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Glioblastoma (GBM) is the most common and malignant form of brain cancer. Even with

aggressive standard of care, GBM almost always recurs because its diffuse, infiltrative

nature makes these tumors difficult to treat. The use of biomaterials is one strategy

that has been, and is being, employed to study and overcome recurrence. Biomaterials

have been used in GBM in two ways: in vitro as mediums in which to model the

tumor microenvironment, and in vivo to sustain release of cytotoxic therapeutics. In

vitro systems are a useful platform for studying the effects of drugs and tissue-level

effectors on tumor cells in a physiologically relevant context. These systems have

aided examination of how glioma cells respond to a variety of natural, synthetic,

and semi-synthetic biomaterials with varying substrate properties, biochemical factor

presentations, and non-malignant parenchymal cell compositions in both 2D and 3D

environments. The current in vivo paradigm is completely different, however. Polymeric

implants are simply used to line the post-surgical resection cavities and deliver secondary

therapies, offering moderate impacts on survival. Instead, perhaps we can use the data

generated from in vitro systems to design novel biomaterial-based treatments for GBM

akin to a tissue engineering approach. Here we offer our perspective on the topic,

summarizing how biomaterials have been used to identify facets of glioma biology in vitro

and discussing the elements that show promise for translating these systems in vivo as

new therapies for GBM.

Keywords: glioblastoma, biomaterial, hydrogel, regenerative medicine, tissue engineering, brain, tumor

microenvironment

INTRODUCTION

Glioblastoma (GBM) is a high-grade brain cancer that almost always recurs (Cuddapah et al.,
2014). Many in vitro and in vivomodels of GBM have been developed in an effort to uncover new
therapeutic strategies. Biomaterials are often primary components of in vitromodels to chemically,
mechanically, and/or topographically recreate the physiological tumor environment, as recently
reviewed by Xiao et al. (2017), Gu and Mooney (2015), Pradhan et al. (2016), Cha and Kim (2017),
and Heffernan and Sirianni (2018).

While GBM models are useful for studying glioma biology, the field is far from accurately
predicting clinical success of a new therapy. It was recently suggested that all models,
including gold-standard mouse xenografts, inherently cannot preserve the genetic landscape
of patient-derived tumor cells (Ben-David et al., 2017). Where does this study (and others
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like it) leave the field? Glioma is a tissue, with complex
heterogeneity in tissue geometry, composition, biophysical
properties, etc. Even if researchers can create sophisticated
models of the tumor, these models cannot logistically account for
every element of the in vivo environment. Therefore, a tissue-
level approach may enhance our ability to treat this deadly
disease.

In vitro biomaterial research has revealed crucial information
about material-GBM cell interactions. And yet, implementation
of biomaterials in vivo for treating GBM has been limited to
anti-tumor drug delivery, such as BCNU-releasing Gliadel wafers
(Wait et al., 2015). These wafers, made of a poly(lactic-co-
glycolic) polymer backbone, have been used to line resection
cavities in patients receiving surgical removal of primary tumors
and offer a modest, yet significant, increase in survival. However,
these systems are simply a conduit for therapy and thus in no way
leverage glioma-biomaterial interactions as part of the therapy.

Many diseases are now being viewed from a regenerative
medicine lens, using factors within the patient’s own body to
promote healing. Cancer is often described as a wound that
does not heal and may similarly benefit from this approach.
The fluid-filled cavity remaining after resection is a prime space
in which to examine biomaterial-based therapies, analogous to
experimental treatments for stroke or traumatic brain injury. In
current literature, treating the post-resection cavity has primarily
involved hydrogel biomaterials as passive vehicles for drug
therapy (Bagó et al., 2016; Bastiancich et al., 2017). It is possible
that translating collective knowledge frommyriad in vitromodels
could instead transition biomaterials to an active avenue for
cancer remediation. Below, we summarize current understanding
of how glioma outcomes can be altered in vitro and offer
perspectives for using this data to design biomaterials for
promoting anti-tumor responses, tumor targeting, and treatment
against glioblastoma.

TUNING THE EXTRACELLULAR MATRIX

Matrix Composition
While earlier experiments with glioma cells used 2D plastic, it is
now understood that the underlying matrix plays an important
role in glioma phenotype (Eke and Cordes, 2011; Florczyk
et al., 2013; Heffernan et al., 2015). The composition of the
brain matrix is different from most tissues, primarily comprising
the polysaccharide hyaluronic acid (HA) and HA-binding
proteoglycans, but few fibrillar proteins. Many engineered
in vitro systems for GBM therefore employ HA-based matrices.
These models have elucidated that HA increases stem cell
maintenance, glioma cell adhesion and migration, and markers
of malignancy (Pedron et al., 2013; Kim and Kumar, 2014;
Tilghman et al., 2014; Cha et al., 2016). Other brain components,
such as certain chondroitin sulfate proteoglycans (CSPGs), have
also been shown to increase glioma invasion (Logun et al., 2016).
However, CSPGs have also been suggested to inhibit glioma cell
invasion (Silver et al., 2013), therefore the specific response may
depend on CSPG sulfation pattern (Silver and Silver, 2014).

Several in vitromodels have been developed with components
not ubiquitous in the brain, like collagen I and laminin-rich

basement membrane extract (Matrigel). While mixing these
components with HA can recreate the invasive phenotypes
observed in pure HA hydrogels (Munson et al., 2013; Gritsenko
et al., 2017), collagen andMatrigel hydrogels alone comparatively
limit glioma cell invasion. Some non-native components
nonetheless increase invasion: The extracellular matrix (ECM)
secreted by glioma cells is itself dissimilar to the native
brain and is rich in aberrant proteoglycans, tenascin-c, and
an overabundance of HA (Cuddapah et al., 2014; Xia et al.,
2016). For example, glioma cells secrete a truncated form
of the proteoglycan brevican which binds to fibronectin and
promotes invasion (Hu et al., 2008). Incorporation of RGDS,
the adhesive ligand found in fibronectin, similarly induced cell
dissemination in poly(ethylene) glycol hydrogels (Beck et al.,
2013). Further, glioma cells adhere more strongly in HAmatrices
that contain RGDS, potentially due to augmented integrin-
mediated mechanotransduction in HA (Chopra et al., 2014; Kim
and Kumar, 2014).

Topographical Cues
Topographical cues present within the tissue can also enhance
migration. While the brain is relatively non-fibrous and
amorphous, basement membrane-rich blood vessels are a prime
substrate on which glioma cells migrate within perivascular
spaces (Cuddapah et al., 2014). Herrera-Perez et al. (2015)
showed that pseudovessels of Matrigel-coated collagen-oligomer
fibrils increased the speed of glioma cell migration across a
3D collagen-HA matrix. White matter tracts in the brain are
also a frequent route of migration. Using core-shell electrospun
nanofibers to mimic white matter tracts, Rao et al. (2013)
found that glioma cell morphology, migration speed, and focal
adhesion kinase expression were all sensitive to fiber mechanics
and composition. Altering the design parameters of fibrous
biomaterials can therefore offer precise control over glioma
migration.

Mechanical Forces
A major driving force for using biomaterials in cell culture
platforms is the ability to control biomechanical forces, often
independently from the chemical composition. The mechanical
properties of a scaffold influence a wide range of cellular
behaviors, including proliferation, migration, and stem cell
fate (Engler et al., 2006; Ulrich et al., 2009; Seidlits et al.,
2010). It is well described that many tumors outside the
brain are stiffer than the surrounding tissue. In glioma, tissue
mechanics appear to be extremely heterogeneous, but the
tumor is likely stiffer than normal brain, which has a Young’s
modulus around 1.4 kPa (Miroshnikova et al., 2016). While the
exact physiological properties are controversial, stiffer matrices
promote glioma dissemination. Increasing the stiffness of PEG
hydrogels decreased proliferation of U87 cells and increased the
number of cell protrusions (Wang et al., 2014). Similar results
were found using fibronectin-based matrices on which tumor
cell spread and speed of migration increased with modulus while
proliferation rate decreased compared to softer substrates (Ulrich
et al., 2009).
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Fluid flow and shear stress are also felt by glioma cells in
the tumor microenvironment (Munson and Shieh, 2014). These
forces have been recreated in vitro using HAmatrices (Polacheck
et al., 2011; Qazi et al., 2011; Munson et al., 2013). Interstitial
flow on the order of 0.1–1 µm/s generally increased glioma
cell invasion, although patient-derived glioma stem cells showed
variable responses (Kingsmore et al., 2016). Manipulation of
the matrix to reduce glycocalyx assembly (Qazi et al., 2013) or
CD44-binding (Kingsmore et al., 2016) attenuated these effects,
indicating a link between flow and the surrounding 3D matrix.

Implications for Therapeutic Translation
Biomaterials often promote cell recruitment into an implantation
site after neural injury (Ghuman et al., 2016; Nih et al.,
2017). A similar approach may be beneficial for promoting
glioma migration into an implanted material following resection.
The properties of the implanted matrix should overcome the
malignancy-enhancing properties of HA in the brain, either by
disrupting binding or providing effective competition. Using a
low molecular weight version of HA instead of high molecular
weight may promote local anti-tumor inflammation and disrupt
growth factor signaling (Fuchs et al., 2013; Rayahin et al., 2015).
Incorporation of components such as fibronectin or RGDS could
also preferentially promote stronger binding between invaded
cells and the material vs. the parenchyma (Kim and Kumar,
2014). Fibrous materials would likely increase glioma invasion
into the cavity. In fact, inducing migration through topography
has already proved feasible and beneficial for GBM therapy
(Jain et al., 2014). Additionally, the implanted matrix should
be relatively stiffer than the brain to promote durotaxis, or
migration up a stiffness gradient, of glioma cells and stem-like
cells but deter migration of neural cells, which prefer softer
substrates (Flanagan et al., 2002; Hadden et al., 2017). The caveat
is that mechanical mismatch can promote potentially detrimental
astrogliosis (Prodanov and Delbeke, 2016). Matrices that are
initially stiffer and gradually soften over time may have a defined
niche, in this case.

CONTROLLING BIOCHEMICAL CUE

PRESENTATION

Cytokine and Growth Factor Gradients
Cytokines and growth factors originating from both glioma
and parenchymal cells are associated with the progression of
glioma and response to therapy, as previously reviewed (Iwami
et al., 2011; Zhu et al., 2012). In vivo, natural heterogeneity
is formed as tumor and parenchymal cells secrete biological
molecules, which then differentially bind to the surrounding
matrix and form gradients, sources, and sinks within the
tissue. Recreating gradients in vitro using combinations of
microfluidics, biomaterials, and various cells has been a focus of
models for the study of both cancer (Keenan and Folch, 2008;
Pedron et al., 2015) and regenerative medicine (Khang, 2015).
Microfluidic devices and tissue culture insert models have both
been used to show that in situ gradients of CXCL12 within 3D
hydrogels directly promote glioma migration up the chemokine

gradient (Munson et al., 2013; Addington et al., 2015; Kingsmore
et al., 2016).

Cytokines are also implicated in the maintenance of glioma
stem cells, a potential driver of glioma recurrence. Glial cells
and recruited endothelial cells secrete factors such as bFGF that
promote stem cell maintenance (Fessler et al., 2015). Blocking
the effect of these cytokines offers potential to slow or halt
proliferation of glioma cells. Affinity binding peptides have been
incorporated into biomaterials for controlling release of bFGF,
but these materials could inversely act as effective cytokine sinks
(Lin and Anseth, 2009). A similar approach using an RNA
aptamer to block PDGFRβ was shown effective at slowing glioma
growth (Camorani et al., 2014). Designing materials to promote
cell differentiation, as is common in regenerative medicine, may
be equally applicable to treating glioma (Benoit et al., 2008).

Oxygen
Aberrant vasculature and unchecked tumor growth produce
hypoxic or low oxygen-containing regions within the tumor and
invading tumor clusters (called pseudopalisades; Rong et al.,
2006). Hypoxia is implicated in increasing angiogenesis, stem cell
maintenance, immunosuppression, and cancer cell therapeutic
resistance (Colwell et al., 2017). Thus, incorporation of oxygen
gradients within in vitro systems has been used to study a major
effector of glioma outcomes. Use of 3D systems or spheroid
culture naturally introduce regions of hypoxia based on thickness
and permeability of the materials used. Recently, an in vitro PEG-
based system showed that immobilization of the O2-consuming
enzymes glucose oxidase and catalase effectively induced
hypoxia and upregulated genes known to contribute to cancer
metastasis (Dawes et al., 2017). The opposite would therefore
be useful for glioma therapy: generating oxygen gradients and
preventing hypoxia. Validating this approach, a paper-based
PET mesh layering system showing that linear gradients of
oxygen in culture functioned as a primary chemoattractant and
increased invasion of lung adenocarcinoma cells (Mosadegh
et al., 2015). Oxygen-creating biomaterials have been tested
in regenerative medicine, showing sustain oxygen release for
weeks and reducing hypoxia until angiogenesis can occur
(Pedraza et al., 2012).

Implications for Therapeutic Translation
The ability to control spatiotemporal chemical gradients within
the post-resection cavity has far-reaching implications for
glioma therapy. An ideal biomaterial would trigger glioma cell
egress from the brain parenchyma into the material through
establishing chemical gradients of chemotactic factors such as
oxygen or CXCL12. Alternatively, the material could eliminate or
disrupt pro-malignant cytokine signaling through either release
of receptor blockers or sequestration of factors that aid glioma
stem cell proliferation and maintenance. Dual-release or multi-
functional biomaterials would likely be optimal. Materials that
enable temporally-regulated release and/or capture dynamics,
similar to those used in regenerative medicine (Spiller et al.,
2015), are particularly promising since they may simultaneously
promote parenchyma egress, glioma stem cell differentiation, and
loss of acquired drug resistance.
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REMODELING THE CELLULAR

MICROENVIRONMENT

Angiogenesis
One hallmark of cancer is the ability to induce aberrant
angiogenesis (Hanahan and Weinberg, 2011). Multiple models
of angiogenesis have been engineered and used in vitro (Kimlin
et al., 2013), although few have been described for co-culture
of glioma cells and endothelial cells (Nguyen et al., 2016).
Glioma cells secrete high levels of pro-angiogenic vascular
endothelial growth factor (VEGF)-A which promotes blood
vessel sprouting (Folkins et al., 2009). The ECM can act to
sequester or locally retain VEGF-A, thereby amplifying resultant
uncontrolled angiogenesis (Belair et al., 2016). Additionally,
glioma cells in vivo physically displace astrocytic endfeet from the
surface of blood vessels, disrupting the blood-brain barrier (BBB)
and astrocytic control of vascular tone (Cuddapah et al., 2014;
Watkins et al., 2014). While anti-angiogenesis strategies were
initially promising for limiting glioma progression, the VEGF-
specific antibody bevacizumab (Avastin) completely ablated
tumor blood vessels and actually enhanced tumor growth by
upregulating hypoxia-inducible pathways (Conley et al., 2012).
A more apt approach may be to control availability of pro-
angiogenic factors to promote vascular normalization.

Immune Cell Modulation
Another hallmark of cancer is the promotion of pro-tumor
inflammation (Hanahan and Weinberg, 2011). Monocyte-
derived cells can account for nearly 60% of the tumor bulk
(Yuan et al., 2014). Initial studies proposed that glioma-
associated macrophages were conditioned toward alternative,
M2 activation, but recent evidence suggests this characterization
requires refinement (Mantovani et al., 2002; Szulzewsky et al.,
2015; Gabrusiewicz et al., 2016). Early in tumor development,
anti-inflammatory cytokines enable tumor cells to evade the
host immune response (Zitvogel et al., 2006; Razavi et al.,
2016). Later, immunotolerance can occur due to secretion of
tolerogenic cytokines and ligands such as TGFβ, IL-10, and PD-
L1 (Razavi et al., 2016). Glioma-derived ECM molecules also
alter immune cell phenotype, with periostin acting to recruit and
train monocytes toward pro-tumor phenotypes and tenascin-c
protecting tumor cells from immune surveillance by arresting
T-cell activation (Jachetti et al., 2015; Zhou et al., 2015).

While early biomaterials aimed to reduce the immune
response (Bryers et al., 2012), more recent advances have
resulted in development of immunomodulatory biomaterials
(Hubbell et al., 2009) and immunotherapeutic biomaterials
(Swartz et al., 2012). Biomaterial-based regulation of macrophage
polarization was recently reviewed elsewhere (Sridharan et al.,
2015). Although regenerative approaches typically focus on
promoting anti-inflammatory immune cell phenotypes, the
opposite is also conceivable. These approaches could easily
be tailored toward anti-cancer immunotherapy, as well. T cell
modulation is a rapidly growing and promising field, with
several strategies currently being tested: checkpoint inhibitor
targeting of programmed cell death protein (PD)-1, chimeric
antigen receptor (CAR) T cell therapy, and dendritic cell

therapy (Tumeh et al., 2014; Garg et al., 2017; O’Rourke et al.,
2017).

Glial Cell Modulation
The glioma tumor microenvironment uniquely contains a
brain-specific class of cells known collectively as glia, in part
comprising astrocytes and microglia. Astrocytes provide trophic
and functional support for neurons, and microglia are the
resident immune cells of the central nervous system. Glioma-
associated factors such as CCL21 and the proteoglycan versican
promote a pro-tumor phenotype in microglia (Vinnakota et al.,
2013; Hu et al., 2015). Glioma cells communicate with astrocytes
via connexin-43 gap junctions to promotes glioma invasion,
potentially through exchange of double stranded DNA, as was
observed with metastatic breast cancer cells (Chen et al., 2016;
Sin et al., 2016).

There is limited knowledge on the effects of combining
glial cells in 3D culture with glioma cells. Recent histological
evidence revealed that the balance between reactive astrocytes
and microglia correlated with GBM patient prognosis; therefore,
it will be important to investigate the combination of these cell
types in the future (Yuan et al., 2016). It also remains unclear if
tumor-associated astrocytes are functionally different than other
reactive astrocytes, particularly after the mechanical stress of
surgical resection. Nonetheless, material interventions for tissue
regeneration often target astrocytic “glial scarring.” A mixture
of collagen, hyaluronic acid, and Matrigel maintained astrocytes
in a quiescent state in vitro (Placone et al., 2015). Additionally,
a laminin-inspired self-assembling peptide hydrogel attenuated
glial scarring following a stab injury (Maclean et al., 2017).

Implications for Therapeutic Translation
Biomaterials are routinely used to target the cellular
microenvironment to promote healing. A similar approach
may prove useful for limiting glioma recurrence. Implanting
a material with immobilized pro-angiogenic factors may help
constructively direct angiogenesis within the resection cavity
to promote BBB formation and oxygen normalization while
restricting vessel development in the parenchyma (Li et al.,
2017). A matrix that irreversibly sequesters VEGF-A from
the surrounding tumor microenvironment may have similar
effects. The adaptive immune system can be redirected using
biomaterial-based vaccines to elicit potent, antigen-specific T cell
responses, including in glioma (Ali et al., 2011; Purwada et al.,
2014; Cheung et al., 2018). Reversing pro-tumor polarization
in innate immune cells and glia will likely require a nuanced
balance between pro- and anti-inflammatory phenotypes.
In this case, it would be useful to temporally control release
and/or presentation of different factors (Spiller et al., 2015).
Enzyme-releasing materials could assist in mitigating the
effects of glioma-derived ECM molecules (Qu et al., 2013).
Additionally, astrocytes may be specifically targeted using
therapeutic connectosomes to override cell-cell communication
with glioma (Gadok et al., 2016). The foremost objective must
remain eliminating the cancer cells, therefore fibrous materials
may again be preferred given it proves desirable to promote
pro-healing phenotypes in the long run (Sridharan et al., 2015).
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CONCLUSIONS

Althoughwe use the in vivo environment to educate development
of defined in vitro models, we rarely do the inverse in cancer.
The complexity of glioblastoma has thus far proven difficult
to capture in vitro, and unfortunately no current model can
accurately predict the translational success of a therapy. Here,
we proposed synthesizing the collective knowledge from in vitro
models to inform tissue-level interventions through rational
design of therapeutic biomaterials. Several strategies may be
particularly relevant: Controlling angiogenesis by presentation
of VEGF-A and FGF to enable better drug delivery to
tumor remnants; induction of immunogenic response through
growth factor and chemokine presentation to induce immune
infiltration and anti-tumor differentiation; or increased stiffness
coupled with topography and/or chemokines such as CXCL12
to encourage tumor cell migration away from healthy tissue.

Regardless, using biomaterials as a tissue engineering approach to
treat glioblastoma is an unexplored possibility. Because a plethora
of in vitro models have used a host of different biomaterials
and approaches, there may already be a strategy hidden within
these studies that could assist in the fight against this deadly
disease.
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