

Catalyst Screening for Oxidative Coupling of Methane Integrated in Membrane Reactors

Julio Garcia-Fayos, Maria P. Lobera, Maria Balaguer and Jose M. Serra*

Instituto de Tecnología Química, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Valencia, Spain

Increased availability of methane from shale gas and stranded gas deposits in the recent years may facilitate the production of ethylene by means of potentially more competitive routes than the state-of-the-art steam cracking processes. One appealing route is the oxidative coupling of methane (OCM), which is considered in this work for the production of ethylene by means of the use of catalytic membrane reactors (CMR) based on Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O₃₋₈ (BSCF) ceramic material. In a first approach, a screening of 15 formulations as catalysts for the ethylene-ethane production was conducted on CMR consisting of disk-shaped planar BSCF membranes. At 900°C, the maximum C₂ selectivity was 70%, reached with $Ba_{0.5}Sr_{0.5}FeO_{3-\delta}$ and $La_{0.5}Ce_{0.1}Sr_{0.4}Co_{0.8}Fe_{0.2}O_{3-\delta}$ catalysts. On the other hand, low CH₄ conversions (X_{CH4}) resulted in C₂ yields below 3%. Operation at 1,000°C significantly shifted X_{CH4} for all the activated membranes due to the decrease in CH_4/O_2 ratios, thus obtaining C_2 yields close to 9% and productivities of ca. 1.2 ml·min⁻¹·cm⁻² with $Ce_{0.9}Gd_{0.1}O_{2-\delta}$ and $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$ impregnated with Mn-Na₂WO₄ catalysts. The performance of OCM reaction was also studied in a tubular catalytic membrane reactor. Tubular configuration improved C_2 yield by minimizing CH_4/O_2 ratios up to 1.7, obtaining a maximum of 15.6% at 900°C with a BSCF capillary membrane activated with a packed bed of 2 wt% Mn/5 wt% Na₂WO₄ on SiO₂ catalyst.

Keywords: catalytic membrane reactor, oxygen transport membrane, BSCF, OCM, ethylene production, ionic conductor

INTRODUCTION

Ethylene is the most demanded organic compound worldwide, with a yearly production of 150 Mton in 2016 (Reporters, 2016). It is probably the most important basic petrochemical since it is used for producing other essential chemicals in nowadays economy, such as polyethylene, ethylene oxide, acetaldehyde or alcohols. Currently, ethylene is mainly produced by steam cracking of hydrocarbon feedstocks (naphta, gasoil, and condensates). Amongst all the existing feedstocks, ethane cracking is the most preferred, since almost no coproducts are obtained. Steam cracking is a non-catalytic process run at very high temperatures (typically 850°C). The main drawbacks are the process complexity and the downstream processing, the high energy requirements due to the endothermic reaction, and the operation complications due to the high coke formation rate. Despite the high maturity of the technology no major advances are foreseen for overcoming these weaknesses.

OPEN ACCESS

Edited by:

David Alfredo Pacheco Tanaka, Tecnalia, Spain

Reviewed by:

Jose A. Medrano, Eindhoven University of Technology, Netherlands Tridib Kumar Sinha, Gyeongsang National University, South Korea

> *Correspondence: Jose M. Serra jmserra@itq.upv.es

Specialty section:

This article was submitted to Functional Ceramics, a section of the journal Frontiers in Materials

Received: 19 February 2018 Accepted: 11 May 2018 Published: 03 August 2018

Citation:

Garcia-Fayos J, Lobera MP, Balaguer M and Serra JM (2018) Catalyst Screening for Oxidative Coupling of Methane Integrated in Membrane Reactors. Front. Mater. 5:31. doi: 10.3389/fmats.2018.00031

1

$$\begin{array}{rll} \mbox{Step 1:} & CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O \\ \mbox{Step 2:} & 2CH_4 + 0.5O_2 \rightarrow C_2H_6 + H_2O \\ \mbox{Step 3:} & CH_4 + O_2 \rightarrow CO + H_2O + H_2 \\ \mbox{Step 4:} & CO + 0.5O_2 \rightarrow CO_2 \\ \mbox{Step 5:} & C_2H_6 + 0.5O_2 \rightarrow C_2H_4 + H_2O \\ \mbox{Step 6:} & C_2H_4 + 2O_2 \rightarrow 2CO + 2H_2O \\ \mbox{Step 7:} & C_2H_6 \rightarrow C_2H_4 + H_2 \\ \mbox{Step 8:} & C_2H_4 + 2H_2O \rightarrow 2CO + 4H_2 \\ \mbox{Step 9:} & CO + H_2O \rightarrow CO_2 + H_2 \\ \mbox{Step 10:} & CO_2 + H_2 \rightarrow CO + H_2O \\ \end{array}$$

FIGURE 1 | Simplified OCM reaction mechanism presented by Stansch et al. (1997).

In the past recent years, ethylene production is focused on the use of light alkanes such as propane, ethane, and methane, mainly due to the more economic availability from shale gas and stranded gas exploitations that facilitate cost-competitive routes for the production of light olefins. Therefore, by considering these available feedstocks, several routes are being studied and developed for the production of ethylene from ethane such as the oxidative de-hydrogenation of ethane (ODHE) (Bhasin et al., 2001; Grubert et al., 2003), and from methane such as methanol-to-olefins reaction (Keil, 1999; Chen et al., 2005), Fischer-Tropsch synthesis (Lunsford, 2000), and the Oxidative Coupling of Methane (OCM) (Keller and Bhasin, 1982; Ito and Lunsford, 1985; Amenomiya et al., 1990; Lunsford, 1995). Amongst these, the use of CH₄ for the production of valuable chemicals is preferred due to economic reasons (Mleczko and Baerns, 1995; Mleczko et al., 1996), and in particular OCM is considered one of the most attractive options as a direct route for the direct conversion of CH_4 into C_2H_4 .

The first works on OCM were reported in the early 80's by Keller and Bhasin (1982). Since then, OCM has attracted much attention from both the academia and industry. A big number of developments were mainly focused on catalysts that maximize C₂H₄ yields and optimizing the reactor design for managing heat and streams (Otsuka et al., 1986; Hutchings et al., 1989; Amenomiya et al., 1990; Maitra, 1993; Mleczko et al., 1996). With regard to OCM reaction mechanism, Stansch et al. (1997) presented a kinetic model (Figure 1) where C₂H₄ formation mechanism involves a dehydrogenation step to form the radical CH₃ species, first producing C₂H₆ by CH₃ coupling (step 2) and then C₂H₄ by ethane dehydrogenation (steps 5 and 7). Since CH₄ is a very stable molecule, the CH₄ activation for the coupling requires breaking a strong C-H bond (ca. 439 kJ·mol⁻¹). Issues such as thermodynamic limitations for CH₄ conversion, low C₂ selectivity and catalysts deactivation due to coke formation, make OCM practically and commercially inviable (Karakaya et al., 2017). The techno-economical threshold for considering OCM as commercially available is set at 30% C2 yield per single-pass (Farrell et al., 2016; Spallina et al., 2017).

Catalytic Membrane Reactor (CMR) technology (Aseem and Harold, 2018) with the integration of Oxygen Transport

Membranes (OTMs) (Tenelshof et al., 1995; Zeng et al., 1998; Akin and Lin, 2002; Sunarso et al., 2008) is a suitable option for overcoming these drawbacks. As can be seen in the model depicted in **Figure 1**, the OCM reaction performance is affected by several secondary reactions leading to undesirable CO_x formation, mainly due to an O₂ feeding excess. Therefore, one of the main aspects of OTMs for their application in OCM reaction is the dosing of O₂ in a controlled manner by tuning parameters such as temperature, pO_2 at feed side, residence time and space velocity by reactant gas stream flow variation, etc. Therefore, by adjusting conveniently the CH₄/O₂ stoichiometry the complete oxidation of CH₄ to CO_x can be avoided, while increasing C₂ selectivity. In addition, higher conversion can be reached without safety problems related to flammability limits in conventional co-feeding reactors.

Several research groups have performed OCM reactions by considering different OTM materials, geometries and catalysts for improving the reaction toward C₂ formation. In **Table 1**, some of the reported results are summarized. Tubular geometries are preferred for conducting OCM in CMRs, with a special emphasis in the use of catalysts that improve C₂ selectivity. Amongst all the considered cases, the best results have been obtained by Othman et al. reaching a C₂ yield of 39% on a LSCF hollow fiber activated with $Bi_{1.5}Y_{0.3}Sm_{0.2}O_{3-\delta}$ catalyst.

Oxygen transport membranes consist of gastight Mixed Ionic Electronic Conductors (MIEC) that diffuse oxygen through vacancies in the crystal lattice, and simultaneously transport electrons in the opposite direction, thus obviating the need for an external electrical short circuit. Their major advantage is an infinite oxygen selectivity, assuming no leakage through the membrane layer or the sealing, and resulting in high purity oxygen that can be directly provided to oxyfuel power plants or chemical processes. Oxygen permeation through the bulk material is governed by the Wagner equation¹, favored by increasing temperatures and chemical gradients across the membrane. On the other hand, thin membranes (below 50 μ m) are strongly limited by the surface exchange kinetics of molecular oxygen.

In addition to the benefits of OTMs application in the conduction of OCM reaction, the possibility of adding catalytic layers consisting of MIEC active materials may produce an increase in the rate of surface reactions (Lobera et al., 2012b). The use of catalysts based on perovskites and fluorite compounds is of great interest due to their ionic-electronic conductive properties allowing the presence of ionic oxygen species at the materials surface. Therefore, the OCM reaction can take place all over the catalytic layer at the active sites localized on the oxygen vacancies on the surface of catalyst particles. Nano-structured materials leading to highly porous catalytic layers may improve the OCM performance by ensuring a proper gas diffusion media as well as a

 $^{{}^{1}}J(O_{2}) = \frac{RT}{16F^{2}L} \int_{pO_{2}'}^{pO_{2}''} \sigma_{amb} dlnpO_{2}$

where $J(O_2)$ is the oxygen permeation, *R* is the gas constant, *T* is the temperature, *F* is the Faraday's constant, *L* is the membrane thickness, PO_2 " and PO_2 ' stand for the O₂ partial pressures at feed and permeate sides, respectively, and σ_{amb} is the ambipolar conductivity of the membrane material.

T (°C)	Geometry	Catalyst	S _{C2} (%)	Y _{C2} (%)	References
		-			
900	lubular	-	54	35	Akin and Lin, 2002
850	Tubular	La-Sr/CaO	66	15	Wang et al., 2005
900	Disk	La-Sr/CaO	65	18	Olivier et al., 2009
950	Hollow fiber	-	43.8	15.3	Tan and Li, 2006
975	Hollow fiber	SrTi _{0.9} Li _{0.1} O ₃	40	21	Tan et al., 2007
900	Hollow fiber	Bi _{1.5} Y _{0.3} Sm _{0.2} O _{3-δ}	79	39	Othman et al., 2015
800	Hollow fiber	Mn-Na2WO4/SiO2	50	17	Czuprat et al., 2010
850	Tubular	Na-W-Mn	67.4	34.7	Bhatia et al., 2009
	T (°C) 900 850 900 950 975 900 800 850	T (°C)Geometry900Tubular850Tubular900Disk950Hollow fiber975Hollow fiber900Hollow fiber800Hollow fiber850Tubular	T (°C)GeometryCatalyst900Tubular-850TubularLa-Sr/CaO900DiskLa-Sr/CaO950Hollow fiber-975Hollow fiberSrTi _{0.9} Li _{0.1} O ₃ 900Hollow fiberBi _{1.5} Y _{0.3} Sm _{0.2} O _{3-δ} 800Hollow fiberMn-Na ₂ WO ₄ /SiO ₂ 850TubularNa-W-Mn	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

high specific surface area. Additionally, by properly doping with metal cations presenting different ionic radii, oxidation states and redox behavior, it is possible to improve the catalytic activity by increasing the number of oxygen vacancies and by varying the O-cation bond strength (Sunarso et al., 2008).

The present work is focused on the development of catalytic membrane reactors (CMR) for the production of C_2H_4 through the OCM reaction. For that aim, a screening of 15 catalyst formulations was performed on $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$ (BSCF) planar membranes, following the CH₄ conversion, C_{2+} selectivity, C_{2+} yield, and C_{2+} production. The catalyst study was mainly focused on the use of different MIEC catalysts and by considering state-of-the-art OCM catalysts. Furthermore, a study on the influence of reactor geometry on OCM performance was conducted by considering a BSCF capillary activated with a Mn-Na₂WO₄ on SiO₂ catalytic packed bed.

EXPERIMENTAL

Dense Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O₃₋₈ planar membranes of 15 mm diameter and 0.8 mm thickness were prepared by uniaxial pressing at 150 kN, and subsequently sintered in air for 5 h at 1,100°C. BSCF powder was provided by Fraunhofer Institute for Ceramic Technologies and Systems (IKTS, Germany). The catalysts for the activation of membranes can be grouped in (i) MIEC perovskites, (ii) lanthanide doped cerias, (iii) MgO, and (iv) LaSr/CaO. The catalysts based on MIEC perovskites consisted of $ABO_{3-\delta}$ formulations, obtained by doping A- and Bsites according to $A_{0.6}$ Sr_{0.4}Co_{0.5}Fe_{0.5}O_{3- δ} and Ba_{0.6}Sr_{0.4}BO_{3- δ} formulations where A = La, Pr, Ba, Ce, Sm, and Nd and B = Fe and Co. MIEC catalysts powders were synthesized by Pechini method. For each catalyst, metal precursor nitrates were mixed in distilled water in order to obtain a clear solution. After complete dissolution, citric acid was added as a chelating agent, and ethylene glycol was added to polymerize with the chelating agent and produce an organometallic polymer (in a molar ratio 1:2:4 with respect to nitrates solution, citric acid, and ethylene glycol, respectively). This complexation was followed by dehydration at low temperature (up to 270°C) and finally, thermal decomposition of the precursors at 600°C formed the desired structural phases. Regarding the fluorite compounds, two different catalyst based on the system $Ce_{1-x}Ln_xO_{2-\delta}$ (x = 0.1; Ln = Tb, and Gd) were prepared by co-precipitation method. This technique consists of the dissolution of commercial lanthanide nitrates mixture in distilled water at 50°C. $(NH_4)_2CO_3$ solution in a 1:1.5 molar ratio was dropped to achieve the total precipitation of the mixed cations. The resulting precursor powder was dried at 100°C after filtration and rinsing. MgO powders were supplied by Sigma-Aldrich. LaSr/CaO catalyst was prepared by co-precipitation method being the nominal composition 10 wt% La, 20 wt% Sr on CaO.

Catalytic activation of planar membranes was conducted by screen printing catalyst porous layers on one of the sides of the membrane, which will be exposed to the reaction. The screen printing ink consists of the ceramic powder, an organic binder (ethylcellulose) and a plasticizer (terpineol), mixed and subsequently refined in a three-roll mill. The ink is printed on the membrane surface through a 9 mm diameter mesh. Finally, the coated membranes were calcined in air at $T = 1,010-1,050^{\circ}$ C for 2 h.

The OCM experimental setup is illustrated in **Figure 2**. Gold O-ring gaskets were used for membranes sealing. Synthetic air (200 ml·min⁻¹) was fed into the feed side while a dilution of 10% methane in argon (100 ml·min⁻¹) was used as the sweep gas on the reaction side.

BSCF membranes with tubular geometry were acquired from Fraunhofer IKTS. BSCF capillaries were manufactured by plastic extrusion as described in Schulz et al. (2012), obtaining tubes with a length of 220 mm, an outer diameter of 3.25 mm, and an inner diameter of 2.55 mm, resulting in a wall thickness of 0.35 mm. The capillaries were dead-ended (sealed at one tube end). The capillary capping was made by joining a flat small disk by reactive air brazing (Erskine et al., 2002). Catalytic activation of BSCF capillary was done with a packed-bed consisting of 255 mg of Mn-Na₂WO₄/SiO₂ catalyst (d_p = 0.4-0.6 mm) and SiC in a relation 50% v/v. The experimental set-up used for conducting the tests on BSCF capillaries is depicted in Figure 3. The capillary exposed area was \sim 3.15 cm², corresponding to a capillary length of 3 cm. The contact of the rest of the capillary with the reactant gases was avoided by placing a quartz tubeacting as *liner*- above the packed-bed all along the capillary. This quartz tube presents an inner diameter of 3.75 mm, being sufficient for wrapping completely the BSCF capillary. Top and bottom inlets of the tube were blocked, thus avoiding the reactant gases to be in contact with the membrane. This was done mainly for performing the OCM tests in the 3 cm-long isothermal zone of the used furnace, thus ensuring a constant temperature in all the reaction media. Same gas stream compositions and flow rates were used as for the tests using planar membranes.

Complete analysis of gases at both sides of the membrane was performed by gas chromatography (micro-GC Varian CP-4900 equipped with Molsieve5A, Pora-Plot-Q glass capillary, and CP-Sil modules). The flow and composition of the gas streams were individually controlled. Membrane gas-leak-free conditions were confirmed by continuously monitoring the N₂ concentration in the gas stream exiting the catalyst chamber. An acceptable sealing was achieved when the ratio between the oxygen flow leak and the oxygen flux was lower than 1%. The temperature was measured by a thermocouple attached to the membrane (reaction side). A proportional-integral-derivative (PID) controller maintained temperature variations within 2°C of the set point. For evaluating the reaction performance, parameters such as methane conversion (X_{CH4}), C_{2+} hydrocarbons selectivity (S_{C2+}) and yield (Y_{C2+}) , and ethylene productivity are determined from GC compounds analysis. The equations for the determination of these parameters are herein presented:

$$X_{CH4} = \frac{\sum_{i} n_i \cdot F_i^{out}}{F_{CH4}^{out} - \sum_{i} n_i \cdot F_i^{out}} \cdot 100 \tag{1}$$

$$S_{C2+} = \frac{n_{C2+} \cdot F_{C2}^{out}}{\sum_{i} n_{i} \cdot F_{i}^{out}} \cdot 100$$
(2)

$$Y_{C2+} = 0.01 \cdot X_{CH4} \cdot S_{C2} \tag{3}$$

$$C_{2+} productivity = \frac{Y_{C2+} \cdot Q_{CH4}^{-}}{A_{effective}}$$
(4)

Where *i* includes all the species with carbon atoms in the products gas stream, *F* is the flow rate of the species expressed in mol·min⁻¹, n_i is the number of carbon atoms of component *i*, Q_{CH4}^{in} is the initial CH₄ flow rate (in ml·min⁻¹) and $A_{effective}$ is the effective membrane area for OCM reaction.

RESULTS AND DISCUSSION

In a first approach, the OCM reaction was studied on BSCF disk-shaped planar membranes with thicknesses of 0.8 mm. As previously observed (Lobera et al., 2011, 2012a,b, 2017), surface catalytic activation of oxygen membranes produces a performance improvement of the chemical reactions, especially ethylene production. This is mainly due to the presence of active elements towards CH₄ activation. Therefore, by considering catalyst particles with high O²⁻ mobility and redox properties, products selectivity and yield can be significantly increased. Furthermore, the presence of porous structures increases the specific surface area, enlarging the number of active sites and improving gas flow dynamics for a better gas diffusion. Then, the activation of a BSCF membrane with several known active catalysts was considered (Lobera et al., 2011, 2012a,b, 2017). On Table 2, all the tested membranes are listed indicating the specifications of the catalytic layers.

All the catalysts were subjected to the same conditions of temperature and pO_2 , necessary to seal the membrane and be used as a CMR for OCM, so the final microstructure depends on the sintering behavior of each catalyst material under these preparation and sealing conditions. **Figure 4**, shows SEM images of some of the activated BSCF membranes. As expected, different layer morphologies are obtained depending on the deposited material, which will also play a role on the catalytic performance of each porous layer. A highly porous structure of 15 μ m is obtained when depositing a BSCF layer and subsequently sintering at 1,010°C (**Figure 4b**). NdSCF, SmSCF, and LaCeSCF catalysts (**Figures 4c,e,f**) present a layer thickness in the range of 12–15 μ m and also lower porosity degree than BSCF layer. LaSr/CaO activation (**Figure 4d**) layer, on the other hand, resulted in negligible porosity.

The activated BSCF membranes were tested at 900°C. Gas feed rate was 200 ml·min⁻¹ of synthetic air (21% O_2) and, as sweep gas, a reactant gas stream consisting of 100 ml·min⁻¹ of 10% CH₄ in argon was employed in the reaction chamber. Under these conditions, the O₂ resulting from membranes permeation was in the range of 1.16-1.68 ml·min⁻¹·cm⁻², corresponding therefore to CH₄/O₂ ratios of 7.5-11. The obtained results are shown in Figure 5, where CH₄ conversion, selectivity toward C₂₊ production, C₂₊ yield, and C₂₊ productivity are presented for each catalyst. The best results are obtained with the BSF_1010 activated membrane, reaching nearly 70% of C_{2+} selectivity, two fold the C2+ selectivity obtained with a non-activated BSCF membrane. Similar results were also observed in an ODHE catalytic study conducted on BSCF membranes where, despite the lower reducibility of BSF, higher C₂₊ selectivity was obtained (Lobera et al., 2012a). This can be related to a more suitable capability of BSF for conducting the CH₃ coupling regardless

TABLE 2 | Catalysts for the activation of BSCF membranes.

Label	Catalyst	T _{sintering} (°C)	Layer thickness (μm)
Bare	None	-	_
BSCF_1050	Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3-δ}	1,050	6
BSCF_1010	Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3-δ}	1,010	13
3 BSCF_1010	Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3-δ}	1,010	26
3 BSCF_1010/Mn- Na ₂ WO ₄	$\begin{array}{l} Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}\\ \text{porous layer}\\ \text{impregnated with 2}\\ \text{wt\% Mn/5 wt\%}\\ \text{Na}_2\text{WO}_4 \text{ on SiO}_2 \end{array}$	1,010	26
NdSCF	Nd _{0.6} Sr _{0.4} Co _{0.8} Fe _{0.2} O _{3-δ}	1,050	12
SmSCF	Sm _{0.6} Sr _{0.4} Co _{0.8} Fe _{0.2} O _{3-δ}	1,050	14
LaSr/CaO	LaSr/CaO	1,050	12
LaCeSCF	La _{0.5} Ce _{0.1} Sr _{0.4} Co _{0.8} Fe _{0.2} O _{3-δ}	1,050	13
LaPrBaSCF	(La _{0.375} Pr _{0.375} Ba _{0.25}) _{0.58} Sr _{0.4} Fe _{0.8} Co _{0.2} O _{3-δ}	1,050	14
BSF_1050	$Ba_{0.5}Sr_{0.5}FeO_{3-\delta}$	1,050	14
BSF_1010	Ba _{0.5} Sr _{0.5} FeO _{3-δ}	1,010	12
MgO	MgO interlayer	1,050	5
MgO- Mn-Na ₂ WO ₄	MgO interlayer impregnated with 2 wt% Mn / 5 wt% Na ₂ WO ₄ on SiO ₂	1,050	5
CeTbO	Ce _{0.9} Tb _{0.1} O ₂₋₈	1,050	14
CeGdO	Ce _{0.9} Gd _{0.1} O _{1.95}	1,050	12

its lower redox properties leading to a lower CH₄ abstraction and subsequently, to a lower methane conversion. LaCeSCF and BaLaPrSCF activated membranes also present higher C₂₊ selectivity than BSCF (S_{C2+} in the range of 27–34%), with values of 64.7 and 58.2%, respectively. This improvement is ascribed to the incorporation of cations with mixed valence (Ce and Pr) in the A lattice position, that results in the modification in the redox behavior. The latter seems to alleviate the acidity increase resulting from the doping with cations presenting higher oxidation states (Zhou et al., 2008) that would lead to secondary reactions and to a loss in C₂₊. This gain in catalyst basicity is

observed for SmSCF, which yields better C2+ selectivity than BSCF, being above 55%, whereas a more basic NdSCF performs similarly to BSCF. With regard to the lanthanide-doped cerias (CeTbO and CeGdO) the better performance is attributed to the combination of high oxygen-ion mobility and their better red-ox properties (Balaguer et al., 2011). The performance of LaSr/CaO catalyst regarding S_{C2+} is lower than the observed in the literature (Wang et al., 2005; Olivier et al., 2009) due to the lower surface specific area that the catalytic layer presents in this work (Figure 4d), resulting in a lesser number of accessible active sites, as well as a hindrance for the gas diffusion on the catalytic media. The low selectivity (13-15%) observed for the membranes activated with MgO interlayer is expected from to the low activity of MgO in the formation of CH₃ · radicals (Pak et al., 1998) and the observed deactivation of MgO catalysts with OCM reaction time (Wang et al., 1995; Pak et al., 1998). It is also significant the low C₂₊ selectivity observed for the membrane activated with Mn-Na₂WO₄ on SiO₂ catalyst. Only a S_{C2+} of 30% is obtained, when previous studies show C₂₊ selectivity of up to 80% (Farrell et al., 2016). The reason for such a low result can stem from the reaction between SiO2 and BSCF leading to the formation of a SiO₂ layer on membrane surface and to the partial blocking of O₂ permeation (Thaler et al., 2016). Moreover, SiO₂ sintering and transition to α -Cristobalite from amorphous silica (catalyst support) also results in a loss of selectivity (Palermo et al., 1998; Asadi et al., 2012). It is worthy to mention that BSCF membrane activation with a BSCF porous layer does not entail a performance improvement in all the systems. Some of them present lower C_{2+} selectivity as compared with the bare membrane, which can be related with a gas diffusion hindrance resulting from the layer deposition, thus preventing CH₄ to reach the active sites or due to a fast recombination of surface O^{2-} into gaseous O_2 , which would react with CH_4 causing combustion, and making these catalysts not useful for the system in a first approach. Concerning CH₄ conversion (Figure 5A) the obtained results are in the range of 2-8%, with MgO and MgO_Mn-Na₂WO₄ yielding the highest methane conversion rates, in spite of their low C2+ selectivity. Moreover, the use of 2 wt% Mn/5 wt% Na2WO4 on SiO2 as catalyst coated on top of the 3 BSCF_1010 layer rises X_{CH4} from 2 to 7%, while maintaining S_{C2+}. This important increase in conversion may arise from the high activity of Mn-Na₂WO₄ on SiO₂, in spite of the low C₂₊

production. Ceria based catalysts also present high conversion rates. Activation with CeTbO and CeGdO results in X_{CH4} of 5.3 and 6.5%, being higher than most of the tested perovskite catalysts. Again, the better redox properties and the higher ionic conductivity favor the conduction of OCM reaction.

The highest C₂₊ yields at 900°C (**Figure 5B**) range among 2.5–3% and correspond to CeTbO, CeGdO, LaCeSCF, and LaSr/CaO catalysts. On the other hand, maximum C₂₊ productivities correspond to LaCeSCF and CeTbO activated membranes. Their C₂₊ productivities of 0.37 ml_{C2+} ·min⁻¹·cm⁻² represent nearly a fourfold improvement with respect to the non-activated membrane.

Further OCM tests were performed at 1,000°C maintaining the same feed and reactant gas flow rates as in the previous tests conducted at 900°C. Nevertheless, and due to the increase in temperature, the O2 permeation of the membranes also increased (up to 2.2-2.6 ml·min⁻¹·cm⁻²). This led to lower CH₄/O₂ ratios in the range of 4.8-5.6, and subsequently, to a significant increase in CH₄ conversion for all the catalysts, with a maximum X_{CH4} of 18.5% for the 3 BSCF_1010 Mn-Na₂WO₄ activated membrane (Figure 6A). The increase in temperature and the subsequent reduction in CH₄/O₂ ratios also allowed an improvement in C2+ selectivity (74%) for most of the catalysts, presenting values above 50%. This gain in X_{CH4} and $S_{\mathrm{C2+}}$ can also be ascribed to the higher generation of CH₃ when operating at higher temperatures (Xu and Thomson, 1997). Again, the highest C_{2+} selectivity is reached with BSF_1010 catalytic layer. As can be seen

in **Figure 6B**, operation at 1,000°C produces an important shift in C₂₊ yield and productivity, with a peak yield of nearly 9% when considering CeTbO activation. C₂₊ yields >8.7% are also obtained with CeGdO and 3 BSCF_1010 Mn-Na₂WO₄ catalysts. A maximum of C₂₊ productivity of 1.14 ml_{C2+} ·min⁻¹·cm⁻² is obtained with CeTbO. According to the 30% yield target established for considering OCM reaction as techno-economically viable, the obtained results are far below this threshold, despite the good C₂₊ selectivities obtained for some of the catalysts.

In a previous study, Zeng and Lin observed a relation between CMR configuration and OCM reaction performance, reporting an improvement in C_{2+} yield from 11 to 17% by increasing membrane surface area to reactor volume ratio (Zeng and Lin, 2001). Indeed, issues such as reactor design/configuration and inadequate reactant gas distribution can prevent the proper access of CH₄ molecules to the active sites, thus limiting methane conversion rates. Therefore, OCM studies on BSCF tubular membranes reactor were also considered. Tubular designs provide a distributed feed of O2 along the reactor length and a higher surface reaction area, leading to higher CH₄ conversion rates per membrane unit length, and increasing C₂₊ yields. A catalytic packed-bed consisting of 50% vol. 2% Mn, 5% Na₂WO₄ on SiO₂ and SiC was prepared for the activation of a BSCF capillary. OCM tests were carried out at 900°C, 200 ml·min⁻¹ of synthetic air feed, and using a stream of 10% CH₄ in argon as reactant gas. The reactant gas flow rates varied from 50 to 600 ml·min⁻¹, corresponding to CH₄/O₂ ratios of 1 and 2.7, respectively. As a result, X_{CH4}

progressively decreased (**Figure 7**) when increasing reactant flow rate, thus evidencing the effect of the higher CH_4/O_2 ratio. Nevertheless, the lower residence time resulting from the increase

in reactant gas flow rate is also expected to affect negatively CH₄ reaction. Differently, C_{2+} selectivity progressively improves with increasing reactant gas flow rate, with a maximum of ca.

45% at 600 ml·min⁻¹. The highest C₂₊ yield is achieved at 100 ml·min⁻¹ with a value of 15.6% at a CH₄ conversion of 54% and a C₂₊ selectivity of 29%. Concerning C₂₊ productivity, 0.9 ml·min¹·cm⁻² are obtained with a flow rate of 400 ml·min⁻¹.

On the other hand, low space velocities involve higher S_{CO2} , due to a higher CH_4 oxidation toward CO_2 at higher residence times. As the main interest of this reaction is the production of C_{2+} , then the most suitable conditions would be set at

FIGURE 7 | Effect of the variation of reactant gas flow rate on X_{CH4} and S_{C2+} , and on Y_{C2+} and $C_{2+}H_4$ productivity (Inset). Test conducted at 900°C with 200 ml·min⁻¹ synthetic air feeding and 10% CH₄ in Ar.

low space velocities, with flow rates in the range of 50–200 $\rm ml\cdot min^{-1}.$

Finally, Figure 8 summarizes and compares the results obtained for both planar and tubular BSCF CMRs considered in the present work, represented by the S_{C2+} as a function of the converted CH₄. These results were obtained at 900°C and reactant gas flow rates in the range of 100–300 ml⋅min⁻¹. Under such conditions, planar membranes show CH₄/O₂ ratios in the range of 7.5-11, whereas tubular configuration presents much lower ratios of 1.7–2.4. Indeed, significant shift in X_{CH4} is visible when comparing planar and tubular CMRs activated with Mn-Na₂WO₄/SiO₂ catalyst due to the higher availability of O₂. While S_{C2+} of 30–40% was obtained for both cases, CH_4 conversion increased from 4 to 7% up to 60% when conducting OCM in the tubular reactor. This is due to the higher membrane surface area to reactor volume ratio of tubular configurations that allows the dosing of higher amounts of O2. This eventually improves OCM performance by boosting CH_4 conversion, achieving C_{2+} yields of 15.6%. The best results regarding selectivity toward C₂₊ production correspond to planar membranes activated with BSF, LaCeSCF, and SmSCF, presenting selectivity of ca. 65-70%. Nevertheless, the low X_{CH4} rates lead to poor C₂₊ yields -ranging from 0.5 to 2.5%, which are very low for practical consideration. The better performance observed with the tubular CMR is mainly ascribed to the lower CH_4/O_2 ratios used during the tests, which results from the increase of membrane surface area with respect to reactor volume. Therefore, for a given reactor geometry, the increase of this parameter and the selection of operation conditions resulting in higher CH₄/O₂ ratios can lead to the achievement of higher C₂₊ yields. For our reactor, the high conversions of nearly 60% obtained with the tubular CMR combined with the high C₂₊ selectivity of catalysts like LaCeSCF or SmSCF set a promising scenario for reaching the considered C₂₊ yield target of 30% if these catalysts are used for the activation of BSCF capillary membranes.

CONCLUSIONS

A study on oxidative coupling of methane for the production of ethylene was conducted considering CMR based on BSCF.

REFERENCES

- Akin, F. T., and Lin, Y. S. (2002). Oxidative coupling of methane in dense ceramic membrane reactor with high yields. AIChE J. 48, 2298–2306. doi: 10.1002/aic.690481019
- Amenomiya, Y., Birss, V. I., Goledzinowski, M., Galuszka, J., and Sanger, A. R. (1990). Conversion of methane by oxidative coupling. *Catal. Rev. Sci. Eng.* 32, 163–227. doi: 10.1080/01614949009351351
- Asadi, A. A., Behrouzifar, A., Iravaninia, M., Mohammadi, T., and Pak, A. (2012). Preparation and oxygen permeation of La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-d} (LSCF) perovskite-type membranes: experimental study and mathematical modeling. *Indus. Eng. Chem. Res.* 51, 3069–3080. doi: 10.1021/ie202434k
- Aseem, A., and Harold, M. P. (2018). C-2 yield enhancement during oxidative coupling of methane in a nonpermselective porous membrane reactor. *Chem. Eng. Sci.* 175, 199–207. doi: 10.1016/j.ces.2017.09.035
- Balaguer, M., Solis, C., and Serra, J. M. (2011). Study of the transport properties of the mixed ionic electronic conductor $Ce_{1-x}Tb_xO_{2-d} + Co (x = 0.1, 0.2)$

In a first approach, a catalytic screening in CMR for OCM was conducted on disk-shaped planar BSCF membranes. The catalytic activation of membranes with 15 different catalysts allowed the identification of the most active compounds on these temperature conditions for the maximization of C_{2+} production. The highest C_{2+} selectivity at 900°C was 70%, reached with BSF and LaCeSCF catalysts. Despite the good selectivity, the low CH₄ conversions resulted in C₂₊ yields below 3% for this CMR configuration. Operation at higher temperatures (e.g., 1,000°C) produced a significant improvement in X_{CH4} for all the activated membranes due to the decrease in CH₄/O₂ ratios, thus obtaining much higher C2+ yields of up to nearly 9% and productivities of ca. 1.2 ml·min⁻¹·cm⁻² with CeGdO and 3 BSCF_1010 Mn-Na2WO4 catalysts. Conduction of OCM reaction on a catalytic membrane reactor with tubular geometry permitted the achievement of CH4/O2 ratios of 1.7-2.5 that improved C₂₊ yield, with a maximum of 15.6% at 900°C for a BSCF capillary activated with 2 wt% Mn/5 wt% Na2WO4 on SiO2 catalyst. This improvement is ascribed to the combined effect of the catalyst high activity toward CH₄ conversion and the higher membrane surface area available for the conduction of OCM reaction and favorable geometry, resulting in lower CH₄/O₂. Therefore, the selection of the most active catalysts under CMR conditions, the operation with low CH4/O2 ratios, and the addressing of actions for the improvement of CMR design would allow achieving higher C2+, approaching techno-economic targets.

AUTHOR CONTRIBUTIONS

JS: project manager; JS, ML, MB, and JG-F: manuscript writing and results interpretation; ML, MB, and JG-F: experiments.

ACKNOWLEDGMENTS

Financial support by the Spanish Government (ENE2014-57651 and SEV-2012-0267 grants) and by the EU through FP7 GREEN-CC Project (GA 608524), is gratefully acknowledged. The authors want also acknowledge the Electron Microscopy Service from the Universitat Politècnica de València for their support in the SEM analysis performed in this work.

and evaluation as oxygen-transport membrane. *Chem. Mater.* 23, 2333–2343. doi: 10.1021/cm103581w

- Bhasin, M. M., McCain, J. H., Vora, B. V., Imai, T., and Pujadó, P. R. (2001). Dehydrogenation and oxydehydrogenation of paraffins to olefins. *Appl. Catal. A Gen.* 221, 397–419. doi: 10.1016/S0926-860X(01) 00816-X
- Bhatia, S., Thien, C. Y., and Mohamed, A. R. (2009). Oxidative coupling of methane (OCM) in a catalytic membrane reactor and comparison of its performance with other catalytic reactors. *Chem. Eng. J.* 148, 525–532. doi:10.1016/j.cej.2009.01.008
- Chen, J. Q., Bozzano, A., Glover, B., Fuglerud, T., and Kvisle, S. (2005). Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process. *Catal. Today* 106, 103–107. doi: 10.1016/j.cattod.2005. 07.178
- Czuprat, O., Schiestel, T., Voss, H., and Caro, J. (2010). Oxidative coupling of methane in a BCFZ perovskite hollow fiber membrane reactor. *Indus. Eng. Chem. Res.* 49, 10230–10236. doi: 10.1021/ie100282g

- Erskine, K. M., Meier, A. M., and Pilgrim, S. M. (2002). Brazing perovskite ceramics with silver/copper oxide braze alloys. J. Mater. Sci. 37, 1705–1709. doi: 10.1023/A:1014912923977
- Farrell, B. L., Igenegbai, V. O., and Linic, S. (2016). A viewpoint on direct methane conversion to ethane and ethylene using oxidative coupling on solid catalysts. *ACS Catal.* 6, 4340–4346. doi: 10.1021/acscatal.6b01087
- Grubert, G., Kondratenko, E., Kolf, S., Baerns, M., van Geem, P., and Parton, R. (2003). Fundamental insights into the oxidative dehydrogenation of ethane to ethylene over catalytic materials discovered by an evolutionary approach. *Catal. Today* 81, 337–345. doi: 10.1016/S0920-5861(03)00132-9
- Hutchings, G. J., Scurrell, M. S., and Woodhouse, J. R. (1989). Oxidative coupling of methane using oxide catalysts. *Chem. Soc. Rev.* 18, 251–283. doi: 10.1039/cs9891800251
- Ito, T., and Lunsford, J. H. (1985). Synthesis of ethylene and ethane by partial oxidation of methane over lithium-doped magnesium-oxide. *Nature* 314, 721–722. doi: 10.1038/314721b0
- Karakaya, C., Zhu, H., Zohour, B., Senkan, S., and Kee, R. J. (2017). Detailed reaction mechanisms for the oxidative coupling of methane over La₂O₃/CeO₂ nanofiber fabric catalysts. *Chemcatchem* 9, 4538–4551. doi: 10.1002/cctc.201701172
- Keil, F. J. (1999). Methanol-to-hydrocarbons: process technology. Micropor. Mesopor. Mater. 29, 49–66. doi: 10.1016/S1387-1811(98)00320-5
- Keller, G. E., and Bhasin, M. M. (1982). Synthesis of ethylene via oxidative coupling of methane: I. Determination of active catalysts. J. Catal. 73, 9–19. doi: 10.1016/0021-9517(82)90075-6
- Lobera, M. P., Balaguer, M., Garcia-Fayos, J., and Serra, J. M. (2012a). Rare earth-doped ceria catalysts for ODHE reaction in a catalytic modified MIEC membrane reactor. *Chemcatchem* 4, 2102–2111. doi: 10.1002/cctc.2012 00212
- Lobera, M. P., Balaguer, M., García-Fayos, J., and Serra, J. M. (2017). Catalytic oxide-ion conducting materials for surface activation of $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$ membranes. *ChemistrySelect* 2, 2949–2955. doi: 10.1002/slct.201700530
- Lobera, M. P., Escolástico, S., Garcia-Fayos, J., and Serra, J. M. (2012b). Ethylene production by ODHE in catalytically modified Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-d} membrane reactors. *Chemsuschem* 5, 1587–1596. doi: 10.1002/cssc.201100747
- Lobera, M. P., Escolastico, S., and Serra, J. M. (2011). High ethylene production through oxidative dehydrogenation of ethane membrane reactors based on fast oxygen-ion conductors. *Chemcatchem* 3, 1503–1508. doi: 10.1002/cctc.201100055
- Lunsford, J. H. (1995). The catalytic oxidative coupling of methane. Angew. Chem. Int. Edn. Engl. 34, 970–980. doi: 10.1002/anie.199509701
- Lunsford, J. H. (2000). Catalytic conversion of methane to more useful chemicals and fuels: a challenge for the 21st century. *Catal. Today* 63, 165–174. doi: 10.1016/S0920-5861(00)00456-9
- Maitra, A. M. (1993). Critical performance evaluation of catalysts and mechanistic implications for oxidative coupling of methane. *Appl. Catal. Gen.* 104, 11–59.
- Mleczko, L., and Baerns, M. (1995). Catalytic oxidative coupling of methane reaction-engineering aspects and process schemes. *Fuel Process. Technol.* 42, 217–248. doi: 10.1016/0378-3820(94)00121-9
- Mleczko, L., Pannek, U., Niemi, V. M., and Hiltunen, J. (1996). Oxidative coupling of methane in a fluidized-bed reactor over a highly active and selective catalyst. *Indus. Eng. Chem. Res.* 35, 54–61. doi: 10.1021/ie950145s
- Olivier, L., Haag, S., Mirodatos, C., and van Veen, A. C. (2009). Oxidative coupling of methane using catalyst modified dense perovskite membrane reactors. *Catal. Today* 142, 34–41. doi: 10.1016/j.cattod.2009.01.009
- Othman, N. H., Wu, Z., and Li, K. (2015). An oxygen permeable membrane microreactor with an in-situ deposited Bi_{1.5}Y_{0.3}Sm_{0.2}O_{3-δ} catalyst for oxidative coupling of methane. J. Membr. Sci. 488, 182–193. doi: 10.1016/j.memsci.2015.04.027
- Otsuka, K., Jinno, K., and Morikawa, A. (1986). Active and selective catalysts for the synthesis of C_2H_4 and C_2H_6 via oxidative coupling of methane. J. Catal. 100, 353–359. doi: 10.1016/0021-9517(86)90102-8
- Pak, S., Qiu, P., and Lunsford, J. H. (1998). Elementary reactions in the oxidative coupling of methane over Mn/Na₂WO₄/SiO₂and Mn/Na₂WO₄/MgO catalysts. *J. Catal.* 179, 222–230. doi: 10.1006/jcat.1998.2228

- Palermo, A., Holgado Vazquez, J. P., Lee, A. F., Tikhov, M. S., and Lambert, R. M. (1998). Critical influence of the amorphous silica-to-cristobalite phase transition on the performance of Mn/Na₂WO₄/SiO₂ catalysts for the oxidative coupling of methane. J. Catal. 177, 259–266. doi: 10.1006/jcat.1998.2109
- Reporters, P. (2016). *The Ethylene Technology Report 2016*. Available online at: www.researchandmarkets.com
- Schulz, M., Pippardt, U., Kiesel, L., Ritter, K., and Kriegel, R. (2012). Oxygen permeation of various archetypes of oxygen membranes based on BSCF. *AIChE J.* 58, 3195–3202. doi: 10.1002/aic.13843
- Spallina, V., Velarde, I. C. J., Jimenez, A. M., Godini, H. R., Gallucci, F. M., and Annaland, V. S. (2017). Techno-economic assessment of different routes for olefins production through the oxidative coupling of methane (OCM): advances in benchmark technologies. *Energy Convers. Manage.* 154, 244–261. doi: 10.1016/j.enconman.2017.10.061
- Stansch, Z., Mleczko, L., and Baerns, M. (1997). Comprehensive kinetics of oxidative coupling of methane over the La₂O₃/CaO catalyst. *Indus. Eng. Chem. Res.* 36, 2568–2579. doi: 10.1021/ie960562k
- Sunarso, J., Baumann, S., Serra, J. M., Meulenberg, W. A., Liu, S., Lin, Y. S., et al. (2008). Mixed ionic-electronic conducting (MIEC) ceramicbased membranes for oxygen separation. *J. Membr. Sci.* 320, 13–41. doi: 10.1016/j.memsci.2008.03.074
- Tan, X., and Li, K. (2006). Oxidative coupling of methane in a perovskite hollow-fiber membrane reactor. *Indus. Eng. Chem. Res.* 45, 142–149. doi: 10.1021/ie0506320
- Tan, X., Pang, Z., Gu, Z., and Liu, S. (2007). Catalytic perovskite hollow fibre membrane reactors for methane oxidative coupling. J. Membr. Sci. 302, 109–114. doi: 10.1016/j.memsci.2007.06.033
- Tenelshof, J. E. H., Bouwmeester, J. M., and Verweij, H. (1995). Oxidative coupling of methane in a mixed-conducting perovskite membrane reactor. *Appl. Catal. Gen.* 130, 195–212.
- Thaler, F., Müller, M., and Spatschek, R. (2016). Oxygen permeation through perovskitic membranes: the influence of steam in the sweep on the permeation performance. *AIMS Mater. Sci.* 3, 1126–1137. doi: 10.3934/matersci.2016.3.1126
- Wang, D. J., Rosynek, M. P., and Lunsford, J. H. (1995). Oxidative coupling of methane over oxide-supported sodium-manganese catalysts. J. Catal. 155, 390–402. doi: 10.1006/jcat.1995.1221
- Wang, H., Cong, Y., and Yang, W. (2005). Oxidative coupling of methane in Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-δ} tubular membrane reactors. *Catal. Today* 104, 160–167. doi: 10.1016/j.cattod.2005.03.079
- Xu, S. J., and Thomson, W. J. (1997). Perovskite-type oxide membranes for the oxidative coupling of methane. *AIChE J.* 43, 2731–2740. doi: 10.1002/aic.690431319
- Zeng, Y., and Lin, Y. S. (2001). Oxidative coupling of methane on improved bismuth oxide membrane reactors. *AIChE J.* 47, 436–444. doi: 10.1002/aic.690470220
- Zeng, Y., Lin, Y. S., and Swartz, S. L. (1998). Perovskite-type ceramic membrane: synthesis, oxygen permeation and membrane reactor performance for oxidative coupling of methane. J. Membr. Sci. 150, 87–98. doi: 10.1016/S0376-7388(98)00182-3
- Zhou, W., Ran, R., Shao, Z., Zhuang, W., Jia, J., Gu, H., et al. (2008). Barium- and strontium-enriched (Ba_{0.5}Sr_{0.5})_{1+x}Co_{0.8}Fe_{0.2}O_{3-δ} oxides as high-performance cathodes for intermediate-temperature solid-oxide fuel cells. *Acta Mater.* 56, 2687–2698. doi: 10.1016/j.actamat.2008.02.002

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Garcia-Fayos, Lobera, Balaguer and Serra. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.