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We analyse the propagation of airborne pressure waves through a three-dimensional

array of rigid coated spheres (shells) in air. When we dig a channel terminated by an

air cavity in each rigid shell we observe the appearance of a low frequency stop band.

Each shell with a hole acts as a Helmholtz resonator supporting a low frequency localized

mode. Isofrequency surfaces and contours reveal the strong anisotropy of the periodic

structure at the edge of the stop band. A simple mechanical model of springs andmasses

allows for asymptotic estimates of the low frequency stop band for elongated channels.

Increasing the radius of an air channel shifts up the position, and enlarges, the low

frequency stop band. Adding holes in shells also shifts up the frequency of the stop

band, and embedded shells lead to additional stop bands. Localization effect induced

by a large defect in a periodic macrocell of Helmholtz resonators is finally investigated.

Keywords: finite elements, bloch waves, acoustic metamaterials, Helmholtz resonators, multiscale asymptotic,

stop band, localized mode

1. INTRODUCTION: ACOUSTIC METAMATERIALS

In the tracks of photonic crystals, phononic crystals (Dowling, 2008) have provided a fillip
for research in acoustic stop band structures (Kushwaha et al., 1993; Kafesaki and Economou,
1999) within which light or sound is prohibited to propagate due to multiple scattering between
periodically spaced inclusions. In 2000, Liu et al. provided the first numerical and experimental
evidence of frequency dispersive elastic parameters of locally resonant structures for elastic waves
in three-dimensional arrays of thin coated spheres (Liu et al., 2000): The effective parameters were
shown to turn negative where low frequency stop bands occur. This important work paved the way
toward acoustic analogs of electromagnetic meta-materials, such as fluid-solid composites for the
control of pressure waves (Auriault and Bonnet, 1985; Auriault, 1994; Liu et al., 2000; Goffaux et al.,
2002; Ho et al., 2003; Elford et al., 2004; Hirsekorn et al., 2004; Li and Chan, 2004; Movchan and
Guenneau, 2004; Fang et al., 2006; Mei et al., 2006; Guenneau et al., 2007b; Hou et al., 2007; Wang
et al., 2008; Chalmers et al., 2009; Norris, 2009; Lemoult et al., 2011; Auriault and Boutin, 2012;
Boutin, 2013; Boutin and Becot, 2015). Using asymptotic methods for fields in multi-structures
(Kozlov et al., 1999; Movchan et al., 2002), it has been proposed to use arrays of cylinders with a
split ring cross section as building blocks for two-dimensional localized resonant acoustic structures
displaying negative refraction (Movchan and Guenneau, 2004; Guenneau et al., 2007a), based on
analogies with split ring resonators (SRRs), introduced by Pendry in the context of electromagnetic
waves almost 20 years ago (Pendry et al., 1999). Magnetic activity of metamaterials occurs near
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resonances of SRRs, which was essential for instance in the
design of the first electromagnetic cloak (Schurig et al., 2006),
and similar designs have been proposed for acoustic cloaks
(Craster et al., 2013).

In a series of articles, the research group of Auriault developed
asymptotic models of locally resonant structures (Auriault and
Bonnet, 1985; Auriault, 1994; Auriault and Boutin, 2012), some
of which predate the birth of acoustic metamaterials with the
seminal work of the research group of Ping Shen (Liu et al.,
2000). Low frequency stop bands in arrays of 2D Helmholtz
resonators with elongated necks have been studied in (Movchan
and Guenneau, 2004; Guenneau et al., 2007a) as mentioned
above, with further predictions and measurements of sound
transmission in elastic shells in air in Krynkin et al. (2010).
However, 3D Helmholtz resonators with elongated neck position
inside the cavity and periodically distributed in a fluid have been
introduced in (Boutin, 2013; Boutin and Becot, 2015). Therein,
Boutin and coauthors have shown that the macroscopic fields
(pressure P and velocityV) satisfy the following equation of mass
conservation and generalized Darcy Law:

∇ · V =
iω8

K
P +

Q

| Y |
, V =

−T

η
∇P (1)

where K is the effective bulk modulus (including thermal effects)
of the matrix, ω the resonant frequency, i2 = −1, 8 and T

are the porosity and dynamic permeability tensor (including
viscosity effects) when considering the resonators as perfectly
rigid spheres, η is the viscosity of the fluid-matrix, | Y | is the
volume of the 3D unit cell Y and Q is the flux emitted by the
resonator into the fluid matrix in response to the pressure acting
on it. The case of the Helmholtz resonator with a single elongated
neck has been not only derived, but also experimentally tested, in
Boutin (2013) and Boutin and Becot (2015). And the fluid need
not be inviscid.

There is a vast amount of literature on the role of the neck
in such Helmholtz resonators (Groeneweg, 1969; Alster, 1972;
Orris et al., 1974; Gaunaurd and Uberall, 1982; Lim et al.,
1990; Hinders et al., 1995; Selamet and Dickey, 1995; Mead,
1996; Aberg et al., 1997; Selamet et al., 1997; Chen et al., 1998;
Baird et al., 1999; Seo et al., 2005; Ivansson, 2006; Duan et al.,
2007; Zhao et al., 2007; Zhou et al., 2010; Wang and Mak,
2012; Li et al., 2013). Recently, periodic structures consisting
of SRRs have been revisited thanks to refined homogenization
techniques, which allow to rigorously link the geometrical
parameters to frequency dependent effective parameters (Mercier
et al., 2017). Analogs of SRRs have been proposed for in-plane
elastic waves (Guenneau et al., 2007b), that allows for bending
and rotational vibrations having lower resonant frequencies than
compressional vibrations, and thus make good candidates for
building blocks of mechanical metamaterials, which might make
possible some mechanical cloak, see Kadic et al. (2013) for a
review of metamaterials beyond electromagnetics. Milton, Briane
and Willis provided a thorough mathematical frame for cloaking
for certain types of elastodynamic waves in structural mechanics,
in the framework of modified Willis equations (Milton et al.,
2006). On the other hand, coupled in-plane pressure and shear

waves were numerically shown to be detoured around a finite
size obstacle by a specially designed cloak with an anisotropic
heterogeneous elasticity tensor without the minor symmetries
(Brun et al., 2009) without resorting toWillis media. Nonetheless,
SRRs like in Guenneau et al. (2007b) make an interesting
candidate to achieve such Cosserat-type metamaterials. Actually,
a similar type of resonant elastic structure already led to a
negatively refracting medium (Zhu et al., 2014), where the elastic
chirality (which is a hallmark of a Cosserat medium) was put
forward in conclusive experiments. The need for mechanical
metamaterials with elasticity tensor without the minor symmetry
motivates the extension of homgenization results of Mercier
et al. (2017) to the Navier system. Importantly, the acoustic wave
equation is invariant under coordinate changes (Norris, 2008,
2009), so acoustic metamaterials via geometric transform can
thus achieve enhanced control of pressure waves via a simpler
route. A simple example of a periodic system is a periodic
lattice, whose dynamic response is well defined by Green’s
functions. Dynamic Green’s functions in periodic lattices and
their asymptotics were analyzed in Movchan and Slepyan (2014)
and Vanel et al. (2016). Localization of electromagnetic waves
within a two-dimensional grating of spheres embedded in the
three-dimensional space and the high-frequency homogenisation
approximations were studied in Maling et al. (2017).

A downfall of SRRs is that they do not allow for doubly
negative acoustic parameters, so one would need a second type of
inclusion within the periodic cell to achieve a goal of a negative
refractive index in order to design a super lens like Pendry
proposed in his seminal paper (Pendry, 2000). In 2004, Li and
Chan proposed a design of negative acoustic metamaterial based
on a multiple scattering theory approach (Li and Chan, 2004),
which has been revisited recently by applied mathematicians
using homogenization theory for bubbly fluids (Ammari et al.,
2017a,b) with hybridization of Minnaert resonances (Minnaert,
1933). This is somewhat related to homogenization of high-
contrast periodic structures (Figotin and Kuchment, 1998).
Potential applications of bubbly media in super lensing and total
absorption have been experimentally shown (Lanoy et al., 2015;
Leroy et al., 2015). Such soft metamaterials (Brunet et al., 2015)
are currently investigated by many groupings in the world, but
they might not always be compatible with industrial processes.

Although SRRs might not achieve double negative acoustic
parameters, they seem to be quite straightforward to engineer
for ultrasonic waves. Fang et al. experimentally demonstrated
a dynamic effective negative stiffness in a chain of air filled
Helmholtz’s resonators for ultrasonic waves (Fang et al., 2006).
Moreover, it has been also shown using asymptotic techniques
that surface water waves propagating within an array of
fluid filled SRRs display a negative effective density (Farhat
et al., 2009). A focussing effect through a finite array of
such resonators was numerically achieved, with a resolution
of a third of the wavelength. The negative effective density,
reinterpreted as a negative effective gravity, has been further
confirmed theoretically and experimentally (Hu et al., 2011,
2017). Fluid filled SRRs have been experimentally tested in a
17 meter long water channel for filtering effects with a dike
using grooved vertical cylinders (Dupont et al., 2017). Similar
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FIGURE 1 | Three-dimensionnal phononic crystal, periodic cell Y with a rigid sphere � in physical space and irreducible Brillouin zone ŴXMU of the periodic cell Y∗ in

reciprocal space with the three components of the Floquet-Bloch vector k = (kx , ky , kz ).

filtering effects have been experimentally demonstrated for sound
waves interacting with a doubly periodic array of Helmholtz’s
resonators shaped as soda cans (Lemoult et al., 2011). However,
we note that in that case, there is no neck, just a hole, as soda
cans are thin shells. In the present paper, we would like to revisit
the concepts of SRRs in the case of pressure waves propagating
in a three-dimensional array of 3D Helmholtz resonators with
elongated necks. In order to simplify the mathematical setup,
we shall consider airborne acoustic waves, in which case rigid
(Neumann type) boundary conditions can be considered on
resonant elements. Compared to problems of linear elasticity, the
present study does not deal with dynamic degeneracies at low
frequencies, which may occur for certain type of geometries of
elastic systems, resulting in a group of very small eigenvalues
being separated from the remaining spectrum.

2. MOTIVATION: SPECTRAL PROPERTIES
OF A PERIODIC ARRAY OF RIGID
SPHERES

Let us start with an illustrative numerical result for a spectral
problem for the Helmholtz operator within a periodic cubic
array of rigid spheres: the unknown is a pressure wave field,

here sound in air (wave speed c = 340 m.s−1). Neumann
boundary conditions are prescribed on the contour of each defect
and standard Floquet-Bloch conditions are set on an elementary
cell of the periodic structure. The finite element formulation
was implemented in the COMSOL Multiphysics Package to
compute the eigenvalues and to generate the corresponding
eigenfields. We present in Figure 1 the periodic structure we
want to study and in Figure 2 the corresponding dispersion
diagram for eigenfrequencies ω (in unit of rad.s−1) as a function
of the Floquet-Bloch parameter k (in unit of m−1): along the
horizontal axis we have the values of modulus of k, where k
stands for the position vector of a point on the contour ŴXMU
within the irreducible Brillouin zone. We note the absence of
bandgaps with the presence of rigid spheres. This lack of intervals
of forbidden frequencies motivates the present study: how can
one create a stop band without further increasing the size of the
rigid spheres?

3. SETUP OF THE SPECTRAL PROBLEM:
THE CONTINUUM MODEL

Let us first recall the finite element set-up. We consider the
Helmholtz equation:
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FIGURE 2 | Dispersion diagram for a periodic array (pitch d = 1 m) of

spherical rigid inclusions (R = 0.4 m) representing the frequency ω (rad.s−1) of

pressure waves in air, vs. the wavenumber |k| (m−1), projection of the Bloch

vector k along the edges of ŴXMU.

∇ .

(

1

ρ(x, y, z)
∇p(x, y, z)

)

+
ω2

K(x, y, z)
p(x, y, z) = 0 (2)

where ρ (kg.m−3), K (Pa) are the density and bulk modulus of
the medium and ω (rad.s−1) is the angular wave frequency of the
pressure field p.

Due to the periodicity of the lattice, we look for solutions of
(2) in terms of Floquet-Bloch waves (Floquet, 1883; Bloch, 1928;
Bensoussan et al., 1978; Brillouin, 1978; Wilcox, 1978; Kittel,
1986). So, for a cubic array of unit cells Y ,

p(x+ 1, y+ 1, z + 1) = p(x, y, z)ei(kx+ky+kz) (3)

where kx, ky and kz are components of the Bloch vector k within
the Brillouin zone Y∗ = [0,π]3 (Joannopoulos et al., 1995;
Gazalet et al., 2013).

The implementation in the finite element package is fairly
straightforward (Hladky-Hennion et al., 1991; Nicolet et al.,
2004). We first multiply equation (2) by a smooth test function
v and using integration by parts, we obtain the so-called weak
form of the time-harmonic acoustic equation

−
∫

Y
ρ−1∇p·∇vdxdydz+

∫

∂Y
ρ−1 ∂p

∂n
vds+ω2

∫

Y
K−1pvdxdydz = 0

(4)

where ∂f /∂n = ∇f · n with n the unit outward normal to
the boundary ∂Y of Y , and ds the infinitesimal surface element
on ∂Y .

We note that the weak formulation holds for heterogeneous
fluids as ρ and K can be spatially varying. In particular, this
model works for domains such as a homogeneous fluid filled
with a periodic array of rigid obstacles. For the finite element

implementation, (4) is discretised using test functions taking
values on nodes of a tetrahedral mesh of the basic cell (first
order tetrahedral elements), see e.g., (Nicolet et al., 2004) for
further details. From (4), we note that setting rigid boundary
conditions on an inclusion amounts to assuming Neumann
(natural) homogeneous data, whereas transmission conditions at
the interface between various fluid phases mean that the quantity
ρ−1∂p/∂n is preserved across the interface. We note that in the
case of airborne pressure waves, the contrast in density between
air and inclusions made of metal or even polymer is sufficiently
large to assume Neumann data, but this simplification does not
hold if we replace air by water.

Let us now consider a periodic array of defects �1, ...,�N

embedded in an elementary cell Y =]0; 1[3. Let p(x, y, z)
satisfy the Helmholtz equation in Y \

⋃N
j=1 �j. We also assume

that p satisfies Neumann boundary conditions on the contours
of defects, where n denotes the unit outward normal to the
boundary ∂�j of a defect �j:

∂p

∂n

∣

∣

∣

∣

∂�j

= 0 , j = 1, ...,N (5)

We would like to consider a particular case when the defects
�1, ...,�N are spherical shells with thin air channels connecting
an air-filled interior cavity to the exterior surrounding air. These
defects can be modeled as multistructures (Kozlov et al., 1999) in
the following way,

�(N) =
{

a(N) <

√

x2 + y2 + z2 < b(N)

}

\
N
⋃

j= 1

5
(j)

ε(N)
(6)

where a(N) and b(N) are given constants and 5
(j)

ε(N)
is the

thin channel.

4. ASYMPTOTIC APPROXIMATION: A
DISCRETE SPRING-MASS MODEL

In this section, we derive an asymptotic approximation of the

field in thin channels 5
(j)
ε , see Figure 3,

5
(j)
ε =

{

(x, y, z) ∈ R3 : 0 < x < lj,
√

y(t)2 + z(t)2 < εhj(t), (0 ≤ t ≤ 2π)

}

(7)

where lj is the length of the jth bridge, εhj(t) the radius of its
varying cross-sectionDε (parametrized by a positive real t). Here,
ε is a small positive non-dimensionnal parameter. To derive
the asymptotic expansions, we introduce the scaled variables
ξ = (y/ε, z/ε).

Without loss of generality, and for the sake of simplicity, we
drop the superscript j. In 5ε , the time-harmonic wave equation
takes the rescaled form

Frontiers in Materials | www.frontiersin.org 4 April 2019 | Volume 6 | Article 50

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Dupont et al. Cubic Arrays of Holey Shells

FIGURE 3 | Geometry of the inclusions and the Helmholtz oscillator consisting

of one spring connected to a mass at one end and fixed at the other end.

{

1

ρ

(

1

ε2
1ξ +

∂2

∂x2

)

+
ω2

K

}

p = 0 , (8)

with the Neumann boundary conditions

∂p

∂n

∣

∣

∣

∣

∂Dξ

= 0 (9)

The field p is approximated in the form

p ∼ p(0)(x, y, z)+ ε2p(1)(x, y, z) (10)

To leading order, we obtain

{

1ξp
(0) = 0 on Dξ

∇ξp
(0) = 0 on ∂Dξ

(11)

Hence, p(0) = p(0)(x) (it is ξ − independent). Assuming that p(0)

is given, we derive that the function p(1) satisfies the following
model problem on the scaled cross-section of 5ε







1ξp
(1) = −

1

ρ

∂2p(0)

∂x2
+

ω2

K
p(1) in Dξ

∇ξp
(1) · n = 0 on ∂Dξ

(12)

The condition of solvability for the problem has the form:

1

ρ

d2p(0)

dx2
+

ω2

K
p(0) = 0 , 0 < x < lj (13)

Hence, we have shown that to the leading order we can
approximate the field p in the thin channel5ε by the function p

(0)

which satisfies the Helmholtz’s equation in one-space dimension.
We now assume that the field is periodic over the cell since
it is localized. This shows that the average of the eigenfield
over the macro-cell vanishes. Indeed, let χ1 denote the value
of the field in the large body 6 of the multi-structure �

and let χ2 (which we normalize to 1) denote the value of
the field within the complementary area of the macro-cell

Y \ � excluding the thin channels. Taking v = 1 in (4), we
deduce that

ω2

∫

Y
ρpdxdydz = −

∫

∂Y∪∂�

K
∂p

∂n
dS = 0 (14)

This shows that the average of the field p over Y vanishes,
hence by neglecting the small volume of the thin channels,
we obtain

χ1meas6 + χ2measY\� = O(ε) (15)

where meas6 and measY\� denote, respectively the volumes of
6 and Y \ �.

We now consider two cases. The first one is the study
of an array of simple spherical shells with either one or six
thin channels, and the other one is the study of an array of
double spherical shells with one thin channel in each shell. Since
we have q thin channels, we have q separate eigensolutions
Vj, (j = 1, ..., q), corresponding to the vibrations of thin

domains 5
(j)
ε

ρ−1V ′′
j (x)+ K−1ω2Vj(x) = 0 , 0 < x < lj , (16)

Vj(0) = χ2 = −χ1
meas(4)

meas(Y \ �)
. (17)

We note that Vj(0) is equal to a non-zero constant and also
that Vj(lj) = χ1. Next, we need to take into account that some
boundary layers occur at the end regions of thin ligaments. These
boundary layers are characterized by exponential decay when the
boundary conditions for the functionsV0 (the leading term in the
asymptotic expansion of the thin bridge solutions) are chosen in a

specific way. In our case, integrating (2) over6∪5
(1)
ε ∪· · ·∪5

(q)
ε

and applying the divergence (or Gauss) theorem, we obtain to
order O(ε)

K−1IjV
′
j (lj) = Mjω

2Vj(lj) , (18)

where

Ij =
∫ 2π

0
εhj(t) dt . (19)

All the channels are connected to 4, hence, V1(l1) = ... =
Vq(lq) = V . We note that the boundary layer condition (18) can
be interpreted as Newton’s second law.

The solution of the problem (16)−(18) (that one can interpret
in terms of a spring-mass model like in Figure 3) has the form

Vj(x) = −
χ2[cos((ω/c)lj)− 1]

sin((ω/c)lj)
sin

(ω

c
x
)

+ χ2 cos
(ω

c
x
)

(20)

where c =
√
K/ρ and the frequency ω is given as the solution of

the following equation:

n
∑

j=1

(

Ij cot

(

ωlj

c

))

=
mjc

K
ω (21)
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where we invoked (18). Looking at a first low frequency, we
deduce an explicit asymptotic approximation

ω ∼

√

√

√

√

n
∑

j=1

(

Ij

lj

)

√

K

M

(

1+
meas(4)

meas(Y \ �)

)

(22)

This estimate actually holds for the frequency ω2 of the upper
edge of the phononic band gap. We note that if we take V(0) =
0 instead of V(0) = meas(4)/meas(Y \ �), we estimate the
frequency of the lower-edge of the phononic band gap. We also
notice that the boundary layer condition (18) is only valid at
order 0(ε), so it needs to be refined if one wants to improve the
frequency estimate in (22).

4.1. Eigenfrequency Estimate in the Case
of a Single Spherical Shell With one or six
Thin Channels
We report in Figures 4, 5 finite element computations for a
periodic cell of sidelength d = 1 m with a simple spherical shell
with one thin channel. We then proceed with the same shell
with six thin channels. The geometry of the elementary cell and
associated spring-mass model are given in Figure 6 and finite
element computations are shown in Figures 7, 8. The interior
and exterior radii of the shell are respectively 0.3 and 0.4 m,
the thin channels have the same length 0.1m and radii 0.01 m.
Therefore, the frequency estimates are (in rad.s−1):

ω1 ∼ 52.1107 , ω2 ∼ 54.0796 (23)

for one thin channel, which are in good agreement with the finite
element values

ω∗
1 = 51.4250 , ω∗

2 = 55.2638 (24)

FIGURE 4 | Dispersion diagram for a periodic array (pitch d = 1m) of spherical

rigid shells (inner radius 0.3 m and outer radius 0.4 m) with one thin channel

(length 0.1 m and radius 0.01 m) representing the frequency ω (rad.s−1) of

pressure waves in air vs. the wavenumber k = |k| (m−1), projection of the

Bloch vector k along the edges of the irreducible Brillouin zone ŴXMU shown

in Figure 1. We note the appearance of a frequency stop band for

ω ∈ [51.4250, 55.2638] rad.s−1.

for one thin channel, and

ω1 ∼ 127.6447 , ω2 ∼ 132.4676 (25)

for six thin channels, which are in good agreement with the finite
element values

ω∗
1 = 125.6586 , ω∗

2 = 134.8155 (26)

for six thin channels.
This demonstrates that the discrete model provides accurate

estimates for the lower and upper edges of the ultra-low
frequency stop band. This is therefore a useful tool which can
be used in the design of acoustic metamaterials. Importantly,
we note that the spring-mass counterpart of the shell with 6
holes, is like in Figure 6, which corresponds to an LC electrical
circuit with one capacitance C and six inductances L in series
corresponding to the mass and springs, respectively, see e.g.,
Guenneau et al. (2007a) for an analysis of two-dimensional
acoustic metamaterials.

4.2. Dependence of low Frequency Stop
Band on Radius of Thin Channel
Before we move to more complex geometries, we would like
to investigate the case of Helmholtz resonators with thicker
channels, that would prevent viscous effects for pressure waves
entering the thin channels in manufactured prototypes. We
note that there is an obvious limitation of the asymptotic
model. Indeed, the accuracy of the eigenfrequency estimate relies
heavily on the smallness of the parameter ǫ, which essentially
requires elongated channels (in other terms ligaments or necks).
We have checked the lack of robustness of the asymptotic
estimates with respect to the elongation of channels, when
we changed the radius of the thin channel for a Helmholtz
resonator with a single channel like in Figure 3. We therefore
focus on finite element results which are shown in Table 1,
and one can see that although the low frequency stop band
is preserved for increasing values of the radius, its position is
shifted up and it is enlarged. These results are good news for
forthcoming experiments.

4.3. Eigenfrequency Estimate in the Case
of a Double Spherical Shell With One Thin
Channel
Let us now consider the case of and LC circuit withmore than one
capacitance. The simplest model of interest is that of an LC circuit
with two capacitances and two inductors. This corresponds to a
mechanical model like in Figure 10.

In the numerical example we now have ε2h22 = 3.14×10−4m2,
ε2h21 = 7.85 × 10−5m2, l2 = 0.1m, l1 = 0.05m, and the masses
(in kilogram)

m1 = ρV1 =
4000

3
πr31

m2 = ρV2 =
4000

3
π

(

r31 + (b32 − a32)
)

+ 103ε2h21l1 (27)
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FIGURE 5 | The eigenfunction corresponding to the eigenfrequency ω∗
1 = 51.4250 rad.s−1 for one thin channel. Blue color corresponds to nearly vanishing amplitude

of the eigenmode u, while red color corresponds to it maximum value. The pressure field p is constant inside the inner cavity and outside the shell, but it varies rapidly

inside the thin channel: it is a localized eigenmode responsible for the stop band in Figure 4, which is well approximated by a spring mass model.

FIGURE 6 | Geometry of the inclusions and the Helmholtz oscillator consisting of six springs connected to a mass at one end and fixed at the other end.
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FIGURE 7 | Dispersion diagram for a periodic array (pitch d = 1 m) of

spherical rigid shells (inner radius R = 0.3 m and outer radius R = 0.4 m) with

six thin channels (length 0.1 m and radius 0.01m) representing the frequency ω

(rad.s−1) of pressure waves in air vs. the wavenumber |k| (m−1), projection of

the Bloch vector k along the edges of the irreducible Brillouin zone ŴXMU. We

note the appearance of a frequency stop band for ω ∈ [125.6586, 134.8155]

rad.s−1 which is wider and at higher frequencies than the stop band in

Figure 4: the more identical thin channels, the higher the resonant frequency

of the localized mode.

where ρ is the density of air (∼ 1.225kg.m−3), V1 and V2 the
volumes air occupies in41 and42, r1 is the interior radius for the
domain 41 and a2, b2 are respectively the interior and exterior
radii for the domain 42. In our case, r1 = 0.1m, a2 = 0.15m
and b2 = 0.2m. The formula (22) gives the following values
for the first eigenfrequencies (in rad.s−1) of the multistructures
5ε(1)

⋃

4(1) and 5ε(2)

⋃

4(2):

ω1 ∼ 124.2641 , ω2 ∼ 208.4109 (28)

The corresponding angular frequencies (in rad.s−1) associated
with the standing waves in the periodic structure were obtained
numerically, and from the band diagram in Figure 11 they are

ω∗
1 = 55.2128 ,ω∗

2 = 118.9750 (29)

Formula (22) leads to frequency estimates in (28) that do
not capture the eigenfrequency ω∗

1 , that corresponds to the
localized eigenmode shown in the left part of Figure 12, but
we observe a good agreement between frequency estimate ω1

and ω∗
2 , associated with the eigenmode shown in right part

of Figure 12. The estimate for the eigenfrequency ω∗
1 can be

found if the domain 5ε(2)

⋃

4(2) is replaced by the domain
5ε(2)

⋃

�(2)

⋃

5ε(1)

⋃

�(1). In this case, the eigenfrequency ω∗
1

FIGURE 8 | The eigenfunction corresponding to the eigenfrequency ω∗
1 = 125.6586 rad.s−1 for six thin channels responsible for the stop band in Figure 7. This

frequency is well approximated by the spring mass discrete model which provides us with the frequency estimate ω1 = 127.6447 rad.s−1.
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TABLE 1 | Values of the extrema of the gap with respect to the radius of the thin channel, for the Helmholtz resonator like in Figure 3.

r (m) 0.010 0.012 0.014 0.016 0.018 0.020 0.025

ωmin 51.4250 62.9523 72.5144 81.8465 90.9279 99.7964 120.9971

ωmax 55.2638 67.6568 77.9375 87.9765 97.7465 107.2948 130.1329

r (m) 0.030 0.035 0.040 0.045 0.050

ωmin 141.3007 160.7574 179.3317 197.2263 214.4251

ωmax 152.0110 173.1273 193.0588 212.4465 231.0001

See also Figure 9 for a graphical representation of the Table.

FIGURE 9 | Modification of the gap width and position with respect to the

radius of the thin channel of the Helmholtz resonator with a single shell like in

Figure 3. The eigenfrequency estimates ω1 ∼ 52.1107 and ω2 ∼ 54.0796

compare well with finite element results ω∗
1 ∼ 51.4250 and ω∗

2 ∼ 55.2638 for

r = 0.01m, see Table 1. Note the non linear scale for r.

is approximated by the first positive eigenvalue of the problem

ρ−1V ′′
1 (x)+ K−1ω2V1(x) = 0 , 0 < x < l1 (30)

V1(0) = 0 , (31)

K−1I1V
′
1(l1)− K−1I2V

′
2(0) = m1ω

2V1(l1) , (32)

ρ−1V ′′
2 (x)+ K−1ω2V2(x) = 0 , 0 < x < l2 (33)

λ−1I2V
′
2(l2) = m2ω

2V2(l2) , (34)

V2(0) = V1(l1) , (35)

where V1(x), V2(x) are the eigenfunctions defined on (0, l1)
and (0, l2), respectively, and the masses m1, m2 are defined by
(in kilogram)

m1 =
4000

3
πr31 , m2 =

4000

3
π

(

b32 − a32
)

(36)

Taking into account that ω0 = O(ε), we deduce that it can
be approximated as the first positive solution of the following
algebraic equation:

m1m2l1l2ω
4−Kω2

(

l2I1m1 + I1l2m2 + I2m1l1
)

+K2I1I2 = 0
(37)

so that ω0 ∼ 82.76057 rad.s−1, which provides a reasonably
accurate approximation of ω1∗ = 55.2128 rad.s−1. However,
a further refinement of this asymptotic estimate would require
adding higher order corrections and thus solving boundary layer
type problems as discussed in Kozlov et al. (1999), and this falls
beyond the scope of the present paper.

5. ISOFREQUENCY SURFACES, DYNAMIC
EFFECTIVE ANISOTROPY AND
LOCALIZED MODES

Thus far, we have only analyzed dispersion curves, but it has
been known for over 80 years that one needs to be extra careful
regarding analysis of say electronic band structures (Bouckaert
et al., 1936), as there are examples showing that stop band edges
might be reached strictly within the Brillouin zone, and so it is not
enough to describe its edges to characterize the band spectrum
(Harrison et al., 2007). We would like to investigate dynamic
effective anisotropy effects near the edge of the low frequency
stop band, and localization effects induced by local resonators
such as in Movchan et al. (2006),Bigoni et al. (2013),Craster et al.
(2013), and Llewellyn Smith and Davis (2010) for a frequency on
the acoustic band.

Here, we provide representation for isofrequencies near the
lower edge of the first stop band for the case of a Helmholtz
resonator with one thin channel as in Figure 4. However, we
observed very similar features in all other cases. We first note
in Figure 13 that the distortion of the isofrequency surfaces
increases when we move toward the lower edge of the stop
band. A small change in the frequency leads to a dramatic
change in the isofrequency surface. Besides, the observation
of isofrequency (or slowness) contours in Figure 13 confirms
that anisotropy increases near the edge of the stop band
as contours become more and more elongated. Researchers
in photonics used vanishing group velocity near stop band
edges to achieve self-guiding of light in 2D photonic crystals
in the past 20 years (Kosaka et al., 1999; Witzens et al.,
2002; Chigrin et al., 2003). Such an effect is known in the
applied mathematics and waves literature as a dynamic effective
anisotropy (Slepyan et al., 1987; Ayzenberg-Stepanenko and
Slepyan, 2008; Craster et al., 2009, 2010; Colquitt et al., 2012;
Schnitzer, 2017) : for an isotropic medium, the isofrequency
surface is spherical, and the corresponding isofrequency contours
are circular. On the edge of the stop band, the extreme
elongation of isofrequency contours reveals an extreme dynamic
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FIGURE 10 | Geometry of the inclusions and the Helmholtz oscillator consisting of two masses connected by a spring, with one of them connected to a fixed domain.

FIGURE 11 | Dispersion diagram for a periodic array (pitch d = 1m) of double

spherical rigid shells (radius of spheres from inner to outer are 0.1, 0.15, 0.3,

and 0.4 m) with one thin channel in each shell (respectively of lengths 0.05 and

0.1 m and radii 0.005 and 0.01 m) representing the frequency ω (rad.s−1) of

pressure waves in air vs. the wavenumber k = |k| (m−1), projection of the

Bloch vector k along the edges of the irreducible ŴXMU. We note the

appearance of two frequency stop bands for ω ∈ [55.2128, 58.5863] rad.s−1

and ω ∈ [118.9750, 119.0959] rad.s−1.

anisotropy. We note that some dynamic effective anisotropy
of 3D dynamic lattices displays similar isofrquency surfaces to
ours near stop band edges (Vanel et al., 2016). This could be
used to achieve as aforementioned highly directive phenomena,
in a way similar to what was demonstrated experimentally
for transverse electromagnetic waves (Ceresoli et al., 2015).
Another striking effect is that of wave localization, when one
creates one or more defects in a periodic structure. Usually,
this is achieved in high frequency stop bands, when the wave
wavelength is on the same order as the periodicity. Here, the
wave localization is achieved either at resonances of resonators,

see upper panel in Figure 14, or as shown in the lower panel
of the same figure, at a frequency ω∗

1 = 559.2042 rad.s−1

located in a part of the acoustic band sandwiched between
the low frequency stop band and another region of vanishing
group velocity near the X symmetry point in Figure 4, so this
has the additional feature of being below the Bragg frequency
regime. We note that from Figure 14, this localized mode can
be approximated as a monopole given by the first derivative of
the spherical Bessel function of the first kind jn(ωr/c), where
r is the radial position. The lowest root corresponding to the
lowest frequency of the cavity is the frequency given by the root
of the transcendental equation (simply derived by separation
of variables in Helmholtz’s equation (2) written in spherical
coordinates and assuming that ∂p/∂n = 0 on the boundary of
the defect) :

j′1(ωa/c) = 0 . (38)

Bearing in mind that the first root of j′1 is 2.0816 and
taking a = 1.25m as the radius of a dashed circle
within which the defect mode seems to be mostly
confined in Figure 14, (38) leads to the frequency estimate
ω1 = 566.19 rad.s−1, which is in good agreement with
the finite element computation ω∗

1 = 559.2042 rad.s−1.
This method of the effective sphere is the analogous
concept to effective disk in doubly periodic structures with
defects (Movchan et al., 2007).

6. CONCLUSION

In this paper, we have seen that it is possible to sculpt
the Bloch spectrum of three-dimensional phononic crystals
almost ad libitum simply by digging some holes and adding
cavities in rigid spheres periodically arranged along a cubic
lattice. One of the main achievements of our numerical study is
the appearance of ultra-low frequency stop bands at frequencies
predicted quantitalively by an asymptotic model, that can be
viewed as a 3D counterpart of (Movchan and Guenneau, 2004).
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FIGURE 12 | Eigenfunctions for embedded resonators corresponding to the eigenfrequency ω∗
1 = 55.2128 rad.s−1 (left panel) and corresponding to the

eigenfrequency ω∗
2 = 118.975 rad.s−1 (right panel). In left panel both canals vibrates, while in right panel only the inner canal does. The second eigenfrequency

ω∗
2 = 118.975 rad.s−1 is reasonably well approximated by the first eigenfrequency of the spring mass model which gives and ω1 = 124.2641 rad.s−1 and

ω2 = 208.4109 rad.s−1.

FIGURE 13 | Representative isofrequency surfaces kz (kx , ky ) in the first Brillouin zone (upper panel) and associated isofrequency contours in the plane (kx , ky ) for

kz ∈ (0,π ) (lower panel) at frequency ω = 51.42 rad.s−1 (left panel), ω = 51.4215 rad.s−1 (middle panel) and ω = 51.423 rad.s−1 (right panel); The surfaces

and contours flatten when the frequency moves toward the lower edge of the stop band in Figure 4. and thus dynamic effective anisotropy increases.

We also conducted some elementary shape optimization (by
varying the size, diameter and number of channels in a rigid
sphere of constant radius) in order to enhance the control
of the location and the number of low frequency stop bands,
thanks to our asymptotic estimates. Our asymptotic results
could be further used for a homogenization study in the
spirit of the 2D analysis conducted in Mercier et al. (2017)
to address the effective parameters of our acoustic system.

However, the acoustic metamaterial we have analyzed would
allow only frequency dependent effective bulk modulus, and in
order to achieve a frequency dependent effective density and
thus double negative acoustic parameters near resonances, one
needs to introduce a second type of resonator in the periodic
cell. Therefore, achieving a design of an acoustic superlens
through negative refraction requires a more complex design.
However, a cubic array of rigid spheres does not support any
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FIGURE 14 | Representative eigenfunctions for a macrocell of 26 resonators as in Figures 4, 5 with a defect (air instead of resonator) in the middle. Upper panel:

Eigenfunctions corresponding to an eigenfrequency ω∗
0 = 52.3545 rad.s−1 in the ultra-low frequency stop band of Figure 4. Lower panel: Eigenfunction

corresponding to an eigenfrequency ω∗
1 = 559.2042 rad.s−1 above the low frequency stop band of Figure 4, which is approximated by the first root of (38) i.e., the

fundamental resonance of an effective spherical cavity (marked by dashed circle) of radius a = 1.25 m.

complete stop band, even in the densely packed configuration,
so the acoustic metamaterial which we studied has markedly
different filtering properties compared with phononic crystals
with rigid spheres: multistructures make possible tunable ultra-
low frequency stop bands (associated with very flat dispersion
curves i.e., localized eigenmodes). Finally, we illustrate in
Figure 14 a possible application of the ultra-low frequency stop
band in order to localize a mode of a wavelength larger than the
pitch of the array of resonators. One can also envisage sculpting
a line defect thanks to the removal of a few resonators in a
larger macrocell, that would make a low frequency waveguide.

We further note that considering shells of same diameter with
holes of varying diameters, or spheres with varying diameters
and identical or varying holes would make possible graded
phononic crystals with a larger low frequency stop band, thanks
to the overlap of numerous low frequency stop bands. This
could lead to a three dimensional counterpart to the acoustic
rainbow put forward in Zhu et al. (2013). Indeed, many
embedded spheres would make this possible, since the band
diagram 11 suggests N embedded spheres would lead to N low
frequency stop bands that might hybridize. Similarly, one could
envisage to reflect, detour, or focus, pressure waves using the
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low frequency stop band within which effective parameters are
expected to take negative values as it is now well-established
for the two-dimensional counterpart of such kind of acoustic
metamaterials. We hope our work will foster experimental efforts
toward 3D acoustic metamaterials for airborne and underwater
sound filtering effects. At first sight, the implementation
of the former seems more straightforward, since the latter
would require further theoretical and numerical investigation
of conversion of pressure waves propagating in the fluid into
pressure and shear waves propagating in the shells. For instance,
in the derivation of the asymptotic estimates, the boundary layer
analysis will be more involved. Nevertheless, it might be easier
to perform underwater experimental characterization of the
sonic metamaterial.
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