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Formation of supported lipid bilayer (SLB) and additional structures of Escherichia

coli (E. coli) lipids were investigated with fluorescence microscopy and atomic force

microscopy. Ca2+ in the aqueous phase with concentration above 2mM was necessary

for the formation of SLB. Additional lipid structures, string-like structures, the second

lipid bilayer, and multilayer stacking appeared on the first layer SLB depending on Ca2+

concentration. The bridging effect of Ca2+ between the negatively charged E. coli lipid

bilayers and substrate is the dominant factor determining the two-dimensional and

three-dimensional morphology of the E. coli lipid bilayer membranes.

Keywords: supported lipid bilayer, E. coli lipid, lipid organization, atomic force microscopy, fluorescence

microscopy, fluorescence recovery after photobleaching

INTRODUCTION

Two- and three-dimensional organization of lipid bilayer structures are essential processes in
signal and material transportations through cell membranes (Kim, 2006; Rutter, 2006; Rothman,
2014). Artificial lipid membrane is widely used for studying cell membrane property, drug
development, and biosensor (Hirano-Iwata et al., 2008). Supported lipid bilayers (SLBs) are a
kind of artificial lipid membranes situated at solid-liquid interface (Tamm and McConnell, 1985;
Castellana and Cremer, 2006; Tero, 2012; van Weerd et al., 2015). They are used to investigate the
fundamental physicochemical properties and molecular distribution of lipid bilayers with atomic
force microscopy (AFM) and fluorescence-microscope-based methods (El Kirat et al., 2010; Tero,
2012; Zhong and He, 2012). Morphology and physicochemical properties of lipid domains, and
shape transformation of membranes have been studied in multicomponent SLBs (El Kirat et al.,
2010; Goertz et al., 2011; Zhong and He, 2012; Kawakami et al., 2017; Sumitomo and Oshima,
2017; Tero et al., 2017; Kakimoto et al., 2018).

As a bacterial model cell system, reconstituted Escherichia coli (E. coli) cell membrane has
been studied (Dodd et al., 2008; Merz et al., 2008; Lopes et al., 2010; Unsay et al., 2013; Lind
et al., 2015; Phan and Shin, 2015; Hsia et al., 2016; Konarzewska et al., 2017; Márquez and
Vélez, 2017). Understanding the bacterial membrane system helps in revealing the mechanism
of molecular recognition and material transportation during bacterial infection for medical
technology. The E. coli lipid extract contains three main phospholipids, phosphatidylethanolamine
(PE), phosphatidylglycerol (PG), and cardiolipin (CA). Neutral PE is most abundant in the E. coli
cell membranes, and anionic PG and CA make the membrane net negatively charged (Shokri and
Larsson, 2004; Romantsov et al., 2007; Gidden et al., 2009; Sohlenkamp and Geiger, 2015; Lin
and Weibel, 2016). In addition, CA exists in the high curvature region of membrane and plays
a key role in antimicrobial peptide interaction (Khalifat et al., 2008; Lewis and McElhaney, 2009;
Mileykovskaya and Dowhan, 2009; Schlame and Ren, 2009; Lopes et al., 2010; Unsay et al., 2013;
Phan and Shin, 2015).
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There are several previous studies on the formation of
SLBs containing E. coli lipids such as polar lipid extract (PLE)
or total lipid extract (TLE) (Dodd et al., 2008; Merz et al.,
2008; Lopes et al., 2010; Unsay et al., 2013; Lind et al., 2015;
Hsia et al., 2016; Konarzewska et al., 2017; Márquez and
Vélez, 2017). Solid substrates, which are generally used for SLB
formation, e.g., glass, oxidized layer on a Si wafer, and mica,
are negatively charged. Because of the electrostatic repulsion
between negatively charged E. coli lipids and the substrates,
divalent cation such as Ca2+ is necessary to form SLB (Merz
et al., 2008; Lind et al., 2015; Márquez and Vélez, 2017).
Previous QCM and fluorescence microscope studies showed that
∼2mM Ca2+ is sufficient for the formation of E. coli lipid
SLB (Merz et al., 2008; Lind et al., 2015; Márquez and Vélez,
2017). Divalent cations bridge negatively charged substances by
effectively shielding electrostatic interaction (Rajendran et al.,
2011; Ido et al., 2013), and also positively affect the SLB
formation from lipid vesicles (Hansma and Laney, 1996; Rivetti
et al., 1996; Reviakine and Brisson, 2000; Pastré et al., 2003;
Seantier and Kasemo, 2009). Ca2+ also induces microstructure
of lipid bilayers containing negatively charged lipids. For
example, phase separation and membrane fusion of lipid bilayers
containing phosphatidylserine is caused by Ca2+ (Silvius and
Gagne, 1984a,b). In this study, we investigated microscopic
two-dimensional and three-dimensional organization of lipid
membranes comprising of PLE and their dependence on
Ca2+ concentration ([Ca2+]) with fluorescence microscopy and
AFM.

MATERIALS AND METHODS

PLE [PE: PG: CA = 67: 23.2: 9.8 (wt/wt)] and lissamine
rhodamine B-dipalmitoylphosphatidylethanolamine (Rb-DPPE,
Ex/Em: 560/583 nm) were purchased from Avanti Polar Lipids,
Inc., (Alabaster, AL, USA), and used without purification. The
lipid ratio among PE, PG and CA corresponds to that in E.
coli (Merz et al., 2008; Lopes et al., 2010; Lind et al., 2015).
Chloroform solutions of PLE and Rb-DPPE were mixed in a
glass vial. The solution was dried with a nitrogen gas stream
followed by overnight evacuation. A buffer solution (120mMKCl
and 10mM HEPES/KOH: pH 7.2) was added to the vacuum-
dried lipid mixture film. A lipid vesicle suspension was then
prepared by vortex at 45◦C, freeze-thawing through five cycles,
and extruding through 800 and 100 nm polycarbonate filters.
SLB was prepared by the vesicle fusion method on a thermally
oxidized SiO2/Si substrate precleaned by boiling in piranha
solution (3:1 v/v mixture of conc. H2SO4 and 30%H2O2 aqueous
solution). Caution: Piranha solution violently reacts with organic
materials, and extreme care must be taken at all times during
handling.

We mixed the extruded vesicle suspension and a Ca2+-
containing buffer solution (10mM CaCl2, 120mM KCl, 10mM
HEPES/KOH: pH 7.2), and incubated the SiO2/Si substrate under
[Ca2+] = 0–8mM, at 45◦C for 90min. After the incubation,
the excess vesicles in the liquid phase were washed out by serial
exchanges of the vesicle suspension with buffer solution.

An epi-fluorescence microscope (epi-FM) (BX51WI,
Olympus, Tokyo, Japan) was used for wide-field fluorescence
and qualitative fluorescence recovery after photobleaching
(FRAP) observations. AFM observation was performed using
the PicoPlus 5500 (Keysight Technologies, Inc., Santa Rosa,
CA, USA, formerly Molecular Imaging, Corp.) in the acoustic
AC (tapping) mode in the buffer solution. A cantilever with
a spring constant of 0.09 N/m (resonant frequency: 110 kHz;
BL-AC40TS-C2, Olympus) was used. Topography, phase-shift
image, and amplitude image were obtained simultaneously.

RESULTS AND DISCUSSION

Figure 1 shows fluorescence images of the SiO2/Si substrates after
incubated in the PLE-vesicle suspensions with 0, 2.0, 2.5, 3.0,
and 5.0mM Ca2+. With [Ca2+] = 0mM (Figure 1A), almost no
fluorescence intensity was obtained except for a few bright spots,
which were adsorbed vesicles. When the substrate was incubated
in the PLE-suspension with [Ca2+] = 2mM, a circular region
with a uniform fluorescence intensity existed (Figure 1B). The
fluorescence intensity shows that single layer of SLB was formed
in this region (Tero et al., 2017; Kakimoto et al., 2018). The
surrounding gray region contained bright dots that had similar
fluorescence intensity to the circular SLB region (Figure 1B,
inset). They are assigned to small SLB patches. Coverage of the
larger SLB region and the surrounding SLB did not change at
longer incubation time.

The surface morphology became heterogeneous with [Ca2+]
= 2.5 mM: a circular SLB and smaller SLB patches similar to
Figure 1B existed (Figure 1C), and additional brighter objects
were also observed in the SLB region with a uniform fluorescence
intensity (Figure 1D). The latter region covered almost the whole
substrate surface with [Ca2+] = 3.0mM (Figure 1E). There
were two types of bright objects on SLB (Figure 1E, inset).
One was string-like structures (indicated by a white arrow in
Figure 1E). The other was brighter regions (indicated by a black
arrow in Figure 1E) that had two times higher intensity than
the surrounding, and had a plateau-like intensity profile. We
assigned them to the second lipid bilayer stacking on the first
SLB, based on the fluorescence intensity (Nabika et al., 2006;
Tero et al., 2008). These structures disappeared with [Ca2+] =
5.0mM, and much brighter objects were observed in a uniform
fluorescence intensity (Figure 1F). They had at least four times
higher fluorescence intensity than the surrounding that had
similar intensity with the SLB region in Figure 1E. Similar
fluorescence images to Figure 1F were obtained with higher
[Ca2+] up to 8mM (data not shown).

Figure 2 shows the FRAP process of PLE-SLBs with [Ca2+]
= 2.0, 3.0, and 5.0mM. FRAP is a fluorescence-microscope-
based technique to measure lateral molecular diffusion in a
lipid bilayer (Axelrod et al., 1976; Soumpasis, 1983). Fluorescent
probes at a part of a sample are bleached with strong excitation
light, and then the fluorescence intensity recovers if the probes
diffuse. We investigated the fluidity and continuity of the SLB
and the brighter objects observed in the fluorescence images in
Figure 1. The fluorescence intensity of the small SLB patches
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FIGURE 1 | Fluorescence images of SiO2/Si substrates after incubated in the PLE-vesicle suspensions with [Ca2+] = (A) 0, (B) 2.0, (C,D) 2.5, (E) 3.0, and (F)

5.0mM. (B,E) Insert: magnified image of the dotted square region. Representative SLB patch is indicated with a white arrow in (B). The string-like structure and the

region two times brighter than the surrounding are indicated with a white arrow and a black arrow in (E), respectively. Scale bars are 50µm.

FIGURE 2 | Fluorescence recovery after photobleaching (FRAP) processes of PLE-SLBs with [Ca2+] = (A) 2.0mM, (B) 3.0mM, and (C) 5.0mM. Scale bars are

50µm.

with [Ca2+] = 2.0mM (the gray region in Figure 1B) partially
recovered at the peripheral of the bleached region (Figure 2A),
but did not recovered in the majority of the bleached region.
The result indicates that the SLB patches did not link each other.

In the region with uniform fluorescence intensity (the circular
bright region in Figure 1B), fluorescence intensity completely
recovered. The fluorescence intensity recovered over time in
PLE-SLB with [Ca2+]= 3.0 (Figure 2B). These results show that
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fluid and continuous SLB was formed in the region with uniform
intensity. The fluorescence of the brighter objects, the string-
like structure and the second layer of the bilayer membrane
(Figure 1E), also recovered completely (Figure 2B). It indicates
that these objects are linked with the SLB under them, and lipid
molecules diffuse between them. In the PLE-SLB with [Ca2+]
= 5.0mM, FRAP proceeded both in SLB and the bright objects
(Figure 2C).

Figure 3 shows AFM topographies and cross-section profiles
obtained at various positions of PLE-SLB with [Ca2+]= 2.5mM.
As shown in Figures 1B,C, the sample with [Ca2+] = 2.5mM
contained all kinds of structures, the SLB patches, uniform
SLB, the string-like structure and the second layer on SLB,
which were observed in the fluorescence images of 2mM and
3mM Ca2+. Three types of structures were obtained with
AFM observation: plateaus 4–5 nm in height and ∼10–1,000 nm
in width (Figure 3A); flat and uniform region (Figure 3B);
network-like protrusions 2–3 nm in height (Figure 3C). The
network-like protrusions were fragile, and disappeared after the
same area was scanned repeatedly.

The height of the plateaus in Figure 3A corresponds to
the thickness of a single lipid bilayer membrane in AFM
topographies (Tero, 2012). Therefore we attribute the plateaus to
the SLB patches observed in Figures 1B–D, 2A. The SLB patches
of the order of 1µm in width were recognized in the fluorescence
images (Figure 1). FRAP proceeded partially (Figure 2A), as
some of these patches linked each other (Figure 3A). The AFM
topography in Figure 3A shows that small SLB patches 10-
100 nm in width existed, although they were not recognized in
the optical images (Figure 1).

The flat region in Figure 3B corresponds to a continuous
SLB in Figures 2B,C. The AFM topography shows that the
SLB was defect-free on the order of micrometer in wide, and
surface roughness was ∼ 1 nm. We attribute the network-like
protrusions in Figure 3C to the string-like structure in the
fluorescence image in Figure 1C. We hypothesize that they are
tubular bilayers or wrinkles in a SLB, but could not achieve
detailed observation because they were easily decomposed by
AFM scanning. In the AFM topographies, we did not find
objects corresponding to the double bilayer region, which
was two times brighter than the surrounding SLB in the
fluorescence image (Figure 1E). It is because that the area
fraction of the second bilayer is small (2.5% in Figure 1E).
The AFM scanning area (2–3µm) was smaller than the width
of the second bilayer (∼10µm). Single or double bilayer is
not recognized with AFM if they are similarly flat, unless the
edge of the second bilayer is captured in the AFM scanning
area.

Formation and morphology of the PLE-SLB significantly
depended on [Ca2+]. PLE-bilayer is negatively charged at neutral
pH because of PG andCA. In this study, PLE vesicles transformed
to SLB and other structures on the SLB. SLB formation from
vesicles proceeded through the processes of vesicle adsorption,
fusion, rupture and spreading. With [Ca2+] = 0mM, few lipid
components existed on the SiO2/Si substrate (Figure 1A), which
is negatively charged because of the dissociation of surface
silanol group (Si-OH) (Ahmed, 1966; Tero, 2012). Electrostatic

repulsion between the PLE vesicle and the substrate suppressed
the vesicle adsorption process.

Divalent cations shield the electrostatic interaction
more effectively than monovalent cations, and also bridge
electronegative substances, e.g., DNA and a mica substrate
(Rajendran et al., 2011; Ido et al., 2013). Addition of Ca2+

promoted the vesicle adsorption and SLB formation on the
SiO2/Si substrate (Figure 1B). The result is consistent with
previous studies, which showed at least ∼2mM of Ca2+ is
necessary for the formation of PLE-SLB on SiO2/Si, mica,
TiO2, indium tin oxide and gold (Dodd et al., 2008; Merz
et al., 2008; Lopes et al., 2010; Unsay et al., 2013; Lind et al.,
2015; Hsia et al., 2016; Konarzewska et al., 2017; Márquez and
Vélez, 2017). In the previous studies of the bacterial mimic
lipid bilayer, however, averaged response from the sample was
mainly obtained using QCM and fluorescence microscopy
(Dodd et al., 2008; Merz et al., 2008; Lopes et al., 2010; Unsay
et al., 2013; Lind et al., 2015; Phan and Shin, 2015; Hsia
et al., 2016; Konarzewska et al., 2017; Márquez and Vélez,
2017). The results in this study showed the heterogeneity
of SLB especially at the threshold [Ca2+] around 2.5mM.
Density of adsorbed Ca2+ on substrates depends on [Ca2+]
in the bulk solution. Fluorescence images in Figure 1 shows
that Ca2+ of 2–2.5mM induced formation of the negatively
charged PLE-SLB, but was not enough for the formation of
full-coverage SLB. Under the bulk concentration of [Ca2+] =
3mM, sufficient amount of Ca2+ existed between the PLE-SLB
and the substrate for bridging them in the whole substrate
surface.

Generally only a single layer of lipid bilayer membrane is
formed in the SLB formation from small unilamellar vesicles
(Tero, 2012), unless a specific attraction is introduced between
the first and second layer (Murray et al., 2009; Han et al.,
2010). In this study, inter-lipid-bilayer bridging was caused
by Ca2+ more than 2mM, as well as the substrate-lipid-
bilayer bridging, and thus additional PLE-derived structures
appeared on the first layer PLE-SLB. More PLE existed with
higher [Ca2+] (Figures 1D–F), and their structures depended
on [Ca2+]. At [Ca2+] = 3mM, the string-like structure and
the second bilayer patch bound to the first layer PLE-SLB,
and they were isolated from each other. At [Ca2+] = 5–
8mM, on the other hand, attraction between the additional
lipid membranes became dominant, and multi-layer stacking
or segregation of PLE bilayers occurred. They kept the lipid
bilayer structure, and also physically connected to the first layer
PLE-SLB, because fluorescence intensity recovered in the FRAP
experiment (Figure 2C).

Figure 4 shows time course of fluorescence images of PLE-
SLBs with [Ca2+] = 3mM, observed just after the PLE-SLBs
were prepared. The amount of the string-like structure on
the uniform lipid bilayer decreased with time (Figure 4A).
The area of the second bilayer also decreased with time,
leaving the string-like structures (Figure 4B). These images
provide information about the formation process of these
additional structures on the first layer PLE-SLB. The second
layer remained on the first layer because of the Ca2+-
bridging effect, at the process of the spreading during the
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FIGURE 3 | AFM topographies and cross-section profiles of PLE-SLB with [Ca2+] = 2.5mM obtained at different positions, [(A) 2.0µm × 2.0µm, (B) 3.0µm ×

3.0µm, (C) 2.0µm ×2.0µm] and the cross-section profile at the white line in each AFM topography.

FIGURE 4 | Sequential fluorescence images of PLE-SLBs with [Ca2+] = 3.0mM focusing to (A) the string-like structure and (B) the second bilayer two times brighter

than the surrounding. The images of (A,B) were obtained from two samples independently. Scale bars are 10µm.

transformation from vesicles to a planar membrane. Some
of the second layers desorbed remaining the string-like
structure, which further converted to a uniform SLB. These
structural conversions stopped when their adsorption amounts
reached at the equilibrium of Ca2+-bridging effect depending
on [Ca2+]. Therefore the brighter objects existed stably in
Figures 2B,C.

Intracellular [Ca2+] in E. coli is approximately 0.1µM
(Gangola and Rosen, 1987). E. coli exists, however, in intestine

of warm blood animal. Its extracellular fluid is kept at [Ca2+]
in the order of mM (Berridge et al., 2000, 2003). Additionally,
cell membrane surfaces are negatively charged. From the point of
view of biotechnology, generally transformation of E. coli with
plasmid DNA is conducted in a solution of [Ca2+] ≥10mM
(Mandel and Higa, 1970; Hanahan, 1983). Ca2+ facilitates
insertion of plasmid DNA by suppressing electrostatic repulsion
between membrane and DNA, and then bringing membrane
pore formation. Figure 1F showed tendency that a PLE bilayers
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to take multilamellar stacking and aggregate states, rather
than a planar single bilayer membrane, at [Ca2+] ≥5mM.
The results in this study revealed that the Ca2+ induced the
adsorption of PLE bilayer on a negatively charged surface, and
also caused structural conversions of the PLE bilayer depending
on [Ca2+]. They will provide information for understanding
fundamental processes of infection and transfection of E.
coli.

CONCLUSION

In conclusion, we investigated the morphology and physical
properties of PLE-SLBs in various [Ca2+] with fluorescence
microscopy and AFM. Ca2+ facilitated vesicle adsorption
and subsequent SLB formation on a negatively charged
SiO2/Si substrate. Morphologies of the first layer SLB and
additional structures on it were strongly affected by [Ca2+].
Electrostatic bridging effect of Ca2+ is the dominant factor of
these phenomena. Understanding two-dimensional and three-
dimensional inter-membrane structures is valuable to construct
model bacterial membranes using SLB systems, and to reveal

fundamental processes of bacterial membrane reactions in the
field of biotechnology and medicine.
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