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Magnesium exhibits a high potential for a variety of applications in areas such as

transport, energy and medicine. However, untreated magnesium alloys are prone to

corrosion, restricting their practical application. Therefore, it is necessary to develop

new approaches that can prevent or control corrosion and degradation processes

in order to adapt to the specific needs of the application. One potential solution is

using corrosion inhibitors which are capable of drastically reducing the degradation

rate as a result of interactions with the metal surface or components of the corrosive

medium. As the sheer number of potential dissolution modulators makes it impossible to

obtain a detailed atomistic understanding of the inhibition mechanisms for each additive,

other measures for inhibition prediction are required. For this purpose, a concept is

presented that combines corrosion experiments, machine learning, data mining, density

functional theory calculations and molecular dynamics to estimate corrosion inhibition

properties of still untested molecules. Concomitantly, this approach will provide a deeper

understanding of the fundamental mechanisms behind the prevention of corrosion

events in magnesium-based materials and enables more accurate continuum corrosion

simulations. The presented concept facilitates the search for molecules with a positive

or negative effect on the inhibition efficiency and could thus significantly contribute to the

better control of magnesium / electrolyte interface properties.

Keywords: machine learning, property-structure relationship, high-throughput screening, corrosion inhibition,

density functional theory, magnesium, dimensionality reduction

1. INTRODUCTION

Light-weight materials such as magnesium and its alloys are of high interest for the industrial
sector. Potential applications can be found in the automobile industry as structural component
(Kulekci, 2008), in batteries as anode material (Aurbach et al., 2000; Höche et al., 2018) and in
medical engineering as biocompatible, resolvable implant (Brar et al., 2009). However, dealing
with corrosion is a challenging task in various engineering disciplines. Durability and versatility
strongly depend on the corrosion properties of the applied material and for most applications
as structural component, corrosion activity has to be minimized. Yet, for other approaches the
corrosion properties have to be adapted to fit the desired application. As for example, introducing
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magnesium as battery or implant material requires the corrosion
or degradation to proceed with a certain rate. Consequently,
the development of reliable, predictive models and methods for
general dissolution control is crucial.

There are several concepts to protect magnesium from
corrosion, ranging from alloying to surface coatings (Gray
and Luan, 2002; Blawert et al., 2006; Jia et al., 2016). Recent
studies strongly suggest that the re-deposition of released noble
impurities (e.g., iron) results in higher corrosion rates as the size
of cathodically active sites at the magnesium surface increases
over time up to a state of equilibrium (Höche et al., 2016;
Li et al., 2016; Mercier et al., 2018; Michailidou et al., 2018).
Concerning the iron re-deposition mechanism, a promising
strategy to prevent or control corrosion in magnesium-based
materials is the introduction of chemical substances that either
form stable complexes with the released iron species or block
their access to the surface (Lamaka et al., 2016; Yang et al., 2018).

Novel methods for inhibition prediction of not yet tested
compounds based on modern data science techniques are in
high demand to predict whether a molecule is a potential
inhibitor or even further promotes dissolution of the used
material. Hence, the high experimental effort and costs of
testing multiple compounds for their corrosion inhibition
potential can be circumvented. The molecular structure of
potential corrosion inhibiting additives is easily obtained
nowadays and thus, represents a promising starting point
to identify property-structure relationships as well as to
predict the inhibition efficiencies of uninvestigated additives.
Following this strategy, Ceriotti et al. developed sophisticated
methods to vividly illustrate property-structure landscapes by
employing SOAP (Smooth Overlap of Atomic Positions) kernels
(Bartók et al., 2013) to create a high-dimensional similarity
measure and reducing it to a two-dimensional visualization
with the dimensionality reduction algorithm “sketch-map”
(Ceriotti et al., 2011, 2013). Moreover, this approach is
particularly suited for high-dimensionality data from atomistic
simulations as it was already successfully applied to molecular
crystals (Musil et al., 2018) and high-throughput structural
databases (De et al., 2016, 2017).

In this study, the capabilities of the SOAP kernel and
sketch-map are focused on a corrosion inhibition database for
multiple molecular compounds to improve the understanding
of the inhibition-structure relationship. Furthermore, obtained
results can be directly used to qualitatively predict the
inhibition properties of not yet tested compounds, thus
allowing for a data-driven design of anti-corrosion additives for
magnesium-based materials.

2. MATERIALS AND METHODS

2.1. Corrosion Experiments
The balance between magnesium dissolution and hydrogen
evolution dominates the aqueous magnesium corrosion process.
Due to the processing of magnesium with various methods
(Pekguleryuz et al., 2013), noble impurities, as for example iron,
are impossible to avoid. Thus, local galvanic cells are induced
into the material that locally promote the corrosion, resulting

in increased magnesium dissolution, hydrogen evolution and the
release of impurities, such as iron. Finding molecules that form
stable soluble or insoluble complexes with the released impurities
is a promising way to screen for dissolution modulators and
provides the basis for our workflow.

In a systematic screening for magnesium corrosion inhibitors
(Lamaka et al., 2017), the influence of various organic molecules
on the hydrogen evolution rate in magnesium corrosion was
investigated. Here, the compounds were either previously
reported as magnesium corrosion inhibitors or chosen based on
their ability to form stable soluble complexes with Fe2+/3+ in
order to prevent iron re-deposition (Höche et al., 2016; Lamaka
et al., 2016). Hydrogen evolution tests were performed for six
different alloys as well as three grades of pure magnesium. Based
on the resulting hydrogen evolution rate, the inhibitors were
ranked by their inhibition efficiencies, where positive values,
up to 99% correspond to suppressed Mg corrosion (referred
to as corrosion inhibitors) and negative values to promoted
dissolution of Mg (referred to as corrosion promoters) with
respect to a reference experiment in 0.5% NaCl electrolyte
without any additives. The potential inhibitors were dissolved in
0.5% NaCl to obtain concentrations of 0.05 M and the initial
pH was adjusted to the values in the range of 5.5 − 7.2. Further
experimental details can be found in the original publication
(Lamaka et al., 2017). In this study, only inhibition results for
commercial purity magnesium (CP-Mg) with 220 ppm iron
content are considered.

2.2. Molecular Similarity
SMILES (simplified molecular-input line-entry system) strings of
the experimentally investigated compounds are used to create
molecular structures using the small molecule topology generator
STaGE (Lundborg and Lindahl, 2015). As implemented in the
high-throughput workflow of STaGE, the structures are geometry
optimized with GAMESS/US (Schmidt et al., 1993; Gordon
and Schmidt, 2005) using the B3LYP functional (Becke, 1993;
Stephens et al., 1994) with 6-311++G(d,p) basis set and a
SCF convergence criterion of 106. As the inhibitor molecules
are experimentally tested in solution, the optimizations are
performed using a polarizable water model (c-PCM) (Barone
and Cossi, 1998; Cossi et al., 2002, 2003; Wang and Li, 2009).
Further information on the computational details is given in the
Supplementary Material.

We quantify the structural and chemical similarity between
inhibitor structures using the SOAP-REMatch kernel (Bartók
et al., 2013; De et al., 2016) to investigate the relation
between their structure and associated properties. The SOAP
kernel compares local atomic environments and the REMatch
(Regularized Entropy Match) kernel condenses the local
similarities between two structures into a global similarity
measure. A local environment is defined within a spherical region
of radius rc centered on an atom and is built by a superposition
of Gaussian functions with width ξ . The larger rc is chosen, the
more structural information surrounding the atom is included.
The SOAP kernel measures the rotationally and translationally
invariant overlap between two such local environments and can
be raised to a power ζ to discriminate more between large
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(∼ 0.9) and medium (< 0.6) similarities. The combination of
the local similarities can be tuned by the hyper parameter γ

of the REMatch kernel. For large values (γ ∼ 10) more equal
weights are assigned to the local similarities while for small values
(γ ∼ 0.01) only the best matching pairs of local environments are
selected to compute the global similarity (see De et al., 2016 for
more details).

To help the visualization of potential structure-property
relationship, we consider each structure to lie in a high-
dimensional space defined by the SOAP-REMatch kernel, which
is transformed into a distance (Berg et al., 1984), and we project
this information on a two-dimensional map using sketch-map
(Ceriotti et al., 2011). This dimensionality reduction technique
allows to focus the distortions of the space so that close/distant,
i.e., similar/dissimilar, structures in the high-dimensional space
keep this relationship in the low dimensional space. This behavior
is achieved by a sigmoid function that is applied to the distances
and is mainly influenced by the switching distance σ , as well as a
and b as tuning parameters (see Supplementary Material).

Thus, it is possible to create a two-dimensional similarity
landscape that allows assessing the molecular similarity by
analyzing relative positions and cluster formations. However, due
to the form of the sigmoid function, far apart points can be
arbitrarily far apart in the lower dimensional projection–making
a physical interpretation of distances between basins in the low
dimensional projection impossible.

2.3. The Inhibition Prediction Workflow
When combining the presented methods, it is possible to
visualize the relationship between the molecular structures
and the corresponding inhibition efficiencies in a property-
structure landscape where all experimentally tested structures
act as landmark points. Subsequently, the inhibition efficiencies
of uninvestigated compounds can be predicted following the
proposed workflow (Figure 1).

Experimental inhibition efficiencies obtained from a corrosion
inhibitor databank (Lamaka et al., 2017), as well as molecular
similarity measures determined with the SOAP-REMatch kernel
can be combined to create a two-dimensional property-structure
landscape for the tested inhibitor molecules. Here, clusters
can indicate correlations between the inhibition efficiency
and inhibitor structure, allowing to relate certain molecular
structures to potentially promoting or inhibiting corrosion
properties. For now, the small sample size favors an unsupervised
machine learning technique where the decision boundaries
are drawn by human, instead of a supervised learning
algorithm (Kotsiantis et al., 2007).

Consequently, to predict the inhibition properties of an
untested compound its structural relationship to the landmark
points has to be determined. This can be accomplished by
out-of-sample embedding, where the new structure is projected
into the generated sketch-map by reproducing the distances to
the previously defined landmark points (Ceriotti et al., 2011).
Once the structure is projected into the property-structure
landscape, its relative position to previously identified clusters
can help to assess the impact on corrosion events. Concurrently,
this approach indicates whether it is reasonable to examine

untested additives in further corrosion experiments, hence saving
a tremendous amount of time and resources compared to an
experimental high-throughput approach.

3. RESULTS

To create a sketch-map displaying the relationship between
corrosion inhibition efficiency and inhibitor structure, a total
of 80 compounds was chosen out of the 151 experimentally
tested structures provided in a corrosion inhibitor database
(Lamaka et al., 2017). All structures were chosen based on a
mutual inhibitor concentration of 0.05 M during the hydrogen
evolution experiment to avoid concentration dependencies.
Before conducting any analysis, the dataset has been further
subdivided into 74 plus 6 randomly selected training and test
structures – 74 structures for creating the sketch-map and six
structures for validating the inhibition workflow.

After geometry optimization, we measure the structural
and chemical similarity between these structures using the
SOAP-REMatch kernel (De et al., 2016). In order to improve
the understanding of the property-structure relationship, the
influence of the respective parameters is examined. Indeed, to
achieve a wide range of applicability, the SOAP-REMatch kernel
and sketch-map technique rely on a few hyper parameters that
need to be tuned accordingly (see De et al., 2017;Musil et al., 2018
for a more comprehensive discussion). Depending on the choice
of hyper parameters, structural data points are either divided into
clusters based on an observable similarity or appear completely
scattered. Hence, the parameters have a strong impact on the
identifiability of correlations between structure and investigated
property. After thorough investigation of the parameter behavior
(see Supplementary Material), a set of parameters is chosen
that allows the division of structural data points with similar
corrosion properties into clusters.

To put a higher focus on the local atomic structure for
the similarity determination using SOAP, a cutoff radius rc =

3.0 Å is chosen which includes all moieties of interest but neglects
the overall molecular structure for most of the investigated
dissolution modulators. For a good balance between strict
similarity requirements and a sufficient number of pairs of
local environments, the Gaussian width is set to ξ = 0.3.
By choosing ζ = 2.0 the discrimination between large and
medium similarities is increased, thus amplifying clustering
effects. Based on the parameter γ = 2.0, a broad selection of
well matching pairs of local environments—as determined by
the SOAP kernel—is taken into account to compute the global
similarity using the SOAP-REMatch kernel.

As the dimensionality reduction with sketch-map is based on
a sigmoid function, the corresponding parameters have to be
optimized for the given data. Again, optimizing the parameters
with respect to cluster formations of the structural data points,
choosing σ = 2 as well as the tuning parameters a = b =

3 results in the sketch-maps shown in Figures 2, 3. The data
points originating from the input structures are divided into two
elongated “islands,” a small island in the lower left and a larger
island in the upper right part of the sketch-map. It is noteworthy
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FIGURE 1 | The workflow diagram. Molecular structures from an inhibitor database (Lamaka et al., 2017) are used to generate a two-dimensional sketch-map.

Inhibition efficiencies determined in the hydrogen evolution experiments, as well as data generated in DFT computations are used to investigate the property-structure

relationship. Unknown structures can be projected into the sketch map to get a first indication on their potential inhibition efficiency. Potentially interesting structures

can be then tested again in corrosion experiments to extend the inhibitor database.

that aromatic compounds are solely found in the lower region
whereas aliphatic compounds are distributed in the upper island
of the sketch-map. This leads us to the conclusion, that the
chosen parameters are well suited to generate a sketch-map of
the investigated molecule database.

When coloring the structural data points according to their
corresponding inhibition efficiency (Figure 2A), the upper right
island is further divided into two clusters, where the left cluster
is populated by corrosion inhibitors (green) and the right cluster
mostly by corrosion promoters (purple) or moderately inhibiting
(light green) additives. The lower left island is dominantly
populated by corrosion inhibitors, except for three structures on
its outer edge. Cluster formations clearly indicate a property-
structure relationship, allowing to cautiously correlate inhibition
efficiency and molecular structure.

For the inhibition prediction it is desired to project not yet
tested compounds into the generated sketch-map and relate
their position to the three identified clusters. When a new
structure is projected into an area with dominantly corrosion
inhibitors or promoters, it is assumed to share similar inhibition
properties and can be further investigated experimentally if
desired. For purposes of validation, six structures of the
experimental database are randomly chosen and projected into
the sketch-map by determining their global similarity including
all structures. Subsequently, the distance of the new structures
is related to the 74 defined landmarks and used to compute
the required projections. As a guide for the eye, the three
previously identified clusters are outlined with dashed lines and
colored according to the median inhibition efficiency in the
respective region (Figure 2B).

As the new structures differ strongly in topology, it is natural
that the computed projections lead to differing positions in the
sketch-map. In relation to the landmarks, structures containing
unusually coordinated atoms, additional atom species or an
unusual number of functional groups are projected in regions
far away from the observed islands, indicating discrepancies
in similarity. However, except for one structure at the top of
the sketch-map, structural similarities to the defined landmarks
result in projections within or close to the generated sketch-map,
where the corresponding inhibition efficienciesmatch the relative
positioning to the inhibitor and promoter clusters fairly well.

The generated sketch-map can also be used to correlate
the dissolution modulator structure to other properties, as
for instance the HOMO-LUMO gap (HL gap). The energetic
difference between the highest occupied and lowest unoccupied
molecular orbital (HOMO and LUMO) is indicative for the
affinity of the investigated corrosion modulators to transition
metals (Griffith and Orgel, 1957), where formation of these
complexes is more likely with lower HL gaps as this allows
for a energetically more favorable overlap of the involved
orbitals. Moreover, the HL gap is a sound indicator for chemical
reactivity as the stability of a molecule increases with larger HL
gaps. Concomitantly, the reactivity of the dissolution modulator
decreases (Aihara, 2000). Consequently, aromatic ligands (e.g.,
pyridine derivatives) are more likely to form complexes with
transition metals (e.g., Fe, Ni) than aliphatic ligands that, in
general, exhibit larger HL gaps. Hence, the HL gap might be
an important parameter that has to be taken into account in
future studies to adequately predict the capability of an untested
compound to prevent the re-deposition of noble impurities like
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FIGURE 2 | Property-structure landscape based on the SOAP-REMatch kernel and sketch-map. (A) The structural data points are colored according to their

corresponding inhibition efficiency in the experiment by Lamaka et al. (2017) (green =̂ corrosion inhibition, purple =̂ corrosion promotion). Selected molecular

structures are shown to illustrate cluster origins. (B) Out-of-sample embedding to predict inhibition properties. New structures are projected into the generated

sketch-map from (A) and related to previously identified inhibitor clusters, marked by dashed lines. The clusters are colored according to their median inhibition

efficiency in the respective region. Landmarks are depicted as smaller circles; the new test structures as larger, black-rimmed circles along with illustrations of their

according molecular structure . Atom color code: red =̂oxygen, gray =̂ carbon, blue =̂ nitrogen, whitish =̂ hydrogen, cyan =̂phosphorus.

iron (Höche et al., 2016; Lamaka et al., 2016). The HL gaps
were calculated on the TPSSh/def2SVP level of density functional
theory using Turbomole 7.2 (TURBOMOLE, 2017) for each of
the 80 compounds (Figure 3). As computing the HL gaps using
the B3LYP/6-311++G** level of theory that was employed for
the STaGE calculations is computationally rather demanding,
TPSSh/def2SVP is chosen here as a fast and accurate alternative.
Comparing the optimized geometries for each functional, no
structural discrepancies could be observed.

Coloring the sketch-map according to the calculated HL
gaps, puts further emphasis on the expected separation between
aromatic and aliphatic compounds in the investigated dataset.
Aromatic structures in the lower left island are assigned with
rather low values of 3.2–5.3 eV whereas aliphatic compounds in
the top right island correspond to rather high energy gaps of
5.5–7.4 eV. Albeit this outcome corroborates our current working
hypothesis, further work is required to quantitatively correlate
the HL gap to the inhibition efficiency of potential inhibitor
molecules based on the employed sketch-map approach.

4. DISCUSSION

The acquired property-structure landscape in Figure 2A

uncovers a clear relationship between inhibitor structure
and inhibition efficiency, whereas only a few outliers in the
defined corrosion inhibitor and promoter clusters are observed.
Furthermore, almost all new molecules that are projected into
the sketch-map, matching the landmarks in similarity, are
correctly positioned within or close to the defined clusters

according to their corresponding inhibition efficiency. Hence we
are confident, that the presented concept is suitable to predict
the potential of uninvestigated corrosion inhibitors or promoters
based on their resemblance to a defined landmark structure.

However, similarity values obtained using the SOAP-REMatch
kernel depend strongly on the chemistry of the input structures.
The direct effect can be observed in Figure 2B. Molecules that
differ strongly in similarity—due to unusually coordinated
atoms, varying atom species or an unusual number of functional
groups—are positioned far away from the observed islands. The
origin for this behavior lies within the SOAP-REMatch kernel
where similarity measures are computed based on the overlap
of local atomic environments. Hence, comparing a relatively
large molecule to a high number of relatively small molecules
leads to low similarity values, and thus a large distance in high-
dimensional space, given that a large cutoff radius rc is provided.
Also, variations for the number and type of functional groups
are affected by this behavior. For the given case, a relatively small
cutoff radius rc = 3.0Å is chosen, leading to a higher focus on
local atomic bonds than on the overall molecular structure. Thus,
for a significant similarity between local atomic bond networks
of landmarks and projections, also large structures can be
assigned to clusters of smaller molecules within the sketch-map.
For similarity measures between structures containing different
elements, a separate density is built for each atomic species and
an overlap of differing local environments corresponds to zero
(De et al., 2016). Therefore, molecules containing atomic species
varying from the ones included in the landmark structures are
also more likely to be projected further away. However, here
the only investigated structure containing a different atom

Frontiers in Materials | www.frontiersin.org 5 April 2019 | Volume 6 | Article 53

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Würger et al. Data Based Magnesium Corrosion Engineering

FIGURE 3 | Property-structure landscape based on the SOAP-REMatch kernel and sketch-map. The structural data points are colored according to their

corresponding HOMO-LUMO gap, as presented schematically. The color code clearly highlights the separation of aromatic compounds with low and aliphatic

compounds with high HOMO-LUMO gaps.

species (phosphorus in phenylphosphonic acid) is projected
directly into the cluster of aliphatic corrosion inhibitors, even
though it contains an aromatic ring. A possible reason for this
behavior is the low cutoff radius rc that gives greater weight to
the similarity of the oxygen arrangement within the phosphonic
acid functional group than to the phenyl ring. Since no other
structure containing phosphorus is provided, the structure thus
appears most similar to the aliphatic compounds. Following the
same reasoning, the projected structure at the top of the sketch-
map, as well as the landmark structure at the far left, are spaced
further away from the aliphatic cluster as their local structure
(arrangement of carbon and oxygen atoms) differs significantly.
With respect to the proposed inhibition prediction workflow,
the presented results already suggest important factors for future
hydrogen evolution experiments. Accordingly, using out-of-
sample embedding to find structures that match the already
defined clusters, potential corrosion inhibitors or promoters can
be identified. However, as the proposed inhibition prediction is
to be understood more as the formulation of a first clue with
respect to the inhibition properties, the predicted inhibition
efficiency still has to be validated experimentally. To improve the
prediction potential of the proposed concept, more data point
from hydrogen evolution experiments are required. With an
increasing number of tested compounds, the presented sketch-
map can be extended by newly tested structures, thus facilitating
the search for new inhibitor molecules with new properties even
further. Moreover, structures projected into unexplored regions
may indicate promising starting points for the discovery of novel
additives with interesting inhibition properties that would not
have been considered for testing otherwise.

Based on the structures of already investigated dissolution
modulators within the inhibitor clusters, yet unexplored
molecules can be identified that might yield promising
corrosion inhibition or promotion properties. In this manner,
a small number of unknown structures has been selected that
shall be tested in future hydrogen experiments–comprising
the sodium salt of 6-hydroxypyridine-3-carboxylic acid and
quercetin (based on the aromatic cluster) as well as the
sodium salt of hexanoic acid (based on the aliphatic cluster).
Using out-of-sample embedding to get a first indication
of the inhibition performance (see Figure S4), the sodium
salt of 6-hydroxypyridine-3-carboxylic acid and quercetin can
be identified as potential corrosion inhibitors, whereas the
sodium salt of hexanoic acid is expected to promote the
corrosion rate.

Even though the proposed workflow works well for the
considered data, there are still certain factors to be aware of.
On the one hand, the used input structures are all geometrically
optimized with an implicit solvent model which might not
represent the actual molecular geometry on the surface or in
coordination complexes at all. On the other hand, the large
number of tunable parameters when using the SOAP-REMatch
kernel and sketch-map makes it difficult to fully understand its
outcome, as the fine-tuning process contains a lot of trial and
error as well as visual inspection (see Supplementary Material).
For the given case, this strategy is still reasonable as the aim
of finding a property-structure relationship with respect to
the inhibition efficiency, as well as predicting the inhibition
performance of new compounds is accomplished. However,
a comprehensive understanding of the underlying physical
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concepts behind the occurring inhibition mechanisms still
requires further work.

Due to the data-hungry nature of most machine learning
applications, like sketch-map, more input structures are desired
to improve its validity and prediction abilities since the proposed
inhibition prediction workflow is highly dependent on the
provided experimental input data. Thus, possible outliers
within the inhibition efficiencies are to be expected without a
sufficient amount of data points. However, the generation of
new experimental data points is limited by costly and time-
consuming hydrogen evolution investigations. Experimental
conditions have to be accurately defined as small discrepancies
in the experimental environment of the chosen structures may
already have a severe impact on the predictive performance of
the generated property-structure landscape. Consequently, we
aim to employ high-throughput MD or DFT computations to
identify properties that correlate well with the experimentally
determined inhibition efficiencies. A promising starting point for
this in silico approach are the presented HL gaps (Figure 3). The
separation between lower and higher energy gaps for aromatic
and aliphatic compounds, respectively, matches the spatial
separation due to the SOAP-REMatch kernel and sketch-map.
Looking at the property-structure landscape more carefully,
small point clusters within the islands can be identified that
indicate some property-structure relationship. An example are
the four data points in the far right of the sketch-map, provided
with their corresponding molecular structures. The further
right the structure lies within the sketch-map, the higher the
HL gap of the respective compound becomes. Of course, the
property-structure landscape does not allow investigations of this
behavior in more detail. Nevertheless, it represents a potential
relation between the molecular structure and the energy gap of
the frontier orbitals, that can be further examined using other
measures. Hence, we are currently investigating if the calculated
HL gaps will help to detect a relationship between the HL gap
and the inhibition efficiency as well.

Since themolecular compounds are tested in solution, another
interesting parameter is the free energy of solvation. However, no
obvious relationship to the inhibition properties can be observed
so far (Figure S3A). Consequently, future works will focus on the
determination of the free energy of solvation for corrosive species
(e.g., Mg or Fe ions) in a solution containing the dissolution
modulators to yield more accurate—and correlatable—results
with respect to the occurring inhibition mechanisms. Here,
STaGE is a mighty tool to screen free energies of solvation for
high numbers of molecular compounds requiring very few
input parameters (Lundborg and Lindahl, 2015). Moreover, even
simpler properties as the number of certain functional moieties
within an inhibitor molecule can provide a deeper insight on a
potential correlation to the experimentally determined inhibition
efficiency. For instance, the property-structure landscape in
Figure S3B indicates that nitrogen plays an immediate role in
the corrosion inhibition mechanism of aliphatic compounds.

In subsequent steps, by providing material and system
parameters like the free energy of solvation or adsorption for
inhibitor molecules, by predicting HOMO-LUMO gaps or by
computing energy levels related to coordination complexes,

physico-chemical entities at nano- and microscale, relevant for
mathematically based system modeling, can be derived. For
example, the shift in the electrochemical potential due to changes
of the free energy of adsorption (Groß, 2018) or efficient (ion-)
transport parameters like diffusion coefficients can be calculated.
Furthermore, based on the molecule data, the cluster formation
and its interaction with the surface can be analyzed more
accurately bymolecular dynamic studies. As a consequence, more
precise calculations of elemental surface coverage, concentration
distributions of chemical species or averaged, system relevant
surface kinetic parameters are possible and more profound input
data applicable in upscaled continuum corrosionmodels (Höche,
2015). Typically, such kind of information is experimentally
difficult to access but of main interest for setting up advanced
non-empirical corrosion models which are required to enhance
computational corrosion and system engineering capabilities.
The developed data science based concept can be applied for
analyzing or even learning from corrosion simulation results by
correlating simulation predictions and molecular structures.

In conclusion, it was possible to create a property-structure
landscape based on the results of hydrogen evolution
measurements, that vividly demonstrates the relationship
between corrosion inhibition efficiency and corresponding
molecular structure of magnesium corrosion inhibitors. After
creating a high-dimensional similarity measure with the SOAP-
REMatch kernel between 74 tested compounds, the similarity
matrix is reduced to a two-dimensional visualization with sketch-
map, providing a reference to qualitatively predict the inhibition
behavior of yet to be tested molecules. Aside from the inhibition
efficiency, also other properties as the HL gap were correlated
with the inhibitor structure, matching impressively well the
spatial separation into aliphatic and aromatic compounds.
The predictive performance of the proposed workflow is still
limited by the relatively low amount of available experimental
input data. However, the discovered corrosion inhibitor and
promoter clusters provide a valuable reference for inhibition
prediction and identification of yet unexplored structures – thus
facilitating the search for potential corrosion inhibitors and
increasing the efficiency of corrosion inhibition experiments and
corrosion models.
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