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Our understanding of defects in materials science has changed tremendously over the

last century. While 100 years ago they were often ignored by scientists, nowadays they

are in the spotlight of scientific interest and whole branches of technology have emerged

from their skillful handling. The first part of this article gives a historical overview and

discusses why defects are so important for modern material science. In the second

part, we review the treatment of defects in semiconductors. We start by explaining the

assumptions and approximations involved in ab-initio calculations and then discuss the

treatment of defects in semiconductors. In the third part, we focus on defects in metals.

We discuss the theoretical treatment of vacancies starting from experimental findings.

The impact of improved theoretical techniques on the predictive power is discussed. This

is illustrated with the role of vacancies in intermetallic compounds and random alloys. The

last section deals with dislocations.
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1. INTRODUCTION

A general definition of “defect” is any localized disruption to the perfect crystalline order. Thus,
even the surface of the material is a defect because this disruption is localized in the direction
normal to the surface. Few people study all the defects that satisfy this broad definition (Stoneham,
2001). Researchers tend to specialize in impurities and other point defects, dislocations, surfaces,
or other categories.

Historically, defects have played critical roles because they affect the properties of materials
in important ways. This is detrimental when a pure material is desired but beneficial when new
material properties are sought. In antiquity for example, making a mirror involved polishing the
purest possible copper plate. On the other hand, the production of bronze required adding a few
percent of tin into the melt. The result is a metal which has a lower melting temperature than
pure copper (making it easier to melt) and a lower viscosity at the melting point (making it easier
to cast). More importantly, after cooling, bronze is much harder than pure copper, and can be
used to make tools, weapons, and shields. Later, it was realized that the manufacture of specialized
metals required new techniques: Hammering, peening, and forging were developed for shaping and
hardening metallic tools. Metalsmiths learned how to introduce dislocations and then pin them to
other defects in order to improve the mechanical properties of the material.

The Bronze Age revolution around the dawn of civilization in the 4th Millennium BCE is but
one example of the importance of defects. The Egyptians knew how to control the optical properties
of glass with impurities: adding trace amounts of metals into silica glass produces beads of sharply
different colors: a little Au for red, traces of Co for blue... Such beads were just as valuable as an
actual ruby or sapphire. In this example, adding impurities was a good thing. On the other hand, the
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production of “cristallo”—the first truly transparent glass—
during the Italian Renaissance required removing as many
impurities as possible. This was accomplished by using pure
sourcematerials in combination with temperature control during
a slow cool-down. For centuries, achieving purity was also the
main issue in iron-based alloys. People tried to lower the C
content or get rid of unwanted elements such as Si, Mn, S, and
P which make iron brittle. To do so, processes were developed
to “burn away” these elements and refine the material, usually by
forcing air to flow onto the heated or molten metal in order to
induce oxidation processes.

In any case, controlling material properties by adding or
removing specific impurities or defects is a useful and ancient
skill. So why these negative-sounding words: “defect” (as in
defective) and “impurity” (as in impure)?

In the early years of the twentieth century, condensed-matter
physicists wanted to describe the fundamental properties of
pure materials using the new concepts and tools of quantum
mechanics. These problems attracted some of the greatest minds
of the time (Planck et al., 1914). The emphasis was squarely
on defect-free periodic crystals. The impact of defects on many
fundamental material properties was not fully recognized.

When Peierls wrote his seminal paper on the thermal
transport properties of solids (Peierls, 1929), he did include a
short section on the role of “lattice perturbations.” He knew
that they hindered the flow of “lattice waves.” But his discussion
remained qualitative. Peierls himself was curious about the
impact of defects on the flow of heat and electricity, and even
drafted a manuscript on this topic. But his efforts were strongly
rebuffed by none other than Pauli, a member of his PhD
committee. Pauli opposed the publication of Peierls’s manuscript
and wrote (Pauli, 1931) “the residual resistivity is caused by
dirt and one should not dwell in dirt” (ist der Restwiderstand
ein Dreckeffect und im Dreck soll man nicht wühlen). Further
down, Pauli added “you should find more sensible questions to
be answered; I find that you recently have concerned yourself
too much with small issues” (sollten Sie doch vernűnftigere
Fragestellungen haben als solche kleinen Problemchen; ich finde,
Sie verzetteln sich in letzter Zeit zu sehr in Kleinigkeiten). The
content of the draft manuscript that Peierls shared with Pauli is
not known. But it is surprising to see one of the fathers of modern
science argue that some subjects should not be studied, almost
as a matter of principle. The study of defects was considered
undignified at the time.

The situation changed during World War II with the advent
of semiconductors. Suddenly, controlling the electrical properties
of Ge and then Si crystals became very important. This involved
introducing atoms from a different column of the Periodic Table
than the host-crystal atoms: replacing a few Si atoms with B
in one region of the crystal generates positive charge carriers
(holes) while P atoms added to an adjacent region generate
negative charge carriers (electrons). The result is a p-n junction
(a diode, or a solar cell). The B and P atoms added to Si were
labeled “dopants” to distinguish these useful impurities from
undesirable ones. The idea was to start with a very pure crystalline
material and then implant dopants at precise locations. Crystals
of ultra-pure Ge could be grown early on (Haller, 2006), but

Ge has two problems. First, its fundamental bandgap is too
small (0.66 eV) for optimal applications near room temperature.
Second, exposing Ge to oxygen (air, water vapor...) does not
lead to the formation of a stable insulating oxide layer. Thus, Si
emerged as the semiconductor of choice: it has a 1.12 eV band
gap and a great affinity for O because of the remarkable strength
of the Si-O bond.

In the early days, Si could not be grown nearly as pure
as Ge: it contained a lot of interstitial oxygen (from the
quartz crucible), substitutional C (from the graphite heating
elements), significant concentrations of transition metals such as
Fe (mostly from the source material), and smaller amounts of
many other impurities. Another important class of defects were
vacancies, self-interstitials, and their precipitates. They result
from less-than-optimal growth conditions, the growth of surface
layers (insulating oxide, anti-reflection coating...), as well as
implantation and irradiation—something feared by the military
at the onset of the Atomic Age.

And then, thermal annealing causes impurities to diffuse.
Impurities and native defects interact with each other, resulting
in the formation of pairs, small clusters and aggregates.
Self-interstitials expel substitutional impurities turning them
into interstitials—which completely changes their properties.
Vacancies trap interstitial impurities. Impurities precipitate at
grain boundaries or dislocations. And the list goes on. Each of the
resulting defects affects the concentration and lifetime of charge
carriers in different ways. These properties had to be understood.
The study of defects in semiconductors, especially Si, became
very important for several decades, keeping experimentalists and
theorists quite busy at universities, national laboratories, and
research centers such as Bell Labs or IBM.

As for metals and metallic alloys, the scientific progress
achieved in the twentieth and twenty first centuries is impressive.
Scientists have learned how to tailor the properties of iron for
a wide range of applications by alloying and processing it in
a plethora of ways. Dozens of classes of steels were developed
for different applications: adding Cr increases its hardness and
corrosion resistance; Co and Mn make steel wear-resistant; Mo
increases its tensile strength; Nb and V lead to much increased
elasticity; W makes steel more resistant to heat; etc. The Register
of European Steels lists some 2,500 different grades of steel—over
2,000 of which have been developed in the twenty first century.

Over the decades, many defect centers have been identified
and characterized. Most of this understanding has resulted from
the interplay between theory and experiment. We now know that
defects affect much more than just the electrical properties of
semiconductors and the mechanical properties of metals. In Si
for example, interstitial O locks dislocations thus enhancing the
mechanical strength of wafers and allowing them to be processed
without breaking; H removes the unwanted electrical activity of
many defects; the ∼1.5µm photoluminescence associated with
the Er ion in Si is useful for optical applications; magnetic ions
such as Mn in GaAs allow the spin of charge carriers (e−) to be
controlled; ongoing research aims at controlling the flow of heat
in semiconductors using interfaces, etc.

Theoretical studies of defects combined with the huge
database of experimental results (mostly in Si) have allowed
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theorists to refine their tools and test a wide range of
approximations (Chelikowsky, 2002a,b). These tools are now
applied to understand and predict the properties of new
materials, such as nanostructures, for which far less experimental
information is available. The mass production of (very) smart
phones is just one testimony to the amount of knowledge that has
been gained about using impurities to manipulate the properties
of materials.

Where do we stand today? The variety of materials available
appears to be quasi-infinite, ranging fromman-made composites
to many types of nanostructures. Bulk Si is still the basis
of most integrated circuits. It can be obtained in extremely
pure form, such as thin Silicon-On-Insulator (SOI) layers, but
only sub-micron-size areas are involved in the active region of
devices. With the exception of Si photovoltaics, there are few
applications today that require bulk (periodic) semiconductors.
In the case of metals, instead of adding small quantities of some
alloying element(s) to a base material, alloys are produced with
four or more elements in similar concentrations, resulting in
one particular phase becoming stable in an unexpected way.
The resulting material can exhibit extraordinary properties, for
example in terms of fracture toughness and yield strength.

Some categories of defects in semiconductors are always
unwanted. For example, the dislocations that result from growing
GaN on imperfect substrates are always a problem, as are the
transition-metal precipitates at grain boundaries or stacking
faults in Si solar cells. In metals, however, ductility relies on the
low formation energy and high mobility of dislocations.

In nanostructures, one rarely thinks in terms of “impurities”
since every atom has been placed at a specific location to play
a specific role. There is no underlying periodicity, no k-space,
and no Brillouin zone. Instead, one deals with nearby surfaces,
interfaces or δ-layers, all of which profoundly affect the properties
of the material. These are intentionally constructed structures
rather than defects in an otherwise pure host crystal. Our original
definition of “defect” has become obsolete.

In this article, we present an overview of the theory and
summarize the key ongoing developments. This cannot be a
comprehensive review of all the work done and all the defects
studied. Further, recent technical reviews are available (Drabold
and Estreicher, 2007; Freysoldt et al., 2014). Examples of previous
studies, including our own, were selected for this review.

2. THEORY OF DEFECTS IN
SEMICONDUCTORS

2.1. Assumptions and Approximations
Systematic theoretical studies of impurities and defects in
semiconductors (McCluskey andHaller, 2012) begun afterWorld
War II with the emergence of the fundamental components
of solid-state electronics, in particular the transistor (Bardeen
and Brattain, 1948, 1949; Shockley, 1949). This device involves
adjacent regions of the host material that are heavily doped with
different impurities. Understanding how doping works was a key
issue.

For theorists, the starting point was the perfect material.
It was taken for granted that impurities—often present in
concentrations of the order of parts per million or less—
are little more than perturbations and that the impurity-
related states can be adequately described in the basis set
of perfect-crystal states. Effective-mass theory (Pantelides,
1978; Stoneham, 2001) explained qualitatively how dopants
contribute conduction electrons (or holes) to the conduction
(or valence) band of the host crystal. These shallow-level
impurities introduce a series of hydrogen-like levels within the
fundamental energy gap (“gap”). The deepest level is a few
dozen meV’s below the minimum of the conduction band (or
above the maximum of the valence band). The ionization of
the dopant occurs far below room temperature as the electron
(or hole) hops from level to level toward the nearest band.
The associated wavefunctions extend over dozens (sometimes
hundreds) of Å around the impurity. Describing such states in
the basis set of delocalized host-crystal states could indeed be
justified.

The interest soon shifted from shallow dopants to defects
characterized by much more strongly localized states. Such
defects often introduce gap levels that are much farther away
from the band edges (“deep centers”) (Pantelides, 1986). Instead
of contributing charge carriers, they are recombination centers
for electrons and holes. Examples include vacancies (introduced
by a range of energetic processes and surface treatments) and
most transition-metal impurities (often present in the as-grown
material or introduced during the deposition of contacts). These
defects are not perturbations to the perfect crystal and cannot be
described in the basis set of the delocalized states of the perfect
material. New theoretical approaches were required.

Here lies the fundamental importance of crystalline
silicon in the development of theory (Chelikowsky, 2002b):
experimentalists have accumulated a vast amount of electrical,
structural, optical, and magnetic data for a wide range of
defects in Si: the gap levels of a defect are typically measured
within 0.01eV using electrical techniques such as Deep-Level
Transient Spectroscopy (DLTS); optical tools such as Fourier-
Transform Infra-Red (FTIR) absorption or Raman spectroscopy
provide quantitative information on the local vibrational modes
(LVMs) associated with light impurities; Electron Paramagnetic
Resonance (EPR) maps spin-densities; and the list goes on. Such
techniques are often combined with annealing studies, isotope
substitutions, exposure to band-gap light, hydrogenation etc.,
all of which provide additional data that can also be calculated.
Theory provides defect configurations, formation and binding
energies, electrical activity, migration paths and activation
energies, charge and spin densities, vibrational spectra and
other quantities that can be directly compared to the measured
data. Sometimes, the theoretical predictions precede the
measurements or challenge some measured value (Woon et al.,
1992; Istratov et al., 1998). The interplay between experiment and
theory is the key reason why theory has become such a reliable
and necessary partner in today’s materials science research. But
it took some effort before theory became quantitatively useful.

Solving the full quantum mechanical problem is not possible.
Indeed, if ri and Rα represent the electronic (i = 1, . . . , n) and
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nuclear (α = 1, . . . , N) coordinates, respectively, the Schrödinger
equation

ih̄
∂

∂t
9 ({ri}, {Rα}, t) = H9 ({ri}, {Rα}, t)

involves a huge number of particles. Further, the full Hamiltonian
H must contain all the interactions: Coulomb, electron exchange
and correlation, spin terms (including spin-orbit coupling),
electron-phonon interactions, and so on. Almost a century
ago, Dirac recognized that this problem requires “approximate,
practical methods” (Dirac, 1929). But making approximations
requires being able to test the limit(s) of their validity. Such
testing must be done against experimental data.

2.1.1. Born-Oppenheimer Approximation
This involves decoupling the electronic and nuclear degrees of
freedom. Since the electrons are very light, they should adjust
instantaneously to the motion of the much heavier nuclei. Thus,
one can solve the electronic problem in a field of fixed nuclei,
an enormous simplification. This works very well but is not
universally valid. One example involves the tricky issue of orbital
degeneracies and the Jahn-Teller theorem (Jahn and Teller,
1937). An orbitally-degenerate electronic state couples to the
surrounding nuclei leading to a symmetry-lowering distortion,
thus splitting the multiplet until the degeneracy is lifted. The
vibronic (vibrational-electronic) states involve electron-phonon
coupling: the electronic and nuclear coordinates cannot be
separated and the Born-Oppenheimer approximation fails. This
issue has been a point of debate (DeLeo et al., 1988; Pantelides
et al., 1988; Nieminen, 2007) when describing defects such
as the vacancy or divacancy in Si (Watkins, 1995). Another
example where the Born-Oppenheimer approximation cannot be
used involves the calculation of Seebeck coefficients, which also
involves electron-phonon coupling (Giustino, 2017)1.

2.1.2. Ignore Nuclear Quantum Effects
While the electrons are of course treated quantum-mechanically,
the much more massive nuclei are assumed to behave
classically and follow Newton’s laws of motion. This works
very well in almost all situations, but fails when nuclear
tunneling occurs. There are examples of proton tunneling in
semiconductors (Muro and Sievers, 1986). Another nuclear
quantum effect involves zero-point vibrational energies. This
affects the calculation of migration barriers, especially for light
impurities. Zero-point energy corrections can be included by
hand if the dynamical matrix is known at the minimum and
the saddle point of the potential energy. But the impact of zero-
point motion can be more subtle. For example, the vibrational
lifetimes of high-frequency (impurity-related) excitations has
been measured as a function of temperature by transient
bleaching spectroscopy (Luepke et al., 2003). If T increases, the
vibrational amplitudes and anharmonic coupling increase, and
the lifetimes become shorter. But if T decreases, the measured

1Nuclear Dynamics in Solid Materials: How Phonons and Electron-Phonon
Coupling Affect Macroscopic Material Properties by C. Carbogno an R.
Ramprasad (to be published in this Research Topic).

lifetimes become constant below some critical temperature Tc.
This occurs when all the receiving modes drop to their zero-
point energy state and then, the anharmonic couplings no longer
change. The value of Tc depends on the defect (more specifically:
on the receiving modes) but is typically of the order of 50–75 K.
Theory describes classical oscillators and all the modes become
harmonic at low T: they no longer couple and the lifetimes
become infinite instead of reaching a constant value (West and
Estreicher, 2006).

2.1.3. Describe the Host Crystal
One approach is to start with the perfect crystal using Green’s
functions which, in principle, produce exact results. The
eigenvalues give the band structure of the crystal and the
eigenvectors are Bloch or Wannier functions (Koster and Slater,
1954a,b). But introducing the defect presents challenges. It is not
obvious that the defect can be described with the same basis set
of periodic functions used to describe the perfect crystal. Further,
defining the defect potential can be tricky, especially if lattice
relaxations and distortions are included. Embedding techniques
(Baraff and Schlüter, 1983; Gunnarsson et al., 1983) can be used
tomatch a perturbed defect region to the knownGreen’s function
of the host material. Green’s functions have been used to study
isolated impurities such as transition-metals in Si (Katayama-
Yoshida and Zunger, 1985; Beeler et al., 1990; Overhof and
Weihrich, 1997).

The extreme opposite approach is to ignore the perfect crystal
and focus on the defect and its immediate surroundings. The
periodic background is lost but the chemistry and the strongly
localized features of the defect can be studied. This type of
modeling started with small molecular clusters surrounding a
vacancy in Si. The electronic structure was described using
extended Hückel theory (Messmer and Watkins, 1970). Small
and large clusters were later used in conjunction with a range
of quantum-chemical tools to study defect problems (Estreicher,
1995). This approach produces a highly intuitive, molecular-
orbital-based description of defects, and the geometry around
them can be approximately optimized (Estle et al., 1986, 1987).

However, clusters have serious drawbacks. Since the
underlying periodicity of the crystal is lost, so is the entire band
structure. Placing defect levels within the gap is not possible.
Further, clusters have surfaces and the dangling bonds must be
saturated (usually with H atoms). The surface of the cluster is
polarized because of the difference in electron affinity between
the host crystal atoms and the element that saturates the dangling
bonds. And then, charging the defect by adding or removing one
electron to the cluster results in most of that charge accumulating
on the surface of the cluster instead of remaining associated with
the defect: describing charged defects becomes meaningless.

Born-von-Karman boundary conditions have been applied to
clusters in order to eliminate the surface (“cyclic clusters”). This
approach has only been used in conjunction with semiempirical
Hartree-Fock (HF) methods because applying these boundary
conditions to three- and four-center integrals proved to be very
difficult (Miro et al., 1997).

The best option to approximate the host crystal containing a
localized defect involves periodic supercells (Nieminen, 2007),
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in which periodic boundary conditions are applied to a large
unit cell (Messmer andWatkins, 1973; Zunger and Katzir, 1975).
Converged energies require a summation over k-points in the
Brillouin zone of the supercell. The usual selection of k points
involves a Monkhorst-Pack uniformmesh (Monkhorst and Pack,
1976) (usually 2×2×2 or 3×3×3) but this choice is not unique
(Makov et al., 1996).

When using supercells, the underlying periodicity of the
crystal is preserved, there is no surface, and charged defects can
be calculated with a neutralizing background charge (Van de
Walle et al., 1988). But the defect itself becomes periodic. Further,
the strain field and the charge associated with the defect are
artificially confined to the supercell. Charging the defect gives
rise to a fictitious Madelung energy contribution. A number
of authors have proposed corrections to account for this term
(Leslie and Gillan, 1985; Makov and Payne, 1995; Jarvis et al.,
1997; Schultz, 1999; Lany and Zunger, 2008; Freysoldt et al.,
2009; Wu et al., 2017). The corrections can be substantial in
small supercells (16 or 32-atoms supercells were common two
decades ago) and diminish as the supercell size increases. Today,
supercells containing hundreds and sometimes up to 1,000 atoms
are routinely used at the first-principles level. These issues are
discussed in Freysoldt et al. (2014).

2.1.4. Solve the Electronic Problem
The core regions are often removed from the calculations with
pseudopotentials. The use of empirical potentials can be traced
back to 1934 (Fermi, 1934; Phillips and Kleinman, 1959), but
ab-initio pseudopotentials (Hamann et al., 1979; Bachelet et al.,
1982; Kleinman and Bylander, 1982; Vanderbilt, 1990) are now
common. They reproduce the results of all-electron ab-initio
calculations and contain no parameters fitted to experimental
data. However, there is still user input: one has to decide which
type of pseudopotentials should be used (depending on the type
of basis set: atomic-like vs. plane waves), the value of the core
radii, the semi-core states, etc. Ab-initio pseudopotentials are not
an exact science. All-electron calculations can also be performed
(Blum et al., 2009). Since core electrons are often relativistic, this
involves solving the Dirac equation.

What remains is to solve the electronic problem in the valence
regions. In the early days, semi-empirical methods have been
used in clusters: Estreicher (1995) Xα-scattering wave (DeLeo
et al., 1981, 1982) and approximate HF methods such as CNDO,
MNDO, MINDO, or PRDDO. The “-NDO” techniques ignore
all three- and four-center integrals (see below) and involve
many adjustable parameters, while PRDDO includes all the
three-center integrals and uses an orthogonalization procedure
that minimizes the value of the four-center integrals which
are ignored. As computing power increased, fully ab-initio
HF calculations were performed, sometimes complemented by
limited post-HF corrections such as Møller-Plesset expansions
(Roberson and Estreicher, 1994). They introduce some electron
correlation at a substantial computational cost.

HF methods typically use atomic basis sets for the electronic
states. The many-electron wavefunction is a Slater determinant
of molecular orbitals which themselves are linear combinations
of (optimized and tabulated) atomic orbitals. The interpretation

of the results in terms of hydrogenic orbitals is highly
intuitive. Electron correlation is ignored but electron exchange
is calculated exactly. This involves evaluating some N4/8 four-
center integrals of the type 〈ψi(1),ψj(1)| 1

r12
|ψk(2),ψℓ(2)〉 where

N is the number of orbitals (which is much larger than the
number of atoms). A HF calculation is called “ab-initio” if all
the four-center integrals are computed for a given basis set. Such
calculations are computationally expensive which limits the size
of the clusters that can be used. Further, electron correlation is
ignored, unless even more expensive post-HF tools are used. HF
provides good geometries and chemical intuition, but the band
gap is hopelessly large and the location of defect-related gap
levels is unreliable. Further, the frequencies of the defect-related
vibrational modes are highly inaccurate. For these reasons, HF
techniques have been largely abandoned in the study of defects in
semiconductors.

Density-functional theory (DFT) (Kohn, 1999; Jones, 2015) in
conjunction with periodic supercells is a far superior approach
(Mattsson et al., 2004; Freysoldt et al., 2014). It is usually
referred to as “first-principles” because no parameter adjusted
to an experimental database is involved. Within DFT, one
solves the Kohn-Sham equation for non-interacting effective
particles whose total density matches the exact electronic ground
state density provided that the exchange-correlation potential
Vxc is known. This potential is of course not known. It is
usually described in terms of the local density (Local-Density
Approximation or LDA Kohn and Sham, 1965) and its gradients
(Generalized-Gradient Approximation or GGA Perdew et al.,
1996a). The latter exists with dozens of revisions and corrections:
RPBE, RevPBE, PBESOL, LYP, AM05, DRSLL, KBM, LMKLL,
etc. Theorists must decide which functional to use for a specific
defect problem. There is no ab-initio recipe for making this
decision, and some results are sensitive to the choice of Vxc

(see e.g., Pacchioni et al., 2000; Estreicher et al., 2011). The
true interactions between electrons are of course non local
and any local approximation is bound to be incomplete. One
consequence is that the DFT bandgaps are typically half the
measured values. At the LDA level, the calculated (measured)
gaps are 2.89 eV (5.50) for diamond, 0.79 eV (1.12) for Si,
and 0.01 eV (0.66) for Ge. One popular correction involves
the use of hybrid functionals which includes some exact HF

exchange (Perdew et al., 1996b; Lucero et al., 2012): E
hyb
xc =

EDFTxc + α(EHF
x − EDFTx ). This introduces a mixing coefficient

α which is usually taken to be 0.25. Quasi-particle theories
such as GW (see Ergönenc et al., 2018 for a recent example)
and the Monte-Carlo approach are discussed elsewhere in this
series of reviews. A list of DFT software packages can be
found at https://dft.sandia.gov/codes_list.html and a quantitative
discussion of the accuracy of some of them is in Lejaeghere et al.
(2013).

Typical defect calculations begin with the selection of the
appropriate supercell and electronic-structure tools (size and
type of basis set, exchange-correlation potential, and k-point
sampling). As a first step, we always optimize the lattice constant
of the perfect cell in the negative, neutral, and zero charge
state. The lattice constant of the defect-free supercell (that is:
the size of the box that contains it) must be optimized as it
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varies with supercell size and DFT input parameters. In small
supercells, the lattice constant also varies a little with the charge
state. This effect, which is of particular importance if vibrational
frequencies should be calculated, can be understood by the
following consideration. In quantum chemistry, the “bond index”
is the difference in the population of the bonding and anti-
bonding orbitals. In a small molecule such as H2, the bond
strength and stretch-mode frequency are substantially affected by
the charge state: H−

2 and H+
2 both have a longer bond length and

lower frequency than H0
2, while H2−

2 as well as H2+
2 dissociate

(bond index = 0). A smaller effect occurs for larger molecules
and in supercells. The charge does affect the bond lengths and
strengths and that small change has an impact on the total
energies and vibrational frequencies. This should be taken into
account when accurate calculations are desired, in particular
when the dynamical matrix is needed.

Then, the impurity or defect is introduced into the supercell
and the geometry around it is optimized in various charge states
by minimizing the inter-atomic forces for a number of a priori
possible configurations of the defect. Typical conjugate-gradient
geometry optimizations are considered to have converged when
the maximum force component drops below 0.03 (eV/Å) or
so. For the calculation of the Hessian, it is desirable to lower
this value to 0.003 (eV/Å) in order to minimize the number of
negative eigenvalues.

Once the various configurations and total energies of the
defect in the various allowed charged states are known, other
properties of the defect can be calculated (Zhang and Northrup,
1991; Van de Walle et al., 1993; Nieminen, 2007; Freysoldt
et al., 2014). These include formation energies as a function of
the Fermi level which gives the thermodynamic transition (or
ionization) levels. The binding energies are always of interest
when dealing with defects consisting of several elements. This
is the energy gained by forming a complex starting with
isolated components. For example, the binding energy Eb of
the substitutional boron—interstitial hydrogen pair in the Si512
supercell would be Eb = {E(Si511B−) + E(Si512H

+
bc)} −

{E(Si511BH0) + E(Si512)}, where H+
bc stands for isolated bond-

centered hydrogen in Si. Note that at non-zero temperatures, one
should consider free energies and the most important entropy
contribution for such defects is the configurational term which
can be of the order of 0.1–0.2 eV at room temperature (Estreicher
et al., 2004). An experimental situation where this configurational
entropy was seen at work involves the H2 molecule trapped
near interstitial O in Si (see section 1.2.2). Various activation
energies may also be needed, such as reorientation barriers
between equivalent sites or migration barriers. These barriers
are best obtained using the nudged-elastic-band (NEB) method
(Henkelman and Jonsson, 2000; Henkelman et al., 2000). It is
computationally expensive, even in small supercells. However,
the NEB method provides the correct migration path (Estreicher
et al., 2011) and converges toward the true saddle point of
the potential-energy surface. Many of these issues have been
discussed in a recent review (Freysoldt et al., 2014). There is
neither need nor room to repeat this here. However, this review
did not discuss the vibrational properties of defects.

2.2. Vibrational Dynamics of Defects
FTIR and Raman spectra of light impurities in semiconductors
have produced a large volume of vibrational data, which often
include isotope shifts. Sometimes, the symmetry of the defect
was obtained from uniaxial-stress experiments while annealing
studies provided estimates for the binding energies. Numerous
examples and details of the experimental techniques are in
Pearton et al. (1992) and Shimura (1994). The combination
vibrational spectroscopy and first-principles studies has led to
the identification of many defect centers in semiconductors. The
story of H2 molecules in Si (Kissinger and Pizzini, 2015) should at
least be mentioned here, as it involved many puzzling twists and
turns. For example, the trapping of H2 near interstitial O resulted
in the observation of the molecule’s ortho/para splitting in the
IR line of O (but not that of H2) as well as in a measurement
of the configurational entropy (Chen et al., 2002). Further, a
range of excited ro-vibrational states of H2, HD, and D2 were
measured by delicate annealing studies (Stavola et al., 2003). The
example of H2 in Si alone illustrates the amazing range of detailed
experimental information that can be extracted from such optical
studies.

The vibrational lifetimes of many impurity-related modes
were measured in situ by transient-bleaching spectroscopy
(Luepke et al., 2003). One unexpected feature of the data was that
very similar Si − H stretch modes sometimes exhibit lifetimes
that differ by as much as two orders of magnitude. They also
show some truly gigantic isotope effects (Gibbons et al., 2013).
The calculations of the lifetimes and decay channels of such high-
frequency stretch modes involved the use of the eigenvectors of
the dynamical matrix (West and Estreicher, 2006, 2007). It soon
became clear that the lifetimes of excited impurity-related modes
are not related to their frequency but to the nature of the receiving
modes. For example, changing the isotope of a receiving mode
may result in a two-phonon decay becoming a three-phonon one,
and thus substantially increase the vibrational lifetime.

Calculations of the vibrational properties of defects begins
with the Hessian. It can be obtained without displacing any host
atom using linear-response theory (Pruneda et al., 2002). This
produces purely harmonic modes. The more common “frozen-
phonon” method involves displacing atoms by small amounts to
evaluate the second derivatives of the energy relative to atomic
coordinates ∂2E/∂Rαi∂Rβj (where α,β = 1 . . . , N number the
atoms and i, j are Cartesian indices). The dynamical matrix itself
is obtained by dividing the Hessianmatrix elements by the square
roots of the nuclear masses of the atoms involved. The dynamical
matrix can also be obtained at non-zero temperatures directly
from molecular-dynamics (MD) simulations by mapping the
calculated forces at every time step onto the elements of the
matrix (Hellman et al., 2013).

The eigenvalues of the dynamical matrix are the square of
the normal-mode frequencies while its eigenvectors allow the
calculation of the relative displacements of all the atoms for
each mode. For periodic supercells, there are three translational
(but no rotational) modes with zero frequency. All the other
eigenvalues should of course be positive, but this is not always
the case. The geometries need to be optimized very carefully (we
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use Fmax,i < 0.003eV/Å) in order to minimize the number of
negative eigenvalues, often referred to as “imaginary modes.” No
such mode really exists: negative eigenvalues indicate that one
has not reached the minimum of the 3N-dimensional potential-
energy surface (N is the number of atoms) since the curvature of
the energy is negative along some direction(s).

Depending on the details of this surface, it can be challenging
to reach the minimum. One problem is that conjugate-gradient
geometry optimizations involve Cartesian coordinates, and the
Cartesian displacement of an atom always corresponds to a
linear combination of many normal modes. However, a system
of N atoms has 3N Cartesian coordinates as well as 3N ortho-
normal vibrational modes. The latter can be used to fine-tune the
geometry. One can get rid of a few residual negative eigenvalues
by displacing the atoms not along Cartesian coordinates but
along the normal vibrational mode coordinates associated with
the negative eigenvalues (Kang and Estreicher, 2014).

2.3. Non-equilibrium Molecular Dynamics
Without Thermostat
The nuclear dynamics are obtained from classical MD
simulations. The nuclei follow Newton’s laws of motion
with inter-atomic forces calculated using DFT. The energy
calculated at the time t is used to calculate the velocities and
positions of all the nuclei at the time t + 1t, where 1t is 1/30th
to 1/40th of the shortest period of oscillation in the system. Since
the energy of the oscillator is on the average half kinetic and half
potential, the temperature T of the system of N nuclei is related
to the total kinetic energy via

∑N
i

1
2miv2i = 3

2NkBT, where kB is
the Boltzmann constant.

There are various types of approaches to MD using empirical
forces, the Born-Oppenheimer approach, as well as the Sankey
and Car-Parrinello methods. These are not discussed here.
Instead, we focus on how to prepare the system at the time t =
0 in such a way that neither thermostat nor thermalization runs
are needed. The supercell preparation technique can be used with
any level of MD.

The conventional way to initiate MD simulations at the
temperature T involves a Maxwell-Boltzmann distribution of
nuclear velocities corresponding to the temperature T while all
the nuclei are in their equilibrium location. This does produce
the desired temperature, but the MD run begins with all the
vibrational modes exactly in phase (zero potential energy), an
unphysical situation. And then, at the beginning of the MD
run, all the nuclei lose and gain kinetic energy together, and
the initial temperature fluctuations are very large (comparable
to T). The amplitude of these fluctuations must be reduced with
a thermostat, a subroutine that cuts-off excessive kinetic energy
and renormalizes the temperature. Extensive thermalization runs
are required until the system reaches a reasonable steady-state.
This situation makes it impossible to study the coupling between
the various modes while the system is far from equilibrium.
Indeed, the temperature fluctuations are larger than many
phonon energies and the vibrational modes couple to the
thermostat much faster (every few MD time steps) than to each
other. The need for thermostats and long thermalization runs

entirely originates from the fact that all the vibrational modes are
in phase at t = 0.

In the “supercell preparation” technique (Gibbons et al.,
2015), the system is initiated in a linear combination of normal
modes with random phases and energies that produce the desired
initial distribution of temperatures. The key ingredient is the
dynamical matrix. The orthonormal eigenvectors esαi allow us to
calculate the relative displacement of atom α along i = x, y, z
for each mode s. These eigenvectors are related to the Cartesian
nuclear coordinates Rαi via the normal-mode coordinate qs:

Rαi(T, t) =
∑
s

esαiqs(T, t)/
√
mα ,

where T is the temperature and t the time. Even though the MD
runs are fully anharmonic with forces obtained from the total
energies, the conversion between Cartesian and normal-mode
coordinates involves the harmonic assumption for the unknown
qs, namely

qs(T, t) = As(T) cos(ωst+ ϕs).

This introduces a random distribution of phases at the time t =
0. The amplitudes As(T) are obtained from the condition that, in
thermal equilibrium, the average energy per mode is kBT. This
remains a good approximation even when the system is prepared
away from equilibrium. The randomized Boltzmann distribution
of energies β exp{−βEs}, where β = 1/kBT produces the average
energy kBT per mode. Using the inverse-transform method for
generating distributions, the cumulative distribution function

ζs =
∫ Es

0
βe−βE dE

gives

Es = −kBT ln(1− ζs),

where ζs is a random number between 0 and 1. Equating this to
the energy Es = 1

2A
2
sω

2
s , one gets

A2
s (T) = −2kBT ln(1− ζs)/ω2

s .

Each set of random mode phases and energies produces an
initial microstate. No thermostat is used and the magnitude
of the T fluctuations is considerably smaller from the very
beginning than those resulting from the “conventional” MD
runs (above) even after thermalization runs. Since there is an
infinite number of initial microstates corresponding to the same
macrostate, it is necessary to average over many microstates.
This involves averaging the results of n MD runs, each starting
with different random distributions of initial mode phases and
energies, all of which corresponds to the same initial temperature
distribution. Increasing n is equivalent to increasing the size of
the supercell, and the amplitude of the temperature fluctuations
is sharply reduced as shown in Figure 1. As discussed in Gibbons
et al. (2015), supercell preparation produces runs in which the
temperature fluctuations are independent of time starting with
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MD step one and sharply decrease in magnitude after averaging
over n initial microstates. At 125 K, the standard deviations of
the fluctuations with n initial microstates are1T = ± 0.91, 0.52,
0.32, and 0.15K for n = 30, 100, 300, and 1,000, respectively.
Thus, for a supercell of some 200 atoms, averaging over n=30
runs produces time-independent T fluctuations of the order of
just 1% (!) of the background temperature (Gibbons et al., 2015)
from the beginning of the run. Of course, large supercells require
less averaging than small ones. Thus, the supercell preparation
technique allows the coupling between normal vibrational modes
to be studied while the system is truly away from equilibrium
(where “truly” means not in a steady-state situation).

To study heat flow, a small region of the supercell is prepared
at the temperature T1 while the rest of the system is at T0. The
modes are kept in phase at the T1/T0 interface by preparing the
entire supercell at T0 and then increasing (or decreasing) the
mode amplitudes until the atoms in the hot region are at T1.
Appending the positions and velocities of the atoms in the 0 and
1 regions produces the desired initial gradient.

To calculate the lifetime (West and Estreicher, 2006, 2007)
of a vibrational mode with frequency ω > kBT/h̄, the system
is prepared at temperature T for all the modes except the
one of interest which is assigned the potential energy 3h̄ω/2
(zero-point energy plus one phonon). This classical oscillator
now has the same initial amplitude as the quantum-mechanical
one, and therefore the same amount of anharmonic coupling.
During the MD run, the Cartesian coordinates at every time step
are converted into normal-mode coordinates, which allows the
monitoring of the energy and amplitude of all the modes vs.
time. Note that the purely potential energy of the excited mode
at t = 0 shifts the temperature from T to Tcell since 3NkBTcell =
(3N− 1)kBT+ 3h̄ω/2, where N is the number of atoms.

2.4. Heat Flow and Defects
Material containing defects exhibits two types of vibrational
modes (Estreicher et al., 2015). Those associated with the host
crystal (bulk modes) are delocalized in space and have very
short vibrational lifetimes, typically one period of oscillation.
Since these modes come in near-continuous bands, the
coupling between them involves very fast one-phonon processes
(∼ 0.2− 0.3 ps). On the other hand, the defect-related modes
are localized at or near the defect and exhibit long vibrational
lifetimes: dozens or even hundreds of periods of oscillation, a
phenomenon called “phonon trapping.” Defect-related modes
are “Spatially-Localized Modes” (SLMs). They do not couple
easily to delocalized ones, even when they have the same
frequency. Their lifetimes are characteristic of two- (∼ 5−8ps) or
even three-(over 50ps) phonon processes (Sun et al., 2006). Thus,
defects in the path of a heat front act like “thermal sponges”: they
absorb small amounts of energy in SLMs for meaningful lengths
of time, thus reducing the flow of heat. The decay of these trapped
phonons depends on the availability of receiving modes, not on
the origin of the excitation. The optical analogy is fluorescence
where photons are trapped for a long time and then released in
directions uncorrelated to where they originated.

Defect-related SLMs are critical to understanding the
interactions between thermal phonons and defects. When a heat

FIGURE 1 | Total temperature of the Si200H32 supercell vs. time without

averaging (black line) and after averaging over n = 50 (red line) and n = 100

(green line) initial microstates (see text). The non-equilibrium MD run includes a

nanowire prepared at 100 K with a hot slice at 180 K. No thermostat is used

and no thermalization run was done. The figure shows the temperatures vs.

time starting with the first MD step. The time step is 1.0 fs.

front at the temperature Thf encounters a defect (initially at the
background temperature T0), the SLMs with frequencies in the
range kBT0/h̄ < ω < kBThf/h̄ become resonantly excited. If
there are no SLMs in this range, one has to wait for two- (ormore)
phonon processes to occur in order for higher-frequency SLMs to
get excited. Thus, the outcome of heat-flowÂ– defect interactions
depends on the temperature window [T0, Thf].

This is of particular importance when the defect is the
interface between two materials A and B. The defect is the
A/B interface. The heat generated in the A region propagates
via the coupling of A-A vibrational modes. Once the heat
front reaches the interface, it traps in A-B SLMs. And then,
the decay of the trapped phonons depends on the number
of receiving modes on both sides of the interface. If the A
region has heavier atoms than the B region, then the A side
contains many more low-frequency modes than the B sides:
most of the phonons trapped at the A/B interface decay back
to the A side. The net result is that heat accumulates on the
A side of the interface and a large temperature discontinuity
(interface or Kapitza resistance) appears. On the other hand,
if material A is lighter than material B, then there are many
more receiving modes on the B side than on the A side and
most of the phonons trapped in SLMs at the A/B interface
decay toward the B side and heat easily moves forward into
the B layer: the temperature discontinuity at the interface (and
the Kapitza resistance) is small. Thus, the Kapitza resistance
depends on the temperature window and the direction of heat
flow. Stanley and Estreicher (2018) This explanation for the
atomistic origin of the Kapitza resistance differs from the models
(Swartz and Pohl, 1989) that include only the mismatch between
the phonon densities of states of the two materials but do
not include the localized vibrational modes associated with the
interface. Note that the first-principles calculations performed
so far involved systems too small to include the low-frequency
(long-wavelength) phonons.

Frontiers in Materials | www.frontiersin.org 8 December 2018 | Volume 5 | Article 70

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Spitaler and Estreicher Perspectives on Theory of Defects

Finally, the reduction in the thermal conductivity associated
with the surface of the material is also associated with the surface
SLMs. In the case of a H-saturated Si nanowire (Kang and
Estreicher, 2014), the surface SLMs are the Si-H stretch and wag
modes. The former are too high in frequency (over 2, 000 cm−1)
to be thermally excited at moderate temperatures, but some of
the latter (∼ 900 cm−1) become excited in the hot region of
the nanowire when a T gradient is set-up. Since these modes
are higher in frequency than any Si-Si mode, they require two-
phonon processes to interact in any way with the bulkmodes. The
surface Si-H wag modes couple resonantly to each other much
faster than they can decay into (or be excited by) Si-Si modes.
The result is that heat propagates independently in the bulk and
on the surface. Thus, the surface reduces the heat flow because
one must wait for its contribution to arrive before the system
achieves thermal equilibrium. There is precious little interaction
between bulk and surface oscillators: the frequencies are too far
apart.

3. THEORY OF DEFECTS IN METALS AND
METALLIC COMPOUNDS

Defects are ubiquitous in metals and metallic alloys, since the
creation of single point defects (such as substitutional impurities
or vacancies) often costs only moderate amounts of energy in
these systems. Therefore, point defects are present under virtually
all technologically relevant conditions. In pure metals, typical
vacancy concentrations (Kittel, 2005) at room temperature are
around 10−5 (meaning that one in 105 sites is a vacancy), while
close to the melting point they range from 10−3 (low-melting-
point) to 10−2 (high-melting-point) (Kraftmakher, 1998). Larger
vacancy concentrations are found in alloys than in pure metals
(Mosig et al., 1992).

In addition to vacancies, which are intrinsically present
due to thermodynamics, different types of defects are found
in metals for various reasons. First, impurities are present
in the source materials and cannot be completely removed
during large-scale technological processes. Second, alloying
elements are added to improve the materials properties.
The effects of alloying may be unpredictable: Tungsten-
rhenium, e.g., shows an anomalous dependence of the thermal
expansion on the Re content (Dengg et al., 2017) with a
local minimum at around 12% Re. Third, crystallographic
defects such as dislocations are introduced by mechanical
treatment. They play an important role in determining the
mechanical properties of the material. It is very important
to know the thermal and mechanical processing history of a
metallic sample. Depending on that history, different samples
with the same macroscopic composition can be completely
different on the micrometer and at the atomic scale: New
phases may appear, the grain size may change, precipitates can
form, while defects can segregate and trap at grain boundaries,
dislocations, etc. Theorists need detailed information about
the processing history and the microstucture of a sample
in order to create an atomistic model for realistic computer
simulations.

3.1. Vacancies in Simple Metals and
Intermetallic Compounds
Vacancies are among the most important defects in any metal. A
series of techniques are employed to extract vacancy formation
energies from experiment. Most prominently, they can be
extracted from the nonlinear increase in the specific heat, the
residual resistivity of quenched samples, positron annihilation
experiments, or a simultaneous measurement of the macroscopic
thermal expansion and changes in the lattice parameter at
high temperatures (Kraftmakher, 1998). These experiments
all produce different results. In addition, sample preparation,
measurement conditions, and other external factors differ from
experiment to experiment. As a result, defect formation energies
extracted from measurements show a rather large scatter. In the
case of Al for example, Pochapsky (1953) extracted a vacancy
formation enthalpy of 1.17 eV from heat capacity and electrical
resistancemeasurements, while Triftshäuser (1975) obtained 0.66
eV from positron annihilation experiments. The equilibrium
vacancy concentrations at the melting point are 5 × 10−7 in the
former case and 3× 10−4 in the latter one. These numbers differ
by almost a factor of 1000.

In this situation, theoretical estimates of the vacancy
formation energy have become an increasingly attractive
alternative. The early theoretical attempts were based on purely
elastic considerations (Kornblit, 1981; Krause et al., 1989;
Ghorai, 1991) or on calculations based on empirical interatomic
potentials (Harder and Bacon, 1986; Ackland et al., 1987; Rosato
et al., 1989). In the early 1990’s, ab-initio codes based on density-
functional theory became powerful enough to allow electronic
structure calculations of vacancy formation energies in simple
metals such as Al and Li (Beuerle et al., 1991; Mehl and Klein,
1991; Benedek et al., 1992). A few years later, the first ab-initio
calculations of vacancies in transition metals were published. In
1999, Korzhavyi et al. calculated the vacancy formation energy of
all the transition elements, including different variants in terms of
crystal structures andmagnetic state (Korzhavyi et al., 1999) (blue
line2 in Figure 2). At this point, such calculations had reached
a sufficient level of accuracy to serve as a benchmark, especially
when comparing vacancy formation energies in different metals,
since they were done in a consistent way with reasonable
predictive power. From these systematic calculations, trends in
vacancy formation energy can be seen: their values range from
1 to 3 eV, and they roughly follow a parabolic trend along each
row of the Periodic Table, with a maximum in the middle and the
lowest values in the beginning and at the end. Interestingly, the
ratio between the melting temperature (in units of kBTm, where
Tm is the melting temperature and kB the Boltzmann constant)

2In Korzhavyi et al. (1999), results for all transition metals both in the fcc and
bcc structure are presented; moreover, for the magnetic metals (Cr, Mn, Fe,
Co, Ni) results for different magnetic states (ferromagnetic, antiferromagnetic,
paramagnetic) are reported. The data included in the figure are chosen as follows:
for metals which exhibit different crystallographic phases, the results for the phase
stable just below the melting point is chosen; for metals with hexagonal structure,
the vacancy formation energy of the face-centered-cubic (fcc) phase is used since
this phase is very similar to the hexagonal one; for magnetic systems, the result
obtained in the paramagnetic phase is taken.
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FIGURE 2 | Vacancy formation energies of 3d (upper panel), 4d (central panel) and 5d (lower panel) transition metals as a function of atomic number (Z) as obtained

from theory. The blue diamonds are taken from Korzhavyi et al. (1999), the light green triangles are data obtained with LDA from Nazarov et al. (2012), the dark green

squares are from the same reference, but include a correction for describing the vacancy internal surface. The experimental values for some late transition metals

(Ehrhart et al., 1991) (red squares) are included.

and the vacancy formation energy is in the range 8 to 13 for
virtually all metals, as pointed out by Grimvall (1999).

Korzhavyi et al. (1999) provided a reasonable description
of the electronic structure and took into account volume
relaxation effects. However, a few limitations were still there: (i)
Local atomic relaxations were not taken into account; (ii) the
local density approximation (LDA) was used for the exchange-
correlation potential. This systematically overestimates binding
energies and is suspected to have shortcomings for the region
surrounding the vacancy where the electron density varies
sharply (this is comparable to a surface effect Carling et al.,
2000); (iii) the formation energies were obtained at T = 0 K.
Nazarov et al. (2012) calculated these energies but included the
local atomic relaxations and a special correction to overcome the
shortcomings of (semi-)local exchange correlation functionals
and to give correct results for the internal surface around a
vacancy, in the spirit of Carling et al. (2000). Figure 2 shows

their results obtained with LDA and the generalized-gradient
approximations (GGA) as parameterized by Perdew et al. (1996a)
(PBE). Surprisingly, GGA, (expected to perform better than
LDA for strong charge density variations) seems to perform
worse when no special correction is applied. But after applying
the special correction, GGA performs slightly better than LDA,
especially for the 4d transition metal series. It appears that
LDA calculations benefit from an error cancellation which leads
to surprisingly good results for vacancy formation energies,
even though LDA was originally designed for systems with
slowly-varying electron density. This is one of the reasons
why the results by Korzhavyi et al. (1999) are so good. In
addition, the results from Figure 2 show that the effect of local
lattice relaxations are really small for vacancies in transition
metals, as already assumed by Korzhavyi et al. based on
previous work (Meyer and Fähnle, 1997; Papanikolaou et al.,
1997).
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The last feature missing in the results discussed so far is the
effect of temperature. When finite temperature comes into play,
one must go beyond the so-called total energy as resulting from a
DFT run. Instead, the free energy of a systemmust be determined
which, for an elemental solid, is

F(V ,T) = Fel(V ,T)+ Fvib(V ,T)+ Fvac(V ,T).

Here, Fel(V ,T) represents the electronic free energy, which is
the sum of the total energy E(V) and the entropy term TSel,
Fel(V ,T) = E(V ,T) − TSel(T). Fvib(V ,T) is the vibrational
free energy due to harmonic and anharmonic lattice vibrations.
Fvac(V ,T), finally, is the free energy due to the creation of defects.
The explicit treatment of temperature in ab-initio calculations
inlcuding all of these terms was introduced rather recently.
Grabowski et al. (2009) provided a comprehensive description
of the thermodynamic properties of Al up to the melting point,
where they explicitly included all the entropy contributions
(electronic, quasiharmonic, anharmonic, configurational) in
addition to the electronic energy to determine the free energy of
vacancies as a function of temperature. They showed that the total
entropy contributions are about 2kB and therefore substantial. At
the melting point, the addition of entropy results in a 6 times
larger vacancy concentration, bringing the one deduced from the
GGA results in very close agreement to the positron annihilation
data of Hehenkamp (1994).

In a recent paper (Bochkarev et al., 2016b), Bochkarev et al.
added a new aspect to this discussion. They calculated the free
energy of a vacancy using two different approaches: In the first,
for each temperature, they first optimized the volume of the
supercell without vacancy and then introduced a vacancy keeping
the volume fixed (single-volume approach). These results were
compared to the ones obtained in a second approach where the
volume of the supercell including the vacancy was optimized for
each temperature. It turned out that the single-volume approach
leads to considerable errors both in the vacancy formation
entropy Sf as well as the formation enthalpy Hf , but that the
two errors almost cancel out. Thus, the single-volume results for
the Gibbs free energy as a function of temperature are very close
to the ones obtained in the single-volume approach. This means
that at a given temperature one can obtain decent results for the
Gibbs free energy of a vacancy using the optimized volume of a
defect-free cell, which saves considerable computing time.

In 2014, Glensk et al. (2014) presented an ab-initio study on
the temperature dependence of the Gibbs free energy of vacancy
formation in Al and Cu from 0K up to the melting temperature,
fully taking into account the anharmonic contributions. Their
GGA-PBE results are in very good agreement with experiment
in the temperature range where experimental data were available,
T ≥ 500K (Simmons and Balluffi, 1960; Hehenkamp, 1994).
However, at low temperatures, they found a trend in the Gibbs
free energy strongly deviating from the Arrhenius behavior,
which could be explained by a linear dependence of the entropy
on the temperature. They concluded that an Arrhenius-like
description of the Gibbs free energy was not appropriate for
intermediate to lower temperatures. This would imply that the
vacancy formation energies extracted from experiments which

assume an Arrhenius-like behavior could contain substantial
errors. As an alternative, they proposed to interpret experiments
using a formalism they call local Grüneisen theorywhich contains
the correct linear dependence of the entropy on the temperature.
When re-assessing the experimental data for Cu and Al using
their local Grüneisen theory, they obtained agreement within
0.02 eV with the results obtained directly from GGA-PBE
without applying any surface correction. Thus, there is a fruitful
discussion going on between ab-initio predictions, experimental
data, and their interpretation in terms of vacancy formation
energy.

So far, we have only discussed single vacancies in metals. What
about the role of vacancy clusters? Kraftmakher (1998), (p. 90)
states that divacancies are the only defects whose equilibrium
concentrations at high temperatures may become comparable
with those of monovacancies. This is surely the case for pure
metals, and to some extent for random alloys, but the situation
changes when going to intermetallics or metallic compounds.
Metallic compounds are of high technical relevance both as
structural and functional materials. Prominent members are
cementite Fe3C, an (often unwanted) phase appearing in steel,
cast iron, WC, TiC (very hard materials often used as coatings
for tools), and TiN (a hard metallic material used e.g., as
diffusion barrier in microelectronics). Metallic compounds are
often very hard and brittle, but metallic in the physical sense,
i.e., they have a non-vanishing density of states at the Fermi
level. As a consequence, defects in these materials are not
electrically charged (as in semiconductors or insulators) and
unbalanced numbers of metal and C (or N) atoms do not lead
to large electrostatic interactions. In fact, in experimentally-
synthesized samples, off-stoichiometry can be huge: Under
normal conditions, cubic M − Xy carbides and nitrides (M = Ti,
Zr, Hf, V, Nb, Ta; X = C, N) may contain up to∼ 30− 50 at.% of
structural vacancies in the nonmetal sublattice (Gusev, 2014).

Let us have a closer look at the atomic structure of
intermetallics. By default, different species of atoms sit on
different sublattices. Consider TiN: In the perfect Ti0.5N0.5

structure, one sublattice is fully occupied with Ti and the
other one with N atoms. Due to synthesis conditions, however,
the concentrations may deviate from 50:50 and an excess or
deficiency of one species may occur. The effective formation
energies of vacancies and, as a consequence, their concentrations
critically depend on this balance (Mühlbacher et al., 2015).
Using the dilute solution model it is possible to predict the
concentrations of vacancies as a function of stoichiometry and
temperature on the basis of DFT calculations (Woodward et al.,
2001; Hong et al., 2015). Figure 3 shows the concentrations of
vacancies in TiN as a function of stoichiometry and temperature,
based on the effective vacancy formation energies reported in
Mühlbacher et al. (2015). For 1273 K, a slight 0.5% excess
of Ti would lead to a concentration of Ti vacancies (VTi)
as small 3 × 10−10, while a 0.5% deficiency would increase
their concentration to as much as 10−2. The concentration
of N vacancies, VN , behaves the opposite way. This has a
strong impact on diffusion. TiN is a prominent diffusion barrier
against Cu in microelectronic devices. The diffusion of Cu
is mediated by vacancies, since the formation of interstitial
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FIGURE 3 | Concentration of vacancies in TiN as a function of stoichiometry

at 1,273 K.

Cu costs a large amount of energy (Mühlbacher et al., 2015).
In this situation, the knowledge of the vacancy concentration
as a function of stoichiometry and temperature is of great
importance, since it directly enters the diffusion coefficient. Based
on DFT calculations, the vacancy concentrations and diffusion
coefficient for Cu through bulk TiN for different compositions
have been determined (Bochkarev et al., 2016a): At 1,250 K, it is
0.5 × 10−21m2/s in the stoichiometric case, while for nitrogen
deficient TiN0.96, it is about 10−18m2/s, which is more than 3
orders of magnitude larger.

Razumovskiy et al. (2013) have shown that in ZrC and TiC,
vacancy clusters are energetically very favorable: While single-
metal vacancies have large formation energies of ∼ 8 eV, the
removal of C atoms close to the metal vacancy reduces the
formation energy. A minimum occurs when all the C atoms in
the first coordination shell are removed. The resulting vacancy
cluster of one metal vacancy surrounded by six C vacancies has a
formation energy of only 3 eV, i.e., 5eV lower than for the isolated
metal vacancy. In a later study they also investigated HfC and
TiN, ZrN and HfN (Razumovskiy et al., 2015). They showed that
all the carbides—but none of the nitrides—tend to form vacancy
clusters.

3.2. Vacancies in Random Alloys
In random alloys, the local atomic environment changes from
site to site. Take for example a random alloy of atoms A and B
on an fcc lattice where each site has 12 nearest neighbors. In the
first coordination shell of a given site, anywhere from 0 to 12 A
atoms can be present. Consequently, there is not just one vacancy
formation energy but a range of these energies, depending on
the local environment. A good example is the random alloy
Cu0.5Ni0.5 investigated in Ruban (2016) and Zhang and Sluiter
(2015). Depending on the number of Ni atoms in the nearest-
neighbor shell, the vacancy formation energies range from 1.4eV
(no Ni in the first coordination shell) to 2.4eV (only Ni in the
first coordination shell) (Ruban, 2016): vacancies prefer to be
surrounded by Cu atoms.

Dealing with such a wide range of vacancy formation energies
means that a proper statistical model is needed (Zhang and
Sluiter, 2015; Ruban, 2016). The reason is the following: At
0K, vacancies are created only at the lowest-energy sites. But
at finite temperature, entropy causes vacancies to be created
at higher-energy sites. A proper thermodynamic description of
vacancies in random alloys must include the contribution of the
configurational entropy. Ruban (2016) has shown that it has a
substantial impact on the calculated vacancy concentrations. In
an equiatomic binary alloy, the configurational entropy reduces
the concentration of vacancies by a factor of 2 compared to a
pure metal, while in a 4-component equi-atomic alloy (often
called “high-entropy alloy”), the reduction is by a factor of
4. In Ruban (2016), an effective vacancy formation energy Ē
was calculated. It connects the free energy of the system with
the concentration of vacancies in a phenomenological way. Ē
increases with temperature, but always remains lower than the
average vacancy formation energy. This means that using just an
average formation energy for describing the thermodynamics of
vacancies introduces a considerable error.

Technically, there are 2 main ways to deal with vacancies
in random alloys. The first way is to use a cluster expansion
approach (Sanchez et al., 1984; Fontaine, 1994), as used e.g., in
Van der Ven and Ceder (2005), Muzyk et al. (2011), and Zhang
and Sluiter (2015). In this approach, the energetics of an alloy
is mapped on an Ising-like Hamiltonian containing the so called
effective cluster interactions (ECIs ). The ECIs are obtained by
fitting the Hamiltonian to a set of ab-initio calculations, typically
between 40 and 100. Once the effective cluster interactions
are known, the energetics of any kind of local environment
can directly be determined. The second way is to describe a
random alloy in the single-site mean field approximation, as
conveniently done by a Green’s function based DFT approach
(Peil et al., 2012; Ruban, 2016). In this context, the “Exact-muffin-
tin orbital Locally Self-consistent Green’s Function” (ELSGF)
method is especially useful: It explicitly deals with a cluster
of neighboring atoms lying within a local interaction zone,
embedded into an effective medium. The ELSGF method allows
for calculating random alloys with a proper treatment of local
environment effects in a more consistent way compared to the
cluster-expansion technique. The cluster expansion, in turn, has
the advantage that local lattice relaxations and the vibrational
entropy can be included. However it must be handled with care
due to its theoretical limitations and certain pitfalls in its practical
applications (Ruban and Abrikosov, 2008; Sanchez, 2010).

3.3. Dislocations
The plastic behavior of materials is of fundamental interest for
material scientists and engineers. The microscopic mechanism
for plasticity is the creation and motion of dislocations in
the crystal (Orowan, 1934; Polanyi, 1934; Taylor, 1934). Thus,
investigation of the atomistic structure, energetics andmobility of
dislocations are of key interest. Dislocations are present in almost
all materials since they are the first mechanism to accommodate
stress due to mechanical load or temperature changes. They can
also be a consequence of material synthesis. Nevertheless, their
detailed structure, energetics and mobility are hardly accessible
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by experiment. So they were naturally a subject of computational
materials science since its beginnings 50 years ago, long before
electronic structure calculations were feasible for extended unit
cells. Simple interatomic potentials have provided important
atomistic insight into the possible behavior of extended defects
(Vitek, 1968). Over time, the interatomic potentials have become
more sophisticated and simulations more complex. But the
outcome often depends on the individual potential chosen,
making it difficult to draw clear conclusions.

Around the year 2000, the ab-initio methodology and the
computer power had reached a level that allowed treating unit
cells of hundreds of atoms, leading to the first DFT results on
edge (Hartford et al., 1998) and screw dislocations in Mo and
Ta (Ismail-Beigi and Arias, 2000; Woodward and Rao, 2001).
They latter showed that—in contrast to earlier calculations based
on empirical interatomic potentials—these two refractory metals
have compact and symmetric bcc screw dislocation cores. This
result is in much better agreement with experimental data on the
critical stress required to move dislocations.

However, the stress field around a dislocation is long ranged.
It is proportional to the inverse of the distance to the dislocation
core. Different approaches have emerged to deal with this issue:

The first-principles Green’s function boundary condition
method (Woodward and Rao, 2002) self-consistently couples
the local strain field of the dislocation core to the long-range
elastic field, where the local strain field is treated using DFT.
This approach has the advantage to treat isolated dislocations
with a quantum-mechanical description of the dislocation core.
However, the method is complicated and the coupling between
different regions tricky to handle.

An easier-to-use alternative is the periodic dipole approach.
Supercells containing 2 dislocations running in opposite
directions are constructed with no net dislocation dipole
moment (Cai et al., 2001). There are two possible setups
(Ventelon et al., 2013) of the supercell. The first leads to a
triangular (Frederiksen and Jacobsen, 2003) and the second
to a quadrupolar (Ismail-Beigi and Arias, 2000; Wang et al.,
2003; Li et al., 2004) periodic array of dislocation dipoles. The
former strictly preserves the 3-fold symmetry of the bcc lattice,
while the latter leads to zero stress at any dislocation center
thanks to the resulting square-like superposition of the elastic
stress fields (Cai et al., 2003; Clouet et al., 2009). The periodic
dipole approach makes the computation of the displacement
field and the interaction energy well defined and simple. The
approach also allows to calculate directly the Peierls stress. It
is the stress required to move a dislocation away from its
original place. Within the periodic dipole approach the Peierls
stress is obtained by straining the supercell until the dislocation
moves (Ventelon and Willaime, 2007; Romaner et al., 2010).
Due to its straightforward use and the good results obtained
with reasonable supercell sizes (typically one to a few hundred
atoms Romaner et al., 2010; Li et al., 2012; Ventelon et al.,
2013), this approach is probably the one most widely used today.
Care must only be taken if the core is extended, a rather rare
situation.

A third alternative is the use of the Peierls-Nabarro model
to calculate the dislocation structure and energetics. Using a

generalized stacking fault surface obtained fromDFT as an input,
it has good predictive power (Hartford et al., 1998; Lu et al., 2000).

Finally, there is the atomic row model based on atomic-row
displacement energies, originally proposed by Takeuchi (1979).
In this approach, the interaction between rows of atoms is the
key ingredient. By rigidly shifting atomic rows and evaluating
the corresponding changes in total energy, an “interatomic-row”
potential can be calculated. Accurate total energies are obtained
from first-principles calculations (Medvedeva et al., 2005; Li et al.,
2012). The inter-row potential reliably determines the dislocation
core structure and symmetry by relaxing the position of each
atomic row. The model is interesting from a computational
perspective. Indeed, small supercells (8–48 atoms) suffice to fit
the inter-atomic row potential (Medvedeva et al., 2005; Gilbert
and Dudarev, 2010; Li et al., 2012), while the supercell size for
the direct calculation of a dislocation dipole is at least 5 times
larger. Ventelon et al. (2013), Romaner et al. (2010), and Li et al.
(2012). Since DFT calculations scale as the cube of the number
of atoms, this is a substantial savings. However, the interatomic-
row potentials are not suitable to calculate the Peierls stress of
dislocations.

4. DISCUSSION

The few examples we have discussed here illustrate themany roles
of impurities and defects in various materials. Measurements
of defect properties can be challenging and produce a rather
large scatter in the result. Take the formation energy of a
vacancy in metals for example. It depends on the history
of the sample and on the experimental technique applied.
In this situation, systematic first-principles calculations can
deliver results for perfectly defined conditions. This becomes an
important complement to experiment.

Today’s theory can handle many more issues than just a
few years ago, as abundantly illustrated in the other articles
in this series. Fueled by the steady increase in computational
power, theory can now treat extended defects in supercells
containing up to thousands of atoms with first-principles
methods, and include the effects of temperature. The early
development of theory involved many healthy discussions
involving theorists as well as experimentalists about the best
way to represent the host crystal, the details of the electronic
structure method, the basis set, geometry optimizations, etc.
At every step, it is the abundance of experimental data
(especially in Si) that has made it possible to reach a consensus
and point to specific theoretical failures which needed to be
addressed. The possibility to verify many different theoretical
results (formation and binding energies, electrical activity,
migration paths, vibrational spectra ...) with measured data has
enabled theorists to sharpen their tools and has fostered new
theoretical developments. The interplay between experiment
and theory is one key reason why theory has become such
a reliable and necessary partner in today’s materials science
research.

But the world is changing. The materials of interest are no
longer bulk Si and wrought iron. Instead, they range from a
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rapidly increasing number of nanostructures to custom alloys;
from Q-bits to thermoelectrics. In some cases miniaturization
and control of materials properties on the atomic scale allows to
parallel an experiment with a 1:1 atomistic model, treated with
the full predictive power of quantum mechanics.

Theorists now have to be concerned with much more than
simple total energies and electronic properties at T = 0 K. They
have to take into account electron-phonon coupling, various
entropy contributions (vibrational, configurational, magnetic,
electronic), excited states, and even quantum entanglement. The
theory of defects is exciting.
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