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The macroscopic behavior of materials with anisotropic microstructure described as

micropolar continua is investigated in the present work. Micropolar continua are

characterized by a higher number of kinematical and dynamical descriptors than

classical continua and related stress and strain measures, namely the micro-rotation

gradient (curvature) and the relative rotation with their work conjugated counterparts,

the micro-couple, and the skew-symmetric part of the stress, respectively. The presence

of such enriched strain and stress fields can be detected especially when concentrated

forces and/or geometric discontinuities are present. The effectiveness of the micropolar

model to represent the mechanical behavior of materials made of particles of prominent

size has been widely proved in the literature, in this paper we focus on the capability

of this model to grossly capture the behavior of anisotropic solids under concentrated

loads for which the relative strain, that is a peculiar strain measure of the micropolar

model, can have a salient role. The effect of material anisotropy in the load diffusion

has been investigated and highlighted with the aid of numerical parametric analyses,

performed for two dimensional bodies with increasing degrees of anisotropy using a finite

element approach specifically conceived for micropolar media with quadratic elements

implemented within Comsol Multiphysics© framework. The present studied cases show

that a significant diffusion and redistribution of the load is due to an increasing in the level

of material anisotropy.

Keywords: cosserat continua, anisotropic media, relative rotation, composites/masonry, finite element method

INTRODUCTION

A material can be defined complex due to the presence of an internal structure and to its
complex constitutive behavior. As well-known, in the description of complex materials,
such as composites, the discrete, and heterogeneous nature of matter must be taken into
account, because interfaces and material internal phases dominate the gross behavior. The
presence of material internal structure can be accounted by direct discrete modeling, with
generally high computational cost (Suzuki et al., 1991; Baggio and Trovalusci, 2000; Rapaport
and Rapaport, 2004; Yang et al., 2010; Godio et al., 2017; Baraldi et al., 2018; Reccia et al.,
2018) or by adopting multiscale or coarse-graining techniques for deriving homogenized
continua (Budiansky, 1965; Sanchez-Palencia, 1987; Nemat-Nasser et al., 1996; Blanc et al., 2002;
Curtin and Miller, 2003; Jain and Ghosh, 2009; Trovalusci and Ostoja-Starzewski, 2011;
Nguyen et al., 2012; Sadowski et al., 2014; Altenbach and Sadowski, 2015; Greco et al.,
2016. However, the classical Cauchy model (Grade 1) is not reliable in the presence
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of problems dominated by the microstructure size, both in the
non-linear, such as in the case of strain localization phenomena,
and linear regimes (de Borst, 1991; Sluys et al., 1993; Masiani and
Trovalusci, 1996; Trovalusci and Masiani, 1999, 2003).

In the framework of a multiscale modeling aimed at
deriving homogenized continua suitable for representing the
material microstructure, avoiding physical inadequacies and
theoretical/computational problems—such as: ill-conditioning
in the field equations and mesh-dependency in numerical
solutions—the “non-local” character of the description is
crucial. Non-locality, by definition, implies the presence of
internal lengths and spatial dispersion properties in wave
propagation (Kunin, 1982), which allow to bypass the above
mentioned drawbacks. Besides the so-called explicit/strong non-
local theories (Eringen, 1972, 1999; Maugin, 1993), implicit/weak
non-local formulations, referred to continua with extra degrees of
freedom of various kind (Mindlin, 1964; Capriz, 1989; Eringen,
1999; Gurtin, 2000; Trovalusci, 2014), have been proposed in
order to deal with problems in which a characteristic internal
length, l (material length), is comparable to the macroscopic
length, L (structural length). This continua, also namedmultifield
continua, reveal the hidden microstructure, which affects the
macroscopic mechanical properties, by means of the additional
kinematic and work-conjugated dynamic descriptors (Trovalusci
and Augusti, 1998; Forest, 2009; Trovalusci et al., 2010; Capecchi
et al., 2011; Forest and Trinh, 2011; Trovalusci, 2014; Trovalusci
and Pau, 2014). In particular, in the works (Trovalusci and
Augusti, 1998; Trovalusci et al., 2010; Trovalusci, 2014) the
presence of a microstructure made of different kind of inclusions
(fibers, microcracks/pores) and the ability of multifield continua
to represent dispersion phenomena with particular reference
to microcraked bars under free and forced oscillations has
been investigated.

Among this latter kind of non-local models, many papers
showed the advantages of micropolar models (e.g., formulated
in Nowacki, 1970; Stojanović, 1972; Eringen, 1999, and
widely investigated also from the experimental point of view
Lakes and Benedict, 1982; Yang and Lakes, 1982; Lakes,
1983, 1986; Bauer et al., 2012; Rueger and Lakes, 2016) for
investigating problems with general heterogeneities and/or
discontinuities within the context of multiscale/coarse-
graining approaches, which allow to preserve memory of
the original organization of materials with periodic or
random microstructure (Forest and Sab, 1998; Forest et al.,
1999; Stefanou et al., 2008; Trovalusci et al., 2015, 2017).
Moreover, special attention to the micropolar continua with
constrained rotations (Toupin, 1962; Sokolowski, 1972),
always referring to multiscale descriptions (Bouyge et al.,
2001; Leonetti et al., 2018) has been reserved. In particular,
the micropolar modeling has been effectively adopted for
solving problems wherein the solid is made of an assembly
of rigid particles undergoing displacements and rotations
and interacting with each other via forces and couples, as
masonry-like materials or fiber-reinforced composites, both in
the linear and non-linear frameworks (Masiani and Trovalusci,
1996; Trovalusci and Masiani, 1999; Sansalone et al., 2006;
Pau and Trovalusci, 2012; Trovalusci and Pau, 2014).

In the present work, we want to focus on the behavior
of anisotropic composite assemblies, that can be polycrystals
with grain boundaries or thin interfaces as well as brick/block
masonry, and in particular on material parameters with
different degrees of anisotropy. To this regard, it is worth
noting that the micropolar continuum, differently from the
couple-stress continuum, that is a micropolar continuum with
constrained rotations (Sokolowski, 1972;Masiani and Trovalusci,
1996 Appendix), and also from second gradient continuum
(Bacigalupo and Gambarotta, 2011; Trovalusci and Pau, 2014),
presents the peculiar strain measure of the relative rotation
between the local rigid rotation (macrorotation) and the
microrotation that is related to the skew symmetric part of strain
and then, in terms of work expended, to the skew symmetric
part of the stress, whose contribution has significant role in
anisotropic media (Pau and Trovalusci, 2012; Trovalusci and
Pau, 2014). It is worth noting that, the different behavior
between micropolar without and with constrained rotations
media, for which the relative rotation is null, is also of interest
for investigating the loss of ellipticity of problems leading to
strain localization phenomena (Bigoni and Gourgiotis, 2016;
Gourgiotis and Bigoni, 2016). Such effects are expected to be
governed by both material size (de Borst, 1991; Sluys et al., 1993)
and also the degree of anisotropy.

In a recent work (Leonetti et al., 2019), by adopting
the coarse-graining procedure presented in Masiani and
Trovalusci (1996); Trovalusci and Masiani (1999), the behavior
of orthotropic brick/block masonry panels under compressive
loads at the top, described as equivalent micropolar continua,
has been investigated by varying the brick size and the load
footprint, showing the capability of the micropolar model
to distribute the load depending on the brick size. In the
present work, the effect of the degree of anisotropy of the
(coarse) continuum micropolar model on the strain/stress
diffusion is studied. The same coarse-graining procedure is
used which can be shown to be actually dependent both
on the brick size, shape and texture of the original (fine)
lattice model. The simulations have been carried out for a
panel under localized loads, using a standard finite element
approach based on a micropolar finite element implementation,
with quadratic and linear interpolation functions for the
displacement and rotation fields, developed in Fantuzzi et al.
(2018) following the approach in Providas and Kattis (2002)
and implemented within Comsol Multiphysics© framework
(Comsol, 2017). The results are presented in terms of
contour plots of displacement, stress and relative rotation, the
significant strain measure related to the non-symmetrical part of
the strain.

The present work is structured as follows. After the
introductory section, the mechanics of anisotropic micropolar
continua is illustrated with particular emphasis on anisotropic
composite assemblies in section Mechanics of Anisotropic
Micropolar Continuum. Section Finite Element Formulation
is dedicated to the finite element implementation. Section
Numerical Simulations presents the numerical applications and
discussions about the novel results presented in this work. Finally
some conclusions and remarks are given.
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MECHANICS OF ANISOTROPIC
MICROPOLAR CONTINUUM

The micropolar continuum is a well-known model equipped by
theoretical, numerical, and experimental studies in the literature
(Nowacki, 1970; Stojanović, 1972; Lakes and Benedict, 1982; Yang
and Lakes, 1982; Lakes, 1983, 1986; Bauer et al., 2012; Rueger
and Lakes, 2016). This continuum is made of particles which can
undergo independent displacements and rotations and belongs to
a class of generalized continua of the so-called implicit non-local
type (Eringen, 1999; Trovalusci, 2014). Reducing the description
to two-dimensional (2D) media, each material particle in the
2D frame has 3 degrees of freedom: the (macro) displacements
components, u1, u2 , and rotation, φ (micro-rotation). The local
linearized kinematic compatibility relations take the form:

ε11 = u1,1, ε22 = u2,2, ε12 = u1,2 + φ,

ε21 = u2,1 − φ,χ31 = φ,1, χ32 = φ,2, (1)

where εij (i, j = 1, 2) indicate the components of the strain tensor,
while χ31,χ32 indicate the only independent components of the
curvature tensor. The term θ = (u2,1 − u1,2)/2 is the local rigid
rotation (macro-rotation) in such a way that:

ε12 = u1,2 − θ + φ, ε21 = u2,1 + θ − φ (2)

Interaction among particles is described by stresses and micro-
couples as:

ti = σijnj, m3 = µ3jnj. (3)

where σij and µij (i, j = 1, 2) are the components of the
non-symmetric stress and couple-stress tensors, respectively, nj
being the components of the outward normal to the continuum
boundary. Equilibrium equations can be carried out, in the case
of body micro-couple neglected, as:

σij,j + bi = 0, µ3j,j − eij3σij = 0, (4)

bi being the components of the body force.
Linearly anisotropic stress-strain relations of the micropolar

two-dimensional continuum assume the following matrix form:











σ11
σ22
σ12
σ21
µ31

µ32











=











A1111 A1122 A1112 A1121 B111 B112
A2211 A2222 A2212 A2221 B221 B222
A1211 A1222 A1212 A1221 B121 B122
A2111 A2122 A2112 A2121 B211 B212
B111 B122 B112 B121 D11 D12

B211 B222 B212 B221 D21 D22





















ε11
ε22
ε12
ε21
χ31

χ32











. (5)

By considering hyperelastic materials, the following major
symmetries hold:Aijhk=Ahkij,Bijh=Bhij,Dij=Dji (i, j, h, k=1, 2).

FINITE ELEMENT FORMULATION

The two-dimensional problem of micropolar continua is solved
through the finite element implementation proposed in Leonetti
et al. (2019), where displacement/rotation components are

ordered in the vectors u =
[

u1 u2
]T

, φ = [φ], and the stress

and strain components in the vectors σ =
[

σ11 σ22 σ12 σ21
]T
,

µ =
[

µ31 µ32

]T
, ε =

[

ε11 ε22 ε12 ε21
]T
, χ =

[

χ31 χ32

]T
.

FIGURE 1 | (A) Sketch of the present problem with (B) present finite element mesh.
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The weak form of the present problem has to be formulated
in order to carry out the finite element implementation, and,
considering a domain � with boundary ŴN , writes:

∫

�

δεTσdA+

∫

�

δχTµdA =

∫

�

δuTbdA+

∫

ŴN

δuTtdl+

∫

ŴN

δφT
mdl ∀δu, δφ, (6)

with δ denoting the variation operator, b the body force vector,
t̄ and m̄ the traction and couple-traction vectors applied on the
boundary ŴN . Note that, the curvature vector χ is due to the
first-order partial derivatives of the micro-rotation, thus C0 finite
elements are adopted.

Finite element approximation though interpolation functions
Nu and Nφ is given by u = Nuũ,φ = Nφ φ̃, where the over
tilde vectors indicate the kinematic parameters correspondent
to in-plane displacements and rotations at the nodes. Quadratic
interpolation functions for the displacements and linear ones for
the rotations have been assumed, as it was introduced in Leonetti
et al. (2019). Thus, displacements are modeled with nine nodes,
whereas micro-rotation are related to the four corner nodes.

TABLE 1 | Constant mechanical properties used in all computations.

A1111 3.75 · 104MPa

A2222 1.5 · 104MPa

A1212 0.75 · 104MPa

A2121 3 · 104MPa

D11 1.125 ·MN

D22 0.375 ·MN

TABLE 2 | Mechanical properties used in Configuration 1.

Material#1 Material#2 Material#3 Material#4

A1121 104MPa 1.5 · 104MPa 2 · 104MPa 2.5 · 104MPa

A2212 0.25 · 104MPa 0.375 · 104MPa 0.5 · 104MPa 0.625 · 104MPa

TABLE 3 | Mechanical properties used in Configuration 2.

Material#1 Material#2 Material#3 Material#4

A1122 0MPa 0.5 · 104MPa 104MPa 1.5 · 104MPa

D12 0MN 0.5MN 1MN 1.5MN

TABLE 4 | Mechanical properties used in Configuration 3.

Material#1 Material#2 Material#3 Material#4

A1112 0.25 · 104MPa 0.30 · 104MPa 0.35 · 104MPa 0.40 · 104MPa

A2221 104MPa 1.2 · 104MPa 1.4 · 104MPa 1.6 · 104MPa

Interpolation function vectors are given in matrix form as:

Nu =

[

Nu
1 0
0 Nu

1
· · ·

Nu
9 0
0 Nu

9

]

, Nφ =
[

N
φ
1 · · · N

φ
4

]

, (7)

Thus, the micropolar strains given by Equation (1) can be
written as:

ε = Lu+Mφ, χ = ∇φ, (8)

where the matrix operators L andM are defined as:

L =

[
∂

∂x1
0 ∂

∂x2
0

0 ∂
∂x2

0 ∂
∂x1

]T

, M =
[

0 0 1 −1
]T
. (9)

Then Equation (8) becomes:

ε = LNuũ+MNφ φ̃ =
[

LNu MNφ

]
{

ũ

φ̃

}

= Bεd,χ = ∇

(

Nφ φ̃
)

=
[

0 ∇Nφ

]
{

ũ

φ̃

}

= Bχd, (10)

Where d indicates the unknown vector of nodal displacements.
The matrices Bε and Bχ collect the derivatives of the
interpolation functions matrices Nu and Nφ . Therefore, the
constitutive relations (5) become:

σ = DεεBεd + DεχBχd, µ = D
T
εχBεd + DχχBχd, (11)

where:

Dεε =







A1111 A1122 A1112 A1121

A2211 A2222 A2212 A2221

A1211 A1222 A1212 A1221

A2111 A2122 A2112 A2121






,

Dεχ =







B111 B112
B221 B222
B121 B122
B211 B212






, Dχχ =

[

D11 D12

D21 D22

]

. (12)

Note that coupling between classical and micro-polar effects are
considered by matrix Dεχ . Finally, the algebraic finite element
problem (without body forces) reads:

δdT
∫

�

(

B
T
ε DεεBε + B

T
ε DεχBχ + B

T
χD

T
εχBε + B

T
χDχχBχ

)

dA

︸ ︷︷ ︸

K

d

= δdT
∫

ŴN

[

N
T
u t̄

N
T
φ m̄

]

dl

︸ ︷︷ ︸

F

∀δd, (13)
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FIGURE 2 | Configuration 1, vertical displacement component, u2, contour plots for four material cases (Material#1/Material#4 minimum/maximum anisotropy

degree).

FIGURE 3 | Configuration 1, vertical stress component, σ22, contour plots for four material cases (Material#1/Material#4 minimum/maximum anisotropy degree).

where K and F indicate the stiffness matrix and the nodal
force vector of the adopted finite element for describing 2D
linearly elastic anisotropic micropolar bodies. A classical Gauss-
Legendre integration is considered for computing the integral
terms appearing in Equation (13).

The present model has been implemented within the
framework of Comsol Multiphysics R© software (Comsol, 2017).

NUMERICAL SIMULATIONS

The present study aims at investigating the mechanical
behavior of two-dimensional anisotropic micropolar media
under localized loads by varying the degree of anisotropy,
through the change in the material properties identified using the
coarse-graining procedure described in Masiani and Trovalusci
(1996), Trovalusci and Masiani (1999), considering at the
(fine) micro-level anisotropic brick/block assemblies of different

textures and related aspect and ratios, and at the macroscopic
(coarse) level an energy equivalent micropolar continua.

It has been widely shown that homogenized micropolar
models prove to be suitable of retaining memory of the behavior
of the actual composite microstructure in the presence of high
gradients of deformation, that occur even in the elastic range
when load or geometrical singularities are present (Masiani and
Trovalusci, 1996; Trovalusci and Masiani, 1999; Sansalone et al.,
2006). In particular, due to the presence of the relative strain
measure, it has been shown that micropolar continua perform
better than classic and other generalized continua when non-
symmetric shear effects have to be accounted for, as in the case of
strongly orthotropic media (Pau and Trovalusci, 2012; Trovalusci
and Pau, 2014).

The role of scale effects in orthotropic media under the
action of a load applied on portions of variable size of the
boundary of the body and the consequences in terms of strain
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FIGURE 4 | Configuration 1, relative rotations, θ − φ , contour plots for four material cases (Material#1/Material#4 minimum/maximum anisotropy degree).

FIGURE 5 | Configuration 2, vertical displacement component, u2, contour plots for four material cases (Material#1/Material#4 minimum/maximum anisotropy

degree).

and stress diffusion have been highlighted by the parametric
analyses performed in the recent work (Leonetti et al., 2019). The
present work, does not accounts for size effects but focuses on
the response of anisotropic micropolar media, under localized
loads, in the presence of an increasing degree of anisotropy.
The strain/stress diffusion has been numerically investigated
according to the constitutive relations considered, that couple the
effect of normal and shear stress/strain, as well as couple stress
and curvature in orthogonal direction. This study highlights
aspects that, in the Authors’ knowledge, have not been previously
investigated in materials with anisotropies. These aspects can
be also interesting in the perspective of dealing with significant
problems of loss of ellipticity followed by strain localization
phenomena, with folding and/or fracture for instance, that
affect both classical and constrained micropolar materials (Sluys
et al., 1993; Nguyen et al., 2012; Bigoni and Gourgiotis, 2016;
Gourgiotis and Bigoni, 2016).

The problem numerically investigated is a square domain of
width L = 4m, only fixed at the bottom edge and subjected
to a top load acting on length size a/L = 0.25 (Figure 1A)
and pressure q = 10 MPa. Due to the symmetry of the
problem only half of the domain has been analyzed and the
correspondent finite element mesh is depicted in Figure 1B.
Parametric analyses have been performed by increasing the
coefficients representing material anisotropy according to the
following three different configurations that have been selected
in order to investigate separately the role of different cases
of anisotropy.

Table 1 reports the independent material coefficients
that are considered constant in the simulations. The other
coefficients increase according to a constant parameter allowing
to represent four different degrees of anisotropy from a
minimum (defined as Material #1) to a maximum (Material
#4) value.
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FIGURE 6 | Configuration 2, vertical stress component, σ22, contour plots for four material cases (Material#1/Material#4 minimum/maximum anisotropy degree).

FIGURE 7 | Configuration 2, relative rotations, θ − φ , contour plots for four material cases (Material#1/Material#4 minimum/maximum anisotropy degree).

Configuration 1:











σ11
σ22
σ12
σ21
µ31

µ32











=











A1111 A1121

A2222 A2212

A1222 A1212

A2111 A2121

D11

D22





















ε11
ε22
ε12
ε21
χ31

χ32











, (14)

accounts for the increment of the constitutive elastic coefficients
(reported in bold in Equation (14)) coupling the normal
stresses σ11, σ22 with the non-symmetric shear strains ε21, ε12,
respectively, and the non-symmetric shear stresses σ12, σ21 with
the normal strains ε22, ε11, respectively: A1121 = A2111 and
A2212 = A1222. The implemented values are listed in Table 2

and their values for the four materials configurations considered
(ranging fromMaterial#1, with the lower degree of anisotropy, up
to Matrerial#4 with the higher degree of anisotrpoy) are obtained

by considering the increase through a parameter corresponding
to (A1212 − A2212) /4 and (A2121 − A1121) /4, respectively. This
choice is arbitrary, but it allows us to define an increasing degree
of material anisotropy obtaining plausible results, as the elastic
constants on the main diagonal are generally predominant with
respect to the out-of-diagonal terms, suitable to highlight the
effects of interest.

Configuration 2:











σ11
σ22
σ12
σ21
µ31

µ32











=











A1111 A1122

A2211 A2222

A1212

A2121

D11 D
12

D
21

D22





















ε11
ε22
ε12
ε21
χ31

χ32











, (15)

considers a micropolar orthotropic material, where the variable
elastic coefficients (reported in bold in Equation (15)) are:
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FIGURE 8 | Configuration 3, vertical displacement component, u2, contour plots for four material cases (Material#1/Material#4 minimum/

maximum anisotropy degree).

FIGURE 9 | Configuration 3, vertical stress component, σ22, contour plots for four material cases (Material#1/Material#4 minimum/maximum anisotropy degree).

A1122 = A2211 and D12 = D21, respectively concerns the classical
“Poisson effect” and a corresponding micropolar out-of-diagonal
effect in the model. The values provided are listed in Table 3.
Also in this case the increase from Material#1 (with no Poisson’s
effect) to Material#4 (with the higher Poisson’s effect) has been
put constant.

Configuration 3:











σ11
σ22
σ12
σ21
µ31

µ32











=











A1111 A1112

A2222 A2221

A1211 A1212

A2122 A2121

D11

D22





















ε11
ε22
ε12
ε21
χ31

χ32











, (16)

takes into account the increment of the material coefficients
(reported in bold in Equation (16)) that couple the normal
stresses σ11, σ22 with the correspondent non-symmetric
shear strains ε12, ε21, respectively, and the non-symmetric

shear stresses σ12, σ21 with the normal strains ε11, ε22,
respectively: A1112 = A1211 and A2221 = A2122. The
implemented values are listed in Table 4, and their values
for the four materials configurations considered are obtained
by considering the increase of a parameter corresponding to

(A1212 − A1112) /10 and (A2121 − A2221) /10, respectively. This
arbitrary choice was due on the observed strongly coupling
(normal/transversal) effects on the micropolar response. As for
Configuaration 1, it allows us to define an increasing degree of
material anisotropy obtaining results suitable to highlight the
relevant effects.

Figures 2–4 represent the contour lines of the vertical
component of displacement, u2, the vertical stress component,
σ22, and relative rotation, θ − φ , for Configuration 1, in
which the coupling material properties between normal stresses
and the correspondent shear strains, and vice-versa, increase
(Equation (14)) as above described. In terms of displacements
(Figure 1) it can be observed that, due to the normal stress/shear
strain/ coupling, the more the anisotropic degree, and the related
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FIGURE 10 | Configuration 3, relative rotations, θ − φ , contour plots for four material cases (Material#1/Material#4 minimum/maximum anisotropy degree).

coupling, increases, from Material#1 to Material#4, the more
the load distributes affecting the panel in its bottom part.
Correspondingly, in terms of vertical stresses (Figure 3) the
coupling due to anisotropy increases the stress diffusion. This
effect is highlighted also by the relative rotation plot (Figure 4),
wherein themicropolar effect of θ−φ increases inMaterial#4 case
due to the presence of a strongly anisotropy/coupling between
normal and shear components.

Figures 5–7 show the results obtained for Configuration
2, characterized by the orthotropic material symmetry, which
considers the classical and, in a sense, micropolar “Poisson’s
effect” through the terms A1122, D12. The first material case
(Material#1) corresponds to the one with null Poisson’s effect
(A1122 = D12 = 0), whereas the others have increasing
coefficients through a constant value as shown in Table 3.
In Figure 5 the contour lines of the vertical component of
displacement field, u2, diffuse depending on the degree of
anisotropy. Analogously, for the vertical stress component, σ22,
in Figure 6 we can observe the same phenomenon. In both cases
the curves are more distributed in the case of higher degrees of
orthotropy. Figure 7 shows that the relative rotation, θ −φ , map
does not change, as this component is not affected by the elastic
coefficients involved. For pointing out the correspondences
between classical and micropolar elastic moduli the reader may
refer to the work [Trovalusci and Masiani (1999), section 4].

Finally, Figures 8–10 are related to Configuration 3, which
couples normal and shear stress/strain components as described
in Equation (16). The present condition influences more the
solution as it can be seen in Figure 8, where the vertical
displacement component, u2, changes homogeneously showing
a wider diffusion related to the increasing of the degree of
anisotropy. The same can be said for the vertical stress in
Figure 9, where the reaction stresses at the bottom increases as
the coupling effect increases. The most interesting representation
is due to the relative rotation (Figure 10) where a strong
boundary effect is shown. The field becomes distorted at the
top (where the vertical load is applied) and at the bottom (even
though an homogenous boundary condition has been applied) as

the coupling mechanical properties are increased. The contour
plot distortion at the bottom is due to the strong discontinuity
between a clamped horizontal boundary condition and a free one
on the left vertical edge.

FINAL REMARKS

This work proposes a numerical finite element solution of
an anisotropic micropolar panel subjected to a concentrated
pressure on a small portion of the top boundary, and the effect
on the mechanical behavior of this body has been investigated
for particular cases of material anisotropy. The stress diffusion
under concentrated load in masonry assemblies has been widely
investigated also from the experimental point of view (Bigoni
and Noselli, 2010). In earlier works it has been shown that while
the micropolar model is able to distribute the load depending
on the element size, the classical continuum lacking in material
internal lengths does not entail such effect. Moreover, the
micropolar model, differently from the couple stress (micropolar
with microtation constrained to be equal to the local rigid
rotation) and second gradient model, presents the peculiar strain
measure of relative rotation suitable to take into account the non-
symmetries in strain and stress that are predominant in strongly
anisotropic assemblies (Pau and Trovalusci, 2012; Trovalusci,
2014; Trovalusci and Pau, 2014).

In the present work, attention has been given to the effect
of different degrees of material anisotropy, not only orthotropy,
for micropolar bodies subjected to localized loads, particularly
focusing on the strain measure of the relative rotation. It
has been highlighted that the anisotropic elastic coefficients of
the micropolar continuum, which couple normal stresses with
non-symmetric shear strains and vice-versa, have the effect of
distributing the load according to the degree of anisotropy of
the reference material. The coefficients that relate normal stress
to normal strain components in the orthogonal directions, as
well as the coefficients relating the couple-stress to the curvature
components in the orthogonal direction, governing the classical
and, in a sense, micropolar Poisson’s effect, instead, does not
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significantly affect the response of the micropolar continuum. All
the analyzed cases showed that an increasing level of anisotropy
corresponds to a significant distribution of the load in terms of
stresses within the continuum.

It can be concluded that when dialing with materials
made of particles assembled according to strong anisotropies
it is advisable to resort to micropolar theories. As further
development, we expect to investigate the ability of
unconstrained anisotropic micropolar models to detect strain
localization phenomena.
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