pure metals or
dilute alloys in which interstitials usually migrates much faster
than vacancies (Zhao et al., 2018). In other words, the interstitial
diffusion is retarded while the vacancy migration is promoted.

The impact of sluggish interstitial diffusion has been observed
from several perspectives. First, as discussed for the cases of Ni-
xFe, FeNiMnCr0.66, etc., the size of interstitial defect clusters
in the SP-CSAs is much smaller than in pure metals and
conventional alloys, due to the slow aggregation of interstitials
(Jin et al., 2016b; Kumar et al., 2016). Second, the irradiation
induced damage range in the single-crystalline complex alloys
is reduced: cross-sectional TEM images have shown that the
damage range in NiFe is shallower than that in pure Ni (Lu et al.,
2016a).

Further combined with the fast vacancy migration, the close
migration barriers between interstitials and vacancies have also
shown strong impact of irradiation response. First, it has been
considered to reduce of surviving defects in SP-CSAs under room
and low temperature irradiations, by reducing the separation
of interstitial and vacancy populations, enhancing the their
interactions, and further promoting the defect recombination
(Velişa et al., 2017b; Zhang Y. et al., 2017). Second, this
mechanism has been considered to attribute to the qualitative
different void distribution and the reduced swelling in SP-
CSAs (see Figures 7a,b): Interstitials migrate fast in Ni and
NiCo, leaving the vacancies behind in the matrix oversaturated
and aggregated into large voids. In concentrated alloys, on the
contrary, much more vacancies and interstitials recombine in the
displacement regime, suppressing the formation of voids, and
small amount of fast migrating vacancies reach beyond the end
of irradiation depth, forming small voids (Lu et al., 2016b).

The investigations on both irradiation response and transport
properties of SP-CSAs with multiple principal elements (HEAs)
are at the frontier of materials science. While their correlations
have been presented, identifications of the roles of each
aspect of compositional complexity have not been available.
For example, clarifying the effects of the number of alloying
elements is challenging, since although considerable differences
have been observed between HEAs and the compositionally
simpler alloys, few of the reported properties (both transport
properties and irradiation response) monotonously change with
the number of elements. Moreover, analyzing the role of each
constituent becomes more difficult with increasing number of
elements, since each added element interacts with all species
in the original alloys and also affects their mutual interaction.
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FIGURE 8 | Schematic drawing of the concept of enhancing irradiation resistance from modifying the energy and mass transport properties with the control of

compositional complexity.

Therefore, future experimental and theoretical investigations
with careful control of variants among the three aspects of
compositional complexity, number, type, and concentration
of alloying elements, are demanded to better understand
how modification of compositional complexity can affect the
irradiation response through tailoring the transport properties
(Figure 8).

SUMMARIES

Reduced electronic and thermal conductivity, retarded interstitial
diffusion, easier vacancy migration, and harder vacancy
formation have been observed in recent studies in a novel class
of alloys, SP-CSAs. These intrinsic transport properties have
been found to significantly impact their irradiation response,
delay the damage accumulation, and suppress the interstitial
aggregation and volume swelling. Bridging the intrinsic transport
properties to the irradiation response has pushed forward the
understanding on mechanisms of energy dissipation and defect
evolution at the atomic and electronic level. The demonstrated
capability of controlling irradiation response in SP-CSAs by
modifying intrinsic transport properties without changing the
microstructure may stimulate new alloy design strategies for the
next generation nuclear structural alloys. However, although

descriptive correlations between intrinsic transport properties
and the irradiation response have been proposed, a predictive
model that can quantitatively evaluate the compositional effects
on defect evolution in SP-CSAs has not been available, and other
factors than the transport properties such as the stacking fault
energy and local atomic stress can also affect the irradiation
response simultaneously; Further theoretical and experimental
investigations are demanded to fill such knowledge gaps to
further extract the potential of this attractive alloy family on
energy applications.
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