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The paper presents a nonlinear buckling analysis of single-layer graphene sheets using

a molecular mechanics model which accounts for binary, ternary, and quaternary

interactions between the atoms. They are described using a geometrically exact setting

and by the introduction of Morse and cosine potential functions, equipped with an

appropriate set of parameters. We examine the critical and post-critical behaviors of

graphene, under compression in the zigzag and in the armchair directions, and shear.

Our findings show the suitability of standard thin-plates theory for the prediction of simple

critical behaviors under various edge constraint conditions.

Keywords: graphene, molecular mechanics, out-of-plane buckling, DREIDING potential, arc-length strategy

1. INTRODUCTION

Graphene is a two-dimensional hexagonal lattice of carbon atoms with unique physical and
mechanical properties (Young et al., 2012), such as high room-temperature carrier mobility, high
thermal conductivity, high tensile strength and stiffness and weak optical absorptivity. Owing
to these remarkable properties, graphene has attracted considerable attention for applications in
many fields (Choi et al., 2010; Li et al., 2014; Aïssa et al., 2015; Sun et al., 2015; Nguyen and
Nguyen, 2016; Kumar et al., 2018; Mohan et al., 2018), including energy generation and storage
(e.g., photovoltaic cells, hydrogen storage, supercapacitors), sensoring and actuating systems (e.g.,
gas sensors), electronics (e.g., conductive inks and flexible films), biotechnologies (e.g., membranes
for water filtration, gas separation, DNA sequencing), composites.

The understanding and the control of the mechanical behaviors of graphene are crucial issues
(Young et al., 2012; Akinwande et al., 2017) for many applications such as composites, membranes
for water filtration, hydrogen storage and electronic devices. In this regard, it is worth emphasizing
also that chemical-physical properties of any material at the nanoscale depend on the relative
atomic positions. Tuning these properties in specific devices through deformation control is
therefore possible, in principle.

The importance for these applications has motivated continuously increasing research efforts to
understand the details of the mechanical response of graphene.

However, the technical difficulties and the costs of nanoscale experiments combine to make
theoretical modeling approaches preferable. Among them, ab-initio simulations (Kudin et al.,
2001; Baumeier et al., 2007; Liu et al., 2007) are the most accurate tools available to investigate
the behavior of nanomaterials, including their mechanics, but they demand a lot of computer
power and so they are not always feasible for systems with very many atoms. For this reason,
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increasing attention has been given tomolecular dynamics/statics
formulations (Liew et al., 2004; Lu et al., 2009; Xiao et al., 2009;
Zhao et al., 2009; Georgantzinos et al., 2012; Silvestre et al.,
2012; Berinskii and Borodich, 2013; Davini, 2014; Theodosiou
and Saravanos, 2014; Gamboa et al., 2015; Korobeynikov et al.,
2015, 2018; Budarapu et al., 2017; Davini et al., 2017; Genoese
et al., 2017, 2018a,b, 2019; Hossain et al., 2018; Sgouros et al.,
2018; Singh and Patel, 2018b) or their structural-mechanical
approximations (e.g., nanoscale equivalent beam and truss
models; Sakhaee-Pour, 2009a,b; Georgantzinos et al., 2010;
Alzebdeh, 2012; Giannopoulos, 2012; Tserpes, 2012; Firouz-
Abadi et al., 2016; Rafiee and Eskandariyun, 2017; Savvas
and Stefanou, 2018) and to continuum models (Chang, 2010;
Aminpour and Rizzi, 2016; Ghaffari et al., 2018; Singh and Patel,
2018a; Zhang et al., 2018).

Most of the research on graphene has focused on its rigidities,
the frequencies of free vibration, and tensile failure properties
and this has produced also a refinement of the parameters of
simple bonding potentials (Genoese et al., 2017; Hossain et al.,
2018; Korobeynikov et al., 2018), such as the DREIDING, the
Stillinger-Weber or the modified Morse potentials. Currently,
molecular statics formulations based on these potentials are
considered to be the best compromise at the atomistic scale in
non-linear contexts, where the simplicity of the models is a major
requirement. Nevertheless, studies on out-of-plane buckling
behaviors of graphene are not numerous (Sakhaee-Pour, 2009a;
Duan et al., 2011; Giannopoulos, 2012; Korobeynikov et al., 2015;
Firouz-Abadi et al., 2016; Sgouros et al., 2018). Duan (Duan et al.,
2011) has investigated the development of wrinkles in rectangular
graphene sheets under increasing in-plane shear displacements
using the COMPASS potential. Modes jump phenomena have
been reported, with sudden changes of the number of wrinkles as
the displacements increase. Similar trends have been observed by
Huang and Han (2017) through molecular dynamics simulations
performed using the AIREBO potential. Sakhaee-Pour (2009a),
Giannopoulos (2012), and Firouz-Abadi et al. (2016) have studied
the linearised buckling of compressed graphene sheets and
ribbons described as assemblages of Bernoulli-like beams and
truss elements. Korobeynikov et al. (2015) have studied the
buckling and the initial post-buckling of compressed graphene

A B C

FIGURE 1 | The interatomic kinematics: (A) bond length, (B,C) valence, and dihedral angles.

using the DREIDING potential. Very recently, Sgouros et al.
(2018) have investigated compressed ribbons under various
temperatures via molecular dynamics simulations incorporating
the LCBOP potential.

In the present study, we propose a buckling analysis of
single-layer graphene sheets through a molecular mechanics
model which extends those used in our previous works
(Genoese et al., 2017, 2018a,b, 2019) in order to account for
binary, ternary and quaternary interactions between the atoms.
They are described using a geometrically exact setting and
introducing Morse and cosine potential functions, equipped
with a proper set of parameters. To this regard, following the
reasoning already proposed in Genoese et al. (2017, 2018a,
2019), a constitutive problem is solved only for purposes of
giving a new parametrization of the dihedral potential. Then,
by solving the equilibrium equations of the atomistic system
through the arc-length strategy, we obtain the critical and post-
critical behaviors of graphene under compression in the zigzag
and in the armchair directions and shear. Case by case, the
equilibrium paths are shown and the critical behaviors are
discussed in comparison with available solutions for thin-plates
(Timoshenko and Gere, 1963).

2. MATERIALS, MODEL, AND METHODS

2.1. The Molecular Mechanics Model
We assume that the reference configuration of the sheet
is planar and stress free and that the atoms are point-
particles in Euclidean space. Their interactions are usually
separated into bonding interactions and long-range ones.
Long-range interactions are considered to be negligible with
respect to the bonding ones. In turn, bonding interactions are
usually distinguished between binary, ternary and quaternary
interactions, measured in terms of the bond length rij, valence
angle θijk and dihedral angle ϕijkl (see Figure 1). The bonding
interactions are derived from a potential U, here expressed in the
additive form

U =
∑

b

Ur
b +

∑

a

Uθ
a +

∑

d

U
ϕ

d
, (1)
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where Ur
b
, Uθ

a , and U
ϕ

d
are the energy contributions related to the

bth bond length, to the ath valence angle and to the dth dihedral
angle, respectively. In this paper, we use Morse and cosine energy
functions (Mayo et al., 1990), which are defined to be

Ur
b = Ū

{

[

1− e−β(rij−r̄)
]2

− 1

}

, (2a)

Uθ
a = C

2

(

cos θijk − cos θ̄
)2
, (2b)

U
ϕ

d
= V

2

{

1− cos
[

p
(

ϕijkl − ϕ̄ijkl

)]}

. (2c)

In Equations (2), r̄ ≈ 0.142 nm, θ̄ = 2π

3
and ϕ̄ijkl ∈ {0,π}, are

the length and angles in the resting configuration, Ū is the bond

breaking energy, β , C and V are parameters which we define

below and p = 2.
We denote by xn and un the initial position vector of the

nth atom and its displacement vector. Then, its current position

vector is given by rn = xn+un. Similarly, xij = xj−xi, rij = rj−ri,
and uij = uj − ui are the relative position vectors and the relative

displacement vector of the atom j with respect to the atom i.
Vector rij can be expressed as rij = xij + uij.

A

C

B

FIGURE 2 | Schemes of the compression and shear tests of the nearly square graphene sheet: (A,B) geometry and details of the applied loads for the compression

tests in the zigzag and in the armchair directions, (C) geometry, and details of the applied loads for the shear test.
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The bond length is given by

rij = ||rij|| =
√

rij · rij. (3)

For what follows, r̃ij = rij/rij is the direction vector defined by
a pair of atoms i-j. In addition, ñijk and ñjil are, respectively, the
unit vectors perpendicular to the plane determined by the current
positions of the atoms i, j and k and to the plane determined by
the current positions of the atoms j, l and i, given by:

ñijk =
nijk

nijk
, nijk = r̃ij × r̃ik, nijk = ||nijk||,

ñjil =
njil

njil
, njil = r̃jl × r̃ij, njil = ||njil||.

The valence angle and the dihedral angle are defined as follows:

cos θijk = r̃ij · r̃ik, (4)

cosϕijkl = ñijk · ñjil, sinϕijklr̃ij = (ñjil × ñijk). (5)

This said, the variations of rij, cos θijk and ϕijkl are given by

δrij = r̃ij · δuij, (6a)

δ cos θijk = nθ
ij · δuij + nθ

ik · δuik, (6b)

δϕijkl = n
ϕ
ij · δuij + n

ϕ

ik
· δuik + n

ϕ

jl
· δujl, (6c)

where

nθ
ij =

1

rij
(r̃ik − cos θijkr̃ij), nθ

ik =
1

rik
(r̃ij − cos θijkr̃ik),

n
ϕ
ij =

1

rij

[

cos θjil

njil
ñjil −

cos θijk

nijk
ñijk

]

,

n
ϕ

ik
= 1

riknijk
ñijk, n

ϕ

jl
= 1

rjlnjil
ñjil.

We refer to Blondel and Karplus (1996), Korobeynikov et al.
(2015), and Genoese et al. (2019) for more details. The
equilibrium configurations of the system are sought through the
stationarity condition of its total potential energy

5 = U −
∑

n

pn · un, (7)

where U, defined in Equations (1, 2), is a function of the
displacements of the atoms by means of Equations (3–5), and
pn is the force applied to the nth atom. Recalling Equation (6),
the variation of the potential U is

δU =
∑

b

δuij · srij +
∑

a

(

δuij · sθij + δuik · sθik
)

+
∑

d

(

δuij · sϕij + δuik · sϕik + δujl · sϕjl
)

,
(8a)

FIGURE 3 | Graphene sheet with two supported edges under compression in the zigzag direction: (A) equilibrium path, (B,C) deformed configurations at the points A

and B, and (D) energies trends.
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where

srij =
dUr

b

d rij
r̃ij,

sθα = dUθ
a

d cos θijk
nθ

α , α ∈
{

ij, ik
}

,

s
ϕ
β =

dU
ϕ

d

d ϕijkl
n

ϕ
β , β ∈

{

ij, ik, jl
}

(8b)

are the binary, ternary and quaternary interatomic force vectors.
Finally, the equilibrium equations assume the following form

∑

b

srij · (δuj − δui)+
∑

a

[

sθij · (δuj − δui)+ sθik · (δuk − δui)
]

+
∑

d

[

s
ϕ
ij · (δuj − δui)+ s

ϕ

ik
· (δuk − δui)+ s

ϕ

jl
· (δul − δuj)

]

=
∑

n

pn · δun

(9)
for any δun.

2.2. Nanoscale Material Parameters
The potential functions given in Equation (2) are characterized by
four parameters, Ū,β , C and V . In this work, we use β = 21.671

1/nm, Ū = 0.79 aJ, and C = 1.893 aJ, which provide the force
constants kr = 742 nN/nm and kθ = 1.42 aJ, since these values
have shown to well describe the in-plane strength and rigidity of
graphene (Genoese et al., 2017). In order to properly define V ,
we associate the potential related to the dihedral angle to that of
a plate with thickness tending to zero in linearized elasticity. By
doing this, it can be shown that the following equality holds1:

D = 14
√
3

3
V ,

whereD is the bending stiffness of the plate. Then,V is calculated
from the ab-initio result D = 0.234 aJ in Kudin et al. (2001), and
it results to be V = 0.029 aJ. Last but not least, we obtain the
value of the corresponding force constant kϕ , given by

kϕ =
d2 U

ϕ

d

d ϕ2
ijkl

∣

∣

∣

∣

ϕijkl=ϕ̄ijkl

= 2V = 0.058 aJ. (10)

2.3. Numerical Methods
The model has been implemented in the MATLAB” language.
By using FEM standard assembly procedures the equilibrium

1Analytical developments will be given in a forthcoming paper.

FIGURE 4 | Graphene sheet with two supported edges under compression in the armchair direction: (A) equilibrium path, (B,C) deformed configurations at the points

A and B, and (D) energies trends.
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equations are recast in the global form

s[u]− p = 0, (11)

where u collects all the kinematic variables, s is the inner force
vector and p collects all the external loads which we express in the
form p = λp̂, λ being a scalar load multiplier and p̂ the nominal
loads vector. The pairs (u, λ) that satisfy Equation (11) define the
equilibrium path of the graphene sheet. In this work it is obtained
through the Riks arc-length method (Riks, 1979, 1984).

As opposed to the traditional step-by-step procedures based
on a parametrization of the equilibrium path in terms of the
load multiplier λ or of any displacement variable, the arc-length

TABLE 1 | Comparison between critical multipliers.

Zigzag Armchair

λE λcr λE λcr

First Mode 0.0209 0.02003 0.0227 0.0224

method describes the equilibrium path in terms of the variable ξ

related to the arc-length. This implies adding a new constraint
equation ξ = g[u, λ]. The equilibrium points of the path are
then obtained by solving a non-linear extended system, using
the Modified Newton-Raphson method and condensing the
constraint equation in order to assemble and decompose only

the stiffness matrix K = ∂s

∂u
. The modified set of equations

become singular only at a bifurcation point that, however, can be
transformed into a simple fold by introducing small imperfection
loads spending work on the critical direction.

The numerical analysis becomesmore complex whenmultiple
simultaneous or nearly simultaneous modes are found on the
fundamental equilibrium path. Using a step-by-step numerical
algorithm based on Riks arc-length strategy, the presence
of simultaneous or nearly simultaneous modes manifests
itself in the form of abrupt changes of the equilibrium
configurations, named as mode jumping in the literature (Duan
et al., 2011). In these cases, the prior knowledge of such
critical modes is necessary in order to understand which of
these directions (or linear combination thereof) are actually

FIGURE 5 | Graphene sheet with four supported edges under compression in the zigzag direction: (A) equilibrium path, (B–D) deformed configurations at the points

A, B and C, and (E) energies trends.
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FIGURE 6 | Graphene sheet with four supported edges under compression in the armchair direction: (A) equilibrium path, (B–D) deformed configurations at the

points A, B and C, and (E) energies trends.

TABLE 2 | Comparison between critical multipliers.

Zigzag Armchair

λE λcr λE λcr

First Mode 0.0908 0.088 0.0837 0.082

reachable in post-critical analysis and which, instead, are
geometrical loci of secondary bifurcations. For this purpose,
any step of the analysis has been accompanied by the updating
of the tangent stiffness matrix and determination of its
kernel, by eigenvalue analysis, at very close values of the
load parameter λ.

3. RESULTS

Numerical benchmark examples regarding graphene sheets
under compression and shear are solved.

3.1. Square Graphene Under Compression
and Shear
Figure 2 shows the geometrical configuration of a nearly square
graphene sheet (a = 10.508 nm and b = 10.084 nm) and, in
some detail, the loading conditions for the compression tests,
in both zigzag and armchair directions, and for the pure shear
test. The compression tests are carried out considering constraint
conditions of simple support for the only loaded sides and for
all the sides. The shear test is carried out considering conditions
of simple support for all the sides. In all cases, N = 1 nN/nm is
assumed. In addition, small imperfection forces, perpendicular to
the plane of the sheet, are applied in correspondence to the atoms
evidenced in red that are assumed to be control points to give the
equilibrium paths.

In Figures 3, 4 the results of the compression tests in the
case of two supported edges are shown. The equilibrium paths,
very far beyond the first critical point, and the deformed
configurations, at the points A and B, respectively, are depicted,
revealing a typical stable behavior from Euler compressed rods.
The comparison between critical multiplier values λcr and those
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obtained analytically by the Eulerian formula λEN = π2D/a2

for the zigzag case, and λEN = π2D/b2 for the armchair case is
shown in Table 1 which, on one hand, shows a good agreement
between numerical and analytical results and, on the other hand,
highlights the very low influence of chirality in the out-of plane
nonlinear behavior of these nanostructures as already noticed in
Sgouros et al. (2018). The small numerical differences found in
the values calculated for zigzag and armchair cases are mostly
related to the different values of a and b.

In the same Figures 3, 4 the trends of the potential energy of
the sheet are shown, in the range of the equilibrium path between
the initial undeformed configuration and that immediately
successive to the critical one. Also, the energy contributions
are shown as decoupled, separating the contribution due to
membrane deformation, that is, the sum of binary and ternary
energies, from the quaternary contribution, which is inherently
flexural. All the energies are measured with respect to the resting
state of the sheet and divided by its reference surface a × b,
while the deformation of the sheet is given in terms of the non-
dimensional relative displacements 1u/a = (ū4 − ū3)/a and
1v/b = (v̄2 − v̄1)/b, ūk and v̄k being the mean values of the
displacements along x and y on the side k.

Diagrams show that in these two cases pre-critical
behavior employs purely membranal energy, while post-
critical behavior uses bending energy. Moreover, it is worth
noting that energy is quadratic in the pre-critical behavior,
which coincides with what was reported in the literature

(Liew et al., 2004; Silvestre et al., 2012) for compressed
carbon nanotubes.

In Figures 5, 6 the results of the compression tests in the case
of four supported edges are shown. The equilibrium paths and the
deformed configurations, in the points A, B, and C are reported.
The sheet presents a similar behavior, both with regard to the
equilibrium path and the deformed configurations regardless of
the direction of the compression. After an initial stable post-
critical behavior (point A), the equilibrium paths present a limit
load configuration (point B), followed by an unstable branch. The
deformed configurations are similar, corresponding to the three
points A, B, and C, which turn out first bubble-shaped and then
increasingly wrapped.

Once again, the comparison is positive between the numerical
critical multiplier values λcr , and those obtained analytically by
the formulas of buckling of Timoshenko (Timoshenko and Gere,
1963) for fully supported thin plates, namely λEN = kπ2D/b2

for the zigzag case and λEN = kπ2D/a2 for the armchair
case, with k = 4. The comparison is given in Table 2, which
highlights the very low influence of chirality in the nonlinear
behavior of these nanostructures. In the same Figures 5, 6,
the energy diagrams reveal that the pre-critical behavior of the
sheets is likewise purely membranal and characterized by a linear
behavior. However, unlike in the previous examples, in the post-
critical behavior, membranal and flexural energies coexist. The
same considerations can be made for the shear test, whose results
are shown in Figure 7, where 1u = ū2 − ū1 and 1v = v̄4 − v̄3.

FIGURE 7 | Graphene sheet under shear: (A) equilibrium path, (B,C) deformed configurations at the points A and B, and (D) energies trends.
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A

B

FIGURE 8 | Schemes of the compression tests of the graphene strips: (A) geometry and details of the applied loads for the compression test in the zigzag direction,

(B) geometry, and details of the applied loads for the compression test in the armchair direction.

FIGURE 9 | Supported graphene strips under compression in the zigzag direction: first three buckling modes and their interaction.

The equilibrium path, after an initial stable post-critical
behavior (point A), presents a limit load (point B). The
critical multiplier estimated numerically λcr agrees well with

the analytical value predicted by the theory of Timoshenko
(Timoshenko and Gere, 1963) for thin plates subjected to shear,
that is λEN = kπ2D/b2 where k = 5.35+ 4(b/a)2 = 9.0337. The
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comparison is as follows:

λE = 0.205 λcr = 0.194.

The initial post-critical configuration (point A) has the shape of a
bubble elongated toward the direction of the principal traction,
already highlighted in the literature (Huang and Han, 2017).
At the limit load configuration (point B) the deformation is
accentuated and, in addition to the diagonal crest, two lateral
troughs arise.

3.2. Graphene Strips Under Compression
Figure 8 shows the geometry and the nodal loads of the strips
under compression in the zigzag (a = 20.306 nm and b = 5.91
nm) and in the armchair (a = 19.676 nm and b = 5.822 nm)
directions. In both cases only conditions of simple support for

TABLE 3 | Comparison between critical multipliers.

Zigzag Armchair

λE λcr λE λcr

First Mode 0.2701 0.255 0.2764 0.270

Second Mode 0.2712 0.260 0.2803 0.271

Third Mode 0.3039 0.290 0.3165 0.310

the entire boundary are imposed and N = 1 nN/nm is assumed.
The analyses have turned out to be more complex than in the
case of the nearly square sheet, due to the presence of nearly
simultaneous modes.

In that regard, Figures 9, 11 show that in both cases,
the fundamental equilibrium path presents three nearly
simultaneous modes, two of them almost coincident and the
third one at a small distance from the first two. The critical
multipliers determined by numerical analyses λcr show a good
agreement with the analytical solution provided by Timoshenko
for the first three critical modes for the same problem, whose
expressions are λEN = kπ2D/b2, where k = (mb/a+ a/(bm))2,
m is the number of the half-waves of the critical mode. The
comparison between numerical and analytical results is shown
in Table 3.

As can be seen in Figures 9, 11many post-critical equilibrium
paths are obtained when small imperfection loads are added,
which are chosen to be a linear combination of the critical
modes, and are projected onto the modal subspace (ξ1, ξ2, ξ3)
(Salerno and Casciaro, 1997). The number of overall analysis
is 114, and each of them is characterized by a different
shape (or direction) of the imperfection. In agreement
with the literature (Salerno and Casciaro, 1997), the 114
equilibrium paths cluster around only two directions, the
first two modes, whichever is the initial imperfection to
which the path is initially pushed, creating the typical zone

FIGURE 10 | Supported graphene strips under compression in the zigzag direction: (A) equilibrium path and (B–D) deformed configurations at the points A, B, and C.
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FIGURE 11 | Supported graphene strips under compression in the armchair direction: first three buckling modes and their interaction.

FIGURE 12 | Supported graphene strips under compression in the armchair direction: (A) equilibrium path and (B–D) deformed configurations at the points A,

B, and C.
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of post-critical attractiveness, with sudden post-critical
bifurcations, shown in Figures 9, 11, when moving in
the direction of the third mode, which are usually called
mode jumping.

That said, if we focus our attention just on the imperfection in
the direction of the first mode, we get only one equilibrium path,
characterized by the smallest limit load value, by the parity of the
norm of the additional imperfection.

Figures 10, 12 show the paths relative to this imperfection
with reference to the zigzag and the armchair case, respectively.
In both cases, the displacement in abscissa is the transversal one
of the control points evidenced in red in Figure 8. The paths
share the same features: after an initial stable bifurcation, a limit
load point is reached, followed by an unstable behavior. For both
cases three successive configurations, in the points A, B, and C of
the equilibrium path, are depicted. After an initial configuration
characterized by three half-waves (point A), similarly to the
selected critical mode, the successive configurations (points B and
C) take a more wrapped form, also characterized by an approach
of the edges of the strip left free to move horizontally. Both in
terms of equilibrium path and of deformed configurations, the
chirality has very little influence.

4. CONCLUSIONS

In the present paper, the critical and post-critical behaviors of
graphene, under compression in the zigzag and in the armchair
directions, and shear have been investigated. A molecular
mechanics model that takes into account binary, ternary and
quaternary interactions has been implemented extending our
previous works (Genoese et al., 2017, 2018a,b, 2019) in which

only the in-plane behavior of graphene has been addressed.
A geometrically exact setting and Morse and cosine potential
functions, equipped with a proper set of parameters have been
used to model the interatomic interactions and, at the same time,
a new parametrization of the dihedral potential has been given.
For each case study, the equilibrium path has been reconstructed
in the advanced post-critical behavior through the arc-length
strategy and some deformed configurations, deemed to be the
most significant, have been displayed. This adds significantly to
the existing literature, as this type of behavior has so far been
little investigated. Our findings show the suitability of standard
thin-plates theories to predict simple critical behaviors both for
nearby square sheets, under various edge constraint conditions,
and strips. Moreover, they highlight the very low influence
of chirality in the nonlinear behavior of these nanostructures.
The research work carried out in this paper could be the
first step toward investigating the nonlinear behavior of 2D
nanomaterials other than graphene or of more complex 3-
dimensional nanostructures, such as tubes.
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