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Training of artificial neural networks (ANNs) relies on the availability of training data.

If ANNs have to be trained to predict or control the behavior of complex physical

systems, often not enough real-word training data are available, for example, because

experiments or measurements are too expensive, time-consuming or dangerous. In

this case, generating training data by way of realistic computational simulations is a

viable and often the only promising alternative. Doing so can, however, be associated

with a significant and often even prohibitive computational cost, which forms a serious

bottleneck for the application of machine learning to complex physical systems. To

overcome this problem, we propose in this paper a both systematic and general

approach. It uses cheap low-fidelity computational models to start the training of the

ANN and gradually switches to higher-fidelity training data as the training of the ANN

progresses. We demonstrate the benefits of this strategy using examples from structural

and materials mechanics. We demonstrate that in these examples the multi-fidelity

strategy introduced herein can reduce the total computational cost–compared to simple

brute-force training of ANNs–by a half up to one order of magnitude. This multi-fidelity

strategy can thus be hoped to become a powerful and versatile tool for the future

combination of computational simulations and artificial intelligence, in particular in areas

such as structural and materials mechanics.

Keywords: artificial intelligence, homogenization, material science, machine learning, simulation

INTRODUCTION

Over the last years, we have witnessed several groundbreaking advances in artificial intelligence (AI)
that were based on a simple idea: a virtual training environment was created by setting up some
general rules. Subsequently, an AI, typically represented by an artificial neural network (ANN),
was placed in this training environment and allowed to practice until it reached a superhuman
level of mastery. The rules of the training environment were, for example, the rules of the board
game Go in the AlphaGo project (Silver et al., 2016). Even when the machine learning component
was not provided any prior knowledge about the game other than the ruleset itself it achieved
superhuman mastery simply by training in a virtual training space (Silver et al., 2017). Other
research projects rely on virtual environments as used in computer games in order to train AIs to
perform intelligent actions or solve certain problems (Vinyals et al., 2017). This research typically
uses training environments defined by rules whose complexity is far below that of real physics.
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Consequently, the generation of training data is feasible at such
a low computational cost that one can apply straightforwardly
a Big Data paradigm, in which the training of the ANN is
the bottleneck, not the availability of data. With physically
more realistic virtual training environments one could train AIs
to solve problems, for example, from mechanical engineering
or materials science that require so far intense human
interactions. Creating physically realistic models of systems
and processes in mechanical engineering and materials science
is the principal objective of computational mechanics. It is
thus natural to combine computational mechanics and machine
learning to create what one may refer to as “computational
mechanics intelligence,” that is, a kind of artificial/computational
intelligence that is endowed with an accurate understanding
of a certain mechanical problem and which is trained in a
virtual environment created by methods from computational
mechanics. This paradigm can actually be understood as a natural
extension of the fast growth body of research that seeks to apply
machine learning to various areas of mechanical engineering or
materials science such as fatigue (Mosallam et al., 2016; Wang
et al., 2017), homogenization (Yang et al., 2018), or process
design (Hu et al., 2018). The idea to couple computational
mechanics and artificial intelligence in an intimate way bears
great promise to open up new ways to endow AI with an
understanding of real physics. However, it faces the great
challenge that creating training data for an AI by means of
realistic models of complex physical systems and processes
can be computationally prohibitively expensive. This is a main
reason why the attempts to couple computational mechanics
and artificial intelligence–although started first already long ago
(cf. Waszczyszyn and Ziemianski, 2001)–have so far remained
very limited both in scope and number. The key to the
future success of computational mechanics intelligence is thus
developing smart strategies how computational models can
be used to train AIs at an acceptable overall computational
cost. If realistic computational models are used for training
AIs, the computational cost of the models typically by far
surpasses the computational cost of the AI training itself. It
is thus of paramount importance to find ways to reduce in
particular the computational cost associated with the generation
of training data by means of computational models. In the
area of computational quantum mechanics, recently a variable-
fidelity method for the calculation of bandgaps was proposed
(Pilania et al., 2017). Apparently, it is promising to combine
also for classical computational mechanics on the continuum
scale simulations with multiple different fidelity levels in order
to reduce computational cost for generating training data. In this
paper, we will introduce a systematic and general framework how
to use computational methods in a smart way in order to create
training data for AIs. This framework relies on a multi-fidelity
strategy which couples the learning progress of the AI with the
resolution of the computational models used to generate training
data. It trades unnecessary precision of the error gradient used
especially in the early stages of AI training for computational
efficiency. The main objective of our multi-fidelity strategy is to
significantly speed up the training of ANNs in domains in which
training data have to be generated by means of computational

models and where this process constitutes a significant portion
of the overall computational cost associated with endowing an
AI with physical intelligence. The outline of the paper is as
follows. In section “Problem setting,” we briefly describe the type
of problem on which this article focuses. In section “Methods,”
we delineate the architecture and general learning algorithms of
the ANNs used in this paper. Moreover, we introduce our novel
multi-fidelity framework for coupling computational models and
AI training. In section “Numerical Examples,” we demonstrate
the benefits of this multi-fidelity framework using examples
from both structural mechanics and materials mechanics.
Finally the section “Conclusions” summarizes and discusses
the broader implications of the multi-fidelity framework
introduced herein.

PROBLEM SETTING

Herein we consider the following general problem: an AI is
to be trained to perform some kind of action or make some
kind of prediction within or with respect to a physical system.
Experiments with and measurement within the physical system
in order to generate training data for the AI are assumed
to be expensive, time-consuming, or dangerous so that it is
preferable to generate training data rather bymeans of “simulated
experiments” or “simulated measurements” performed by means
of a realistic computational model of the physical system of
interest. The computational cost of these simulated experiments
is assumed to surpass by far the computational cost of AI training
on the basis of given training data itself. It is therefore the
bottleneck in coupling artificial intelligence and computational
models. The general problem delineated above mainly appears in
two settings. In the first one, the AI is used to make predictions
about the behavior of a physical system under variable input.
The motivation may be that using a comprehensive classical
computational model for making these predictions for each
different input case of interest may be much more expensive
than using an AI as a cheap surrogate model. In this setting,
the computational model is used to compute for a large number
of input values realistic approximations of the associated output
of the system. These input and computationally approximated
output values form together training samples which can be
used for training an AI to approximate the behavior of the
computational model. Typically, this is achieved by means
of a backpropagation training algorithm where the internal
parameters of the AI are adjusted until for a given input the
AI produces an output sufficiently similar to the one of the
computational model. This adjustment is based on the current
error of the AI, that is, the current deviation of the AI output
from the output of the computational model for a certain input
(cf. Figure 1, left).

In the second problem setting, the AI is to be trained to
take action in a specific physical environment. To this end,
the AI is connected, typically in a closed-loop setting, to a
computer simulation of this physical environment in which
actions and consequences can be evaluated much faster and
cheaper than in real-world experiments (cf. Figure 1, right).
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FIGURE 1 | Left: training an AI as a cheap surrogate model of a classical computational model in order to make predictions about input-output relations in a physical

system or process. The difference between AI output and model output is an error that can be used for AI training (e.g., using backpropagation algorithms). Right: AI

is used to take action in or control a physical environment or parts of it. The error controlling AI training has to be computed in some way from the AI-governed

evolution of the computational model (e.g., using some objective functions assessing the current or final state of the computational model).

This setting becomes relevant, for example, if an AI should
be used to control complex processes and systems such an
autonomously driving car or an autonomously flying drone or
robots in a manufacturing plant. The difference between this
setting and the first one is mainly that the input to the AI
cannot be arbitrarily chosen already before starting the training
but typically results–at least in parts–only in the course of the
training process as a consequence of closed-loop interactions
between AI and computational model. Moreover, AI training
can typically not be simply based on a difference between
AI output and model output but will rather more often rely
on some objective function evaluated on the current state of
the system.

Despite these differences, both the above problem settings
have in common that AI training requires the evaluation
of computationally expensive models. In the next section
we will delineate a multi-fidelity strategy that can heavily
alleviate the associated computational cost, which otherwise is
often prohibitively high for realistic computational models of
complex systems. While the general concept of this strategy
applicable to both the above delineated problem settings, we
will focus in this article on the first problem setting illustrated
in Figure 1, left.

METHODS

Architecture of Artificial Intelligence
ANNs are chosen as the most general-purpose, widely spread
type of learning algorithm. This choice is taken as to minimally
constrain the generalizability of the multi-fidelity approach
introduced in this research. The specific ANNs used herein
are feed forward neural networks (FFNs) based on several
densely connected hidden layers. Their learning process thus
falls into the realm of so-called deep learning. This choice is not
mandatory, and it is important to note that other choices of the
machine learning algorithm would be equally viable to exemplify
the comparative advantages of the multi-fidelity framework
developed herein.While the results of this research are not wholly
agnostic with respect to the choice of learning algorithm and
specific parameters (learning rate, activation functions, etc.), the
above choice has beenmade so as tomaximize the generalizability

of the results obtained herein and not make them merely an
artifact of a peculiarity of the highly specific learning method.

Learning Algorithm
There are various different ways how ANNs can be trained to
imitate a function, the most common of which is supervised
learning. Even though there is a host of different approaches
to supervised learning with differences ranging from small
details to entirely different architectures, all these approaches
share a couple of common elements. In general, supervised
learning algorithms compare the current output of an ANN
for a given input with the correct solution, and base the
correction of the internal parameters of the neural network (i.e.,
the “learning”) on an error which is the difference between
current and correct output. Although there are also derivative-
free methods, correcting the internal parameters of the network
in most approaches requires the computation of a gradient the
said error with respect to the parameters governing directly the
output of the ANN. In a so-called “backpropagation algorithm”
this gradient is propagated through the ANN and used to update
thresholds/weights for the individual neurons in the ANN.

To train the ANN, a large amount of training data is required.
Each training sample consists of one tuple of an input (to the
computational model or the ANN) and the corresponding output
which the ANN should learn to ideally yield in response to
the respective input values. In our setting the output which
the ANN should learn to reproduce is generated by means
of a computational model. Our objective is training the ANN
to reproduce the input-output behavior of the computational
model. To this end, the ANN is fed one training sample after
the other. In supervised learning (i.e., when the desired output
for specific input to the ANN can at least in principle be
computed from the beginning on), training samples are typically
not used individually for backpropagation training but rather
the error and error gradients used for backpropagation training
are computed across so-called batches of N samples and then
used. This reduces computational cost and perturbations of the
learning process due to specific numerical features of individual
samples. The error over a batch of N training samples is
computed in our framework as a root mean square error (RMSE)
(Russell and Norvig, 2016).
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FIGURE 2 | In our multi-fidelity framework we use computational models with

different fidelity (accuracy) of one and the same physical system or process.

Different fidelity levels can in the context of most computational schemes

easily be realized by variations of the discretization length. Finer discretization

typically yields more accurate but computationally also more expensive

models. Thus, it is favorable to use as many samples as possible at lower

fidelity levels in order to pre-train an ANN before a much smaller number of

accurate high-fidelity samples is used for fine-tuning the internal parameters of

the ANN.

eANN =

√

√

√

√

1

N

N
∑

i= 1

(

ŷi − yi
)2

(1)

with ŷi the results predicted by the ANN for the input of sample
i within the training batch, and yi the corresponding output
provided by the computational model. The error gradient, which
is needed for backpropagation training, can be computed by
a simple finite-difference-like approximation of the derivatives
of (1).

Multi-Fidelity Training
General Idea
Typical algorithms for AI training such as gradient-based
backpropagation algorithms for ANNs are realized by way of a
process where the internal parameters of the ANN are adjusted
in a stepwise, iterative manner to improve its performance.
When ANN training starts, mainly a coarse adjustment of the
internal parameters of the ANN toward reasonable values takes
place because a tailor-made problem-specific initialization of
these parameters is typically not possible. This way, the AI is
endowed with a first coarse understanding of the basic properties
of the problem to which it is applied. Only later on the ANN
is fine-tuned. In this process, the initial adjustments of the
internal parameters of the ANN need not be accurate because
in subsequent training steps their precise values will still change
in a way that cannot directly be foreseen in the beginning.
Small perturbations of the initial steps can thus be expected to
remain without major impact on the overall result of the training
process. Thus, it is sufficient if during the initial training stage
the internal parameters of the ANN are altered in a way which
points roughly in the right direction. To this end, it is sufficient
to use in the initial stage of ANN training samples generated

by means of coarse low-fidelity computational models, which
may exhibit considerable numerical approximation errors but
which are computationally cheap. Only later on, as ANN training
progresses one has to gradually move toward samples generated
by means of more accurate and computationally more expensive
higher-fidelity models. Following this strategy one can use cheap
low-fidelity samples for a large part of the ANN training and
needs computationally expensive high-fidelity samples only in
the very end of the training process and thus only in a very
limited number. Exploiting such a multi-fidelity strategy, which
is illustrated in Figure 2, can substantially reduce the overall
computational cost (compared to a non-optimized brute-force
training of the ANN). It is worth emphasizing that the main
objective of this multi-fidelity strategy is indeed reduction of the
computational cost for training ANNs to a given level of accuracy
rather than training ANNs more accurately. Precisely, our multi-
fidelity framework is based on the following course of action.
We first define a number of different fidelity levels along with
associated computational models. We start generating training
data for the ANN using the computational model with lowest
fidelity. We continue using the low-fidelity model as long as the
overall performance of the ANN increases and we can expect
that using the a computational model at the current level of
fidelity can help to train the ANN in an efficient way. As soon
as this is no longer the case, we move on toward higher fidelity
training data. In practice, this is typically possible by simply
using computational models based on a finer discretization.More
details on this will be given below.

For simplicity we focus in the discussion herein and in
particular in the examples section on ANNs as a widely used
basis for AI and on computational models based on the finite
element method, which is widely used both in solid and fluid
mechanics as well as many other areas of continuum physics.
We stress, however, that we expect the multi-fidelity strategy
introduced herein to be generalizable also to cases where the
computational models used are not based on finite-element
discretizations or where more complex or specialized machine
learning architectures are used than ANNs. In fact, we expect the
multi-fidelity strategy introduced in this paper to be applicable
as long as the following three conditions are satisfied. First, there
must be a necessity to generate training data for the AI by means
of computational models. Second, the computational expense of
generating training data using these models should vastly exceed
the computational expense of training the AI itself. Third, it
must be possible to create for the physical system or process of
interest computational models with varying levels of accuracy,
lower levels of accuracy thereby being associated also with a lower
computational cost.

Criteria for Switching to Higher Fidelity Levels

During Training
In standard-problems of supervised learning, all training data are
available from the beginning on. In this case, the training data
can be divided into batches and the following course of action
is common: all batches are fed into the ANN, whereby, however,
from each batch only 90% of the samples are used for training
and 10% are retained for validation purposes. Once all batches
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have been fed into the ANN a so-called epoch is completed.
At this point the RMSE with respect to the samples retained
for validation is computed. Subsequently, the next epoch starts
where again all batches are fed into the ANN. This sequence is
interrupted, however, as soon as the RMSE computed for the
validation samples after an epoch has increased compared to the
previous epoch. The motivation for this strategy is the avoidance
of overfitting (Domingos, 2012; Russell and Norvig, 2016), which
is a tendency of learning algorithms not to learn the intended,
generalizable target function but rather features of the specific
training data unless the training process for a given set of data
is stopped in time. Once the RMSE for the validation samples–
which were not used for training and are unknown to the ANN–
starts to increase, even though the RMSE for the training data
themselves may still continue to decrease, overfitting can be
assumed to start.

In our setting, we have to pursue a slightly modified course
of action. The reason is that the complete set of training data
is not available from the beginning on but rather has to be
generated during learning because in the beginning it is not
even known how many training samples have to be generated
from computational simulations in order to achieve a reasonable
performance of the ANN. To overcome this problem, we start
our training with data generated by means of a computational
model at the lowest fidelity level. We generate one or several
batches of training data, depending on criteria discussed in
more detail below. In each batch, we retain 10% of the samples
for validation and use the remaining 90% for training. We
train the ANN looping in a batch-wise manner through all
the training samples. Looping one time through all available
training samples is called an epoch. We do so again and
again and complete this way more and more epochs until
either a certain predefined maximal number E of epochs has
been completed or until the RMSE based on the validation
samples increases (which is a sign of overfitting). Once this
point is reached, a so-called super-epoch is considered to be
completed. After each super-epoch, we evaluate the recent
training progress of the ANN. We do so on the basis of
two quantities. The first quantity is the current RMSE of
the ANN

emax
ANN =

√

√

√

√

1

N̄

N̄
∑

i=1

(

ŷi − ymax
i

)2
(2)

on the basis of N̄ output values
{

ymax
i

}

which are generated
in the very beginning of the whole training process using a
computational model at the highest fidelity level and which are
never used for training.

To obtain the second quantity required to evaluate the recent
training progress of the ANN at the current fidelity level i,
we compute an estimate of the approximation error of the
computational model at this fidelity level. To this end, we assume
that accuracy differences between the highest fidelity level at
which the computational model is available and the lowest one
with i = 1 are very large so that we can approximate the

approximation error of the computational model at the lowest
fidelity level with i = 1 as

e1CM ≈

√

√

√

√

1

N̄
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∑

i=1
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y1i − yexacti

]2
≈

√

√
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1

N̄

N̄
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(
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≈

√

√

√

√

1

N̄

N̄
∑
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[

y1i − ymax
i

]2
(3)

where
{

y1i
}

and
{

yexacti

}

are the output values which a
computational model with the lowest fidelity level and a fictitious
exact model of the physical system of interest yield when
provided the same input values that make the computational
model at the highest fidelity level yield the above introduced
{

ymax
i

}

.O
(

emax
CM

)

is a term on the order of magnitude of the RMSE
of the computational model at the highest fidelity level compared
to the fictitious exact model. We assume now that the modeling
error of the computational model at fidelity level i is governed
by the discretization lengths hi used in the computational model,
and that it converges monotonically to zero with the p-th power
of hi. Then the error of the computational model at the i-th
fidelity level can be estimated as

eiCM ≈

(

hi

h1

)p

e1CM ≈

(

hi

h1

)p

√

√

√

√

1

N̄

N̄
∑

i=1

[

y1i − ymax
i

]2
(4)

The training progress after a super-epoch is always considered
unsatisfactory if the following criterion applies:

(T1) The RMSE emax
ANN according to (2) after the current super-

epoch is worse than the RMSE s super-epochs ago.

Criterion (T1) indicates that the ANN is no longer learning
general features of the problem but rather batch-specific
information. We average the RMSE over the last s super-epochs
when monitoring the training progress in order to reduce the
impact of random fluctuations during a single super-epoch.
Depending on the exact training strategy (cf. section “Different
Training Strategies” for more details) one may consider the
training progress after a super-epoch also unsatisfactory if the
following additional criterion applies:

(T2) The RMSE emax
ANN according to (2) after a super-epoch is

smaller or equal than q times the approximation error eiCM
of the computational model at the current fidelity level
estimated on the basis of (4).

Criterion (T2) indicates that the ANN has been trained to a level
of accuracy comparable to the one of the computational model
at the current fidelity level. Naturally, training beyond this level
is impossible and q can be understood as a safety factor which
ensure that training always stops earlier, taking into account that
(4) is just a rough estimate.

If the training progress after a super-epoch is found to be
satisfactory on the basis of criteria such as (T1) and possibly also
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(T2), we continue training at the same fidelity level. Otherwise,
we switch to the next higher fidelity level. If there is no higher
fidelity level, we terminate training.

Different Training Strategies
In this paper, we compare altogether three different training
strategies. The first one is a simple single-fidelity approach where
the whole training of the AI is based on samples generated at the
same (maximal) level of fidelity and thus also computational cost.
As viable alternatives to this simple brute-force approach, which
is most widely practiced so far, we propose and compare in the
following also two different multi-fidelity strategies.

Single-Fidelity Training
Training ANNs with data generated from computational models
is so far mostly performed in a single-fidelity paradigm where all
training data are generated with the same computational model
and thus with the same fidelity level. Therefore, we test this
approach also herein as a benchmark tomeasure the performance
gains that can be achieved by the multi-fidelity framework
introduced herein. To ensure comparability between single-and
multi-fidelity training, single-fidelity training is terminated as
soon as either criterion (T1) from section “Criteria for switching
to higher fidelity levels during training” is satisfied or the RMSE
of the ANN has decreased to a threshold RMSEmin which is
chosen to be equal to qeiCM from criterion (T2) in the multi-
fidelity training algorithm with which the single-fidelity training
algorithm is compared. The algorithm for single-fidelity training
is provided as pseudocode in Table 1.

TABLE 1 | Pseudocode for single-fidelity training.

REPEAT
GENERATE a new batch not yet filled with
samples
FOR each empty slot in the current batch

GENERATE a new training sample with
computational model
ADD new training sample to the
current batch

END FOR
TRAIN artificial neural network with the
current batch
TEST whether termination criterion (T1)
applies or RMSE ≤ RMSEmin

UNTIL termination criterion (T1) applies OR
RMSE ≤ RMSEmin OR computational budget spent

Unidirectional Multi-Fidelity Training
In the simplest “brute-force” multi-fidelity approach, we
unidirectionally loop through different fidelity levels. We start
at the lowest one and move on to the next higher fidelity level
as soon as one of the two termination criteria (T1) and (T2)
from section “Criteria for Switching to Higher Fidelity Levels
During Training” are satisfied. If this happens on the highest
fidelity level, we terminate training completely. Before starting
the training process, we have to define the number n of fidelity
levels as well as the computational models assigned to them.
When using finite element discretizations as we do herein, one
can create computational models at n different fidelity levels
simply by starting at the lowest fidelity level and refining then
from one fidelity level to the next one the discretization mesh by

a certain factor (e.g., a factor of two or four). The algorithm for
unidirectional multi-fidelity training is provided as pseudocode
in Table 2.

TABLE 2 | Pseudocode for unidirectional multi-fidelity training.

SET current fidelity level to the lowest one
REPEAT

GENERATE a new batch not yet filled with
samples
FOR each empty slot in the current batch

GENERATE a new training sample with
computational model at current
fidelity level
ADD new training sample to the
current batch

END FOR
TRAIN artificial neural network with the
current batch
TEST whether termination criterion (T1) or
(T2) are satisfied
IF termination criterion (T1) or (T2)
applies

CHANGE current level of fidelity to
next higher fidelity level

END IF
UNTIL fidelity level exceeds maximal fidelity level
OR computational budget spent

Bidirectional Multi-Fidelity Training
In the brute-force multi-fidelity approach switching to a higher
fidelity level is based on the criteria (T1) and (T2) from section
“Criteria for switching to higher fidelity levels during training”
and it is irreversible. Evaluation of criterion (T2) requires the
approximation (4). In certain cases, this approximation may
exhibit an unusually high error, for example, because the errors
of the computational models at the different fidelity levels are
not related by a simple power law. This happens in practice
in particular if the lowest fidelity levels are based on extremely
coarse discretizations because simple power laws governing
convergence mostly apply only in the limit of infinitesimal (or
practically at least relatively fine) discretization lengths. If (4)
exhibits a high error, application of (T2) may lead to a strongly
reduced computational efficiency. To overcome this problem,
one can skip in such cases termination criterion (T2) as a
whole and rather adopt the following bidirectional approach
for switching between different fidelity levels: at a given fidelity
level one first generates one batch at the next higher and one
batch at the next lower fidelity level (if these exist) as well as
several batches at the given fidelity level. The number of batches
at the given fidelity level is adjusted such that the computation
time spent on the generation of these batches surpasses the one
spent for the generation of the single batch at the next higher
fidelity level by a factor of m > 1. In the following we always
assume m = 4, noting that the exact choice of m has only
minor impact. Higher choices for m would reflect a lower rate
at which the learning efficiency per computational resource is
compared between fidelity levels. However, as additional batches
at the comparatively lower fidelity level only gradually diminish
their contribution to the learning process, our results were
insensitive to delayed comparisons (and thus delayed transitions
to a different fidelity level) as reflected by higher choices ofm.
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This procedure ensures that at each fidelity level one spends
by far most of the computation time on generating training
samples at this very fidelity level but that one also has available
one “trial” batch at the next higher and next lower fidelity level,
respectively. Now one uses the generated batches at these three
fidelity levels for training the ANN subsequently in three super-
epochs. For each fidelity level, we valuate the ratio between the
reduction of the RMSE during the associated super-epoch and the
computation time spent on generating the underlying training
samples. The fidelity level for which this ratio is maximal is
chosen as the new “current” fidelity level. Note that this rule
admits not only increasing the fidelity level but also decreasing
it in case that this is found to be computationally beneficial.
For the sake of clarity, the bidirectional multi-fidelity strategy is
described in detail as pseudocode in Table 3.

TABLE 3 | Pseudocode for bidirectional multi-fidelity training.

SET current fidelity level to the lowest one
REPEAT

IF current level of fidelity is the maximal
level of fidelity

STOP future batch generation for
all fidelity levels other than the
current one

END IF
FOR (if exists) next higher fidelity level
AND (if exists) next lower fidelity level

GENERATE a new batch not yet
filled with samples
FOR each empty slot in the current
batch

GENERATE a new training
sample with computational
model at respective
fidelity level
ADD simulation results to
the current batch

END FOR
TRAIN artificial neural network
with generated batches and compute
ratio of RMSE learning progress
and computational cost

END FOR
FOR current fidelity level

GENERATE multiple batches not yet
filled with samples such that total
computation time spent on current
fidelity level equals m times the
one spent on next higher fidelity
level
FOR each empty slot in each batch
at current fidelity level

GENERATE a new training
sample with computational
model at respective
fidelity level
ADD simulation results TO
the current batch

END FOR
TRAIN artificial neural network
with generated batches and compute
ratio of RMSE learning progress
and computational cost

END FOR
SET current fidelity level to the one with
highest ratio of RMSE learning progress per
computational cost
TEST whether termination criterion (T1)
applies to batches with current fidelity

level
IF termination criterion (T1) for batch
with current fidelity level applies

CHANGE current level of fidelity to

next higher fidelity level
END IF

UNTIL current fidelity exceeds maximal fidelity
level OR computational budget spent

The bidirectional multi-fidelity strategy completely bypasses
termination criterion (T2) and replaces it by a smart,
bidirectional switching strategy between different fidelity
levels which ensures that the vast majority of computational
time is always spent on samples at the fidelity level that currently
enables the computationally most efficient learning. It is worth
mentioning that bidirectional multi-fidelity training can be
particularly useful if the computational models used at the
different global fidelity levels exhibit an approximation error
that strongly depends on the input parameter regime so that
for certain choices of input parameters the fidelity (in terms of
an absolute model error) is much higher than for others. If one
generates in such cases samples with input values which are not
randomly distributed but which for example first probe one
parameter regime with a relatively high approximation error
of the computational model and subsequently another input
parameter regime with a relatively low approximation error of
the computational model, it will typically be efficient to reduce
the global fidelity level if one moves from the first to the second
input parameter regime because this would actually ensure that
the approximation error of the training samples remains rather
constant when switching from one to the other regime, which is
beneficial because this approximation error should be linked to
the smoothly changing approximation performance of the ANN.

NUMERICAL EXAMPLES

General
For the computational examples in this section we implemented
FNNs with three densely connected hidden layers in Python
3.6.5 using the Keras 2.2.0 library with TensorFlow (Abadi
et al., 2016) 1.8.0 as a backend. Learning is accomplished via
backpropagation, using Adam (Kingma and Ba, 2014) as an
optimizer for gradient descent. The activation functions are
rectified linear units. The number of layers and neurons per layer
are specified in Figure 3.

We generated all the training data used in the following
examples by means of the in-house finite element code
BACI (written in C++ and developed at the Institute for
Computational Mechanics of the Technical University of
Munich, Germany) and a 12-core Intel Xeon E5-2680v3
“Haswell.” In the following, we will skip units, assuming thereby
implicitly appropriately normalized quantities. For generating
computational models, linear finite element discretizations with
variable discretization lengths were used. The error convergence
power in (4) is thus assumed to be p = 2 for displacement-
based problems as in section “Two-Dimensional Problem: Elastic
Deformation of a ThinMembrane Under Loading” and p = 1 for
stress/strain-based problems as in section “Three-Dimensional
Problem: Elastic Modulus of RVE With Material Inclusion.” The
maximal number of epochs within a super-epoch is chosen as
E = 100. This number in fact rarely matters and is simply
used to ensure that no peculiar situation can arise where the
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FIGURE 3 | Architecture of the ANNs used in this paper in schematical (Left) and graphical (Right) representation.

ANN training process can get stuck. The number s of super-
epochs for evaluating whether the recent training progress of
the ANN has been satisfactory is chosen as s = 3. For the
combination of our learning architecture and problem settings,
averaging the error over at least the last 3 super-epochs was
found to be sufficient to preclude spurious deteriorations of
the RMSE from affecting transition points. The number of test
samples with maximal fidelity used in (2) and (4) is chosen
as N̄ = 100. While this choice is heuristic in nature, it
is legitimate because with respect to this number it is only
important to keep it high enough to ensure reasonably accurate
error estimates and low enough to limit the computational
cost for generation of the testing samples compared to the
training samples.

Two-Dimensional Problem: Elastic
Deformation of a Thin Membrane
Under Loading
Problem Description
We consider a square rubber membrane of edge length L = 10.
This membrane is modeled as a two-dimensional continuum
with pure in-plane extensional and shear stiffness governed by
the non-linear neo-Hookean strain energy function

ψ =
µ

2
[tr (C)− 3] (5)

with the material parameter µ = 1 and the (two-dimensional,
in-plane) right Cauchy-Green tensor C and its trace tr (C). The
membrane forms in its stress-free initial configuration a plane
square of edge length L = 10. Before subjecting it to any other
loading, it is uniformly stretched in both in –plane directions by
a factor of 1.6 and then fixed at all the four edges (zero Dirichlet
boundary conditions). Subsequently, the membrane is loaded
with four out-of-plane loads. These loads are uniform surface

loads of magnitude f = 5 acting on circular domains of radius
R = 0.5, respectively. Note that the prestretch by a factor of 1.6 is
used here to endow the membrane with a non-zero out-of-plane
stiffness at any point in time, which is beneficial for numerically
stable computational modeling of the problem.

Our objective is training an ANN to predict the out-of-
plane displacement of the center of the membrane, given the (in
general variable) positions of the center points of the four surface
loads. To this end, we provide the ANN training data where
each sample consists of four randomly chosen load positions,
which form the input to the ANN, and the associated out-of-
plane displacement of the membrane center, which is computed
using finite element simulations. For these simulations, we use
computational models with n = 5 different levels of fidelity,
which correspond to uniform finite element discretizations with
N2d
el

∈
{

102, 202, 402, 802, 1602
}

4-noded rectangular linear
membrane elements. Per element the unusually high number
of 64 Gauss points were used to evaluate the surface loads on
the membrane with an acceptable approximation error even
when coarse spatial discretizations are applied. The membrane
problem and its discretization with N2d

el
= 100 elements are

illustrated in Figure 4. In Figure 5 the output of computational
models at different fidelity levels (corresponding to 100, 1,600,
and 25,400 finite elements) is illustrated for the same input (i.e.,
same out-of-plane loading).

Results
We trained an ANN with the architecture from Figure 3 with
the three different strategies from section “Different Training
Strategies” (single-fidelity, unidirectional multi-fidelity, and
bidirectional multi-fidelity) to predict for given positions of
the four membrane loads the out-of-plane displacement of
the center. Multi-fidelity training required a higher number
of samples but was consistently found to reduce the overall
computational cost of the training significantly due to the much
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FIGURE 4 | In a computational model with N2d
el

= 100 4-noded membrane finite elements, an initially stress-free elastic rubber membrane is first subjected to an

in-plane prestretch by a factor of 1.6 in both directions, then fixed at the boundaries and subjected to out-of-plane loading with circular surface loads (red circles with

crosses). Finally, the out-of-plane displacement of the membrane center is recorded in the loaded configuration as output of the computational model. This output

forms together with the positions of the four loads a training sample for the ANN with the specific fidelity level corresponding to a discretization with N2d
el

= 100

finite elements.

FIGURE 5 | Out-of-plane displacement of membrane subject to certain loading computed with computational models at three different fidelity levels corresponding to

(A) 100 elements, (B) 1,600 elements, and (C) 25,600 elements.

FIGURE 6 | (A) Learning progress across the different fidelity levels for the different training strategies. (B) Number of samples used per fidelity level for the different

training strategies.

lower average computational cost of the samples used. Figure 6
and Table 4 report samples numbers, computational cost and
learning progress across the different fidelity-levels in case of
both single- and multi-fidelity training. In single-fidelity training
only samples with highest fidelity (26,500 finite elements) were
used for training. It should be noted that the numbers reported
are the median over 100 training instances per strategy (reusing
generated samples) in order to eliminate the impact of random
that is inherent to a training concept were samples are created

on the basis of randomly chosen input values. As can be seen
in the last column of Table 4, multi-fidelity training enabled us
to train the ANN to the same level of accuracy as single-fidelity
training at a computational cost that was consistently between
a half and one order of magnitude lower. With unidirectional
multi-fidelity training computational savings depend on the
hyperparameter q in criterion (T2). For sufficiently small
choices of q, the criterion (T2) becomes unfulfillable and is
functionally removed. Conversely, sufficiently large choices of
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TABLE 4 | Computation times and sample numbers for different training strategies for the membrane problem from section “Two-dimensional problem: elastic

deformation of a thin membrane under loading.”

Fidelity level (number of

elements)

102 202 402 802 1602 Total Efficiency gain factor

compared to

single-fidelity

Average comp. time per

sample [s]

0.187 1.093 1.886 8.788 42.45

SINGLE-FIDELITY

Samples – – – – 16,864 16,864 1.00

Comp. time [s] – – – – 715,860 715,860

UNIDIRECTIONAL MULTI-FIDELITY

q ≤ 0.01 Samples 4,464 14,880 5,456 2,480 6,944 31,248 2.08

Comp. time [s] 835 16,264 10,290 21,794 294,773 343,956

q = 1 Samples 3,968 13,392 4,464 1,488 6,448 29,760 2.30

Comp. time [s] 742 14,637 8,419 13,077 273,718 310,593

q = 2 Samples 1,984 6,944 3,472 4,464 1,488 18,352 6.12

Comp. time [s] 371 7,590 6,548 39,230 63,164 116,903

q = 4 Samples 992 6,944 7,936 1,488 2,480 19,840 5.07

Comp. time [s] 186 7,590 14,967 13,077 105,274 141,094

q = 8 Samples 4,464 2,480 4,960 1,984 5,456 19,344 2.73

Comp. time [s] 835 2,711 9,355 17,435 231,602 261,938

q ≥ 160 Samples 496 496 496 496 14,880 16,864 1.12

Comp. time [s] 92 542 935 4,359 631,656 637,584

BIDIRECTIONAL MULTI-FIDELITY

Samples 5,952 1,984 4,960 4,960 1,984 19,840 5.10

Comp. time [s] 1,113 2,169 9,355 43,588 84,219 140,444

q lead to a permissive criterion (T2) which will be satisfied
whenever it is checked, resulting in fast transitions to the highest
fidelity level. In that case, the unidirectional multi-fidelity
strategy resembles the standard single-fidelity approach with a
minor prefix of a few batches of lower fidelity levels. The best
choice of q depends on how accurately equation (4) describes
the numerical approximation error, which cannot be easily
determined a priori for many problem settings. This heuristic
factor is completely eliminated in bidirectional multi-fidelity
training where switching between different fidelity levels is
performed automatically so as to ensure a computationally
efficient training progress. Interestingly, bidirectional multi-
fidelity trainings yields this way computational savings
that are, at least in this example, comparable to the ones
possible with unidirectional multi-fidelity training for favorable
choices of q.

Three-Dimensional Problem: Elastic
Modulus of RVE With Material Inclusion
Problem Description
The second example originates from the field of materials
mechanics and is related the broader area of computational
homogenization. A classical problem in this area is determining
the homogenized (macroscopic) mechanical properties of a
material whose microstructure is known in the form of a
representative volume element (RVE). The RVEs studied here are
cubes with edge length L = 10. They consist of a matrix material

into which an ellipsoidal inclusion in the center is embedded.
Size and shape of the inclusion are uniquely defined by the three
ellipsoidal semiaxes a, b, and c which can vary in a specific
prescribed range. Thereby, both the semiaxes and the edges of
the RVE are assumed to be aligned with the three coordinate
axes x, y, and z. The origin of the coordinate system coincides
with the center of the RVE (cf. Figure 7). Both the material of
the inclusion and of the surrounding matrix are assumed to be
isotropic with Poisson’s ratio ν = 0.3. Young’s modulus of
the matrix is Em = 1 and of the inclusion Ei = 100. We
are interested in computing Young’s modulus Ex in x-direction
of a material consisting of RVEs of the above described type,
depending on the exact geometry of the ellipsoidal inclusion. To
this end, one can subject RVEs of the above type to a mechanical
loading of the following type: at the face of the RVE oriented
in positive x-direction one imposes as a boundary condition a
uniform displacement ux (x = L/2) = 0.05 and at the oppositve
face oriented in negative x-direction a uniform displacement
ux (x = − L/2) = −0.05. This mimics an average strain εx =

0.01 of the RVE in x-direction. On other faces of the RVE,
displacement is constrained such that its component orthogonal
to the respective face is uniform across the whole face and that the
average outer normal traction vector on each face is zero. Under
these conditions, one can compute

Ex =

∣

∣fx
∣

∣

L2εx
(6)
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FIGURE 7 | Three-dimensional view (A) and projection onto xy-plane (B) of RVE with ellipsoidal inclusion discretized with N3d
el

= 262144 8-noded hexahedral finite

elements. The ellipsoidal inclusion (blue) is located in the center of the RVE and surrounded by a matrix (gray). To probe the stiffness of the RVE in x-direction, a

uniform displacement ux is imposed on the faces in positive and negative x-direction (arrows) while on all the other faces (red) a uniform displacement field

perpendicular to the faces with zero average traction in outer-normal direction is imposed.

(6) with the total reaction force fx in x-direction on the faces
of the RVE oriented in positive and negative x-direction. Our
objective is training an ANN to predict Ex, given the (in general
variable) lengths a, b, and c of the semiaxes of the ellipsoidal
inclusion as input parameters, assuming a, b, c ǫ [2; 4]. To this
end, we generate training samples consisting of a random input
tuples

(

a, b, c
)

and the associated Ex, respectively. The values of Ex
are computed bymeans of finite element simulations of the above
described problem. In these simulations, the RVEs are discretized
with a uniformmesh of 8-noded hexahedral linear finite elements
(Figure 7). We use simulations on four different fidelity levels,
corresponding to discretizations with N3d

el
=

{

43, 83, 163, 323
}

elements, respectively (Figure 8).

Results
The results for the three-dimensional RVE problem closely
resemble the results for the two-dimensional membrane problem
presented in the previous “Results” section. The general
observation that multi-fidelity strategies require the generation
of more samples but yet reduce the total computational cost
significantly because the average computation time per sample is
much lower is made in two and three dimensions alike. Figure 9
and Table 5 report samples numbers, computational cost, and
learning progress across the different fidelity-levels in case of both
single- and multi-fidelity training. In single-fidelity training only
samples with highest fidelity (262,144 finite elements) were used
for training. Again it is noted that the numbers reported here
are the median over 100 training instances per strategy for the
reasons discussed already in the previous “Results” section. As
can be seen in the last column of Table 4, multi-fidelity training
enables us to train the ANN to the same level of accuracy at a
computational cost that is consistently significantly below the one

of single-fidelity training. As one can see, unidirectional multi-
fidelity training yields the best results in this three-dimensional
example (unlike in the previous two-dimensional example) not
for 1 < q < 10 but rather for q < 1 which indicates that the error
estimates used for switching between the different fidelity levels
may exhibit a considerable inaccuracy. The interaction between
the choice of q and the unidirectional multi-fidelity results
follows the pattern described in the previous “Results” section.
Again one can see that bidirectional multi-fidelity training in
which the parameter q is not required and where switching
between fidelity levels is performed instead in a smart and
automatic way, probing dynamically the computational efficiency
of training at different levels of fidelity, is a robust and viable tool
to yield an efficiency gain of around half an order of magnitude
compared to brute-force single-fidelity training.

CONCLUSIONS

Machine learning and artificial intelligence have attracted rapidly
increasing interest in mechanical engineering and materials
science over the last years. One of the major challenges in
this area is training ANNs to predict or control the behavior
of complex physical systems for which not enough real-word
training data are available, for example, because experiments or
measurements are too expensive, time-consuming, or dangerous.
In this case, generating training data by way of realistic
computational simulations is a viable and often the only
promising alternative. Doing so can, however, be associated
with a significant computational cost, which forms a serious
bottleneck for the application of machine learning to complex
physical systems. To overcome this problem, we propose in
this paper a new systematic approach. It exploits the fact that
in the initial stage training an ANN mainly aims at endowing
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FIGURE 8 | (A) three-dimensional view of RVE with ellipsoidal inclusion, (B) two-dimensional projections of finite elements models of this RVE at four different fidelity

levels corresponding to discretizations with a resolution of 4, 8, 16, and 32 elements in each coordinate direction, respectively.

FIGURE 9 | (A) Learning progress across the different fidelity levels for the different training strategies. (B) Number of samples used per fidelity level for the different

training strategies.

the ANN with a coarse understanding of the general features
of a problem. Using training data from detailed and thus
computationally expensive models can thus be expected to
be a waste of computational resources in this stage because
coarse low-fidelity models often capture already the most salient
features of a physical systems but at much a lower computational
cost. Based on this observation, we introduced herein a general
and systematic multi-fidelity framework for training ANNs with
data generated by computational models with various different
fidelity levels. Such models can easily be generated in the
context of widely used computational methods such as the
finite element method by varying the discretization length. In
this framework, cheap low-fidelity computational models are
used to generate the training data for the early stages of ANN
training. As the training of the ANNs progresses, one gradually
switches to higher-fidelity training data generated by means
of more accurate and computationally more expensive models.
This strategy is very general in nature and can in principle be
applied to any problem where training ANNs computational
models are used whose accuracy can straightforwardly be
controlled, for example, by way of a discretization length. This
is true not only for the finite element method which we are
using herein but also for numerous other methods for solving
partial differential equations such as finite difference methods,

mesh-free discretization schemes such as the moving least
squares methods or particle-based methods such as smoothed
particle hydrodynamics (SPH). In this article, we focused on two
application areas, which are structural mechanics and materials
mechanics. In these areas computational models are already
widely used and coupling them with machine learning appears
the natural next step to address several key problems such
as efficient prediction of the behavior of complex mechanical
systems under variable (e.g., loading) conditions or efficient
homogenization of themechanical behavior of complexmaterials
with a heterogeneous microstructure depending on certain
features of this microstructure.

We developed in this article a general multi-fidelity
framework and discussed two slightly different versions of
it. The first one is based on an estimate of the error of the
computational models used at different fidelity levels. It implies
a heuristic correction factor q. While it may often be possible to
determine this correction factor based on simple rules of thumb,
in other cases this may be more difficult. This dependency
on q, which does not straightforwardly generalize to complex
hybrid models (e.g., finite elements on one level, molecular
dynamics on another level, other discretization schemes) is a
drawback of the unidirectional multi-fidelity variant, which
furthermore has the limitation of no clear method of a priori
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TABLE 5 | Computation times and sample numbers for different training strategies for the membrane problem from section “Two-dimensional problem: elastic

deformation of a thin membrane under loading.”

Fidelity level

(number of elements)

64 512 4,096 32,768 Total Efficiency gain factor

compared to

single-fidelity

Average comp. time per

sample [s]

0.066 4.27 85.3 962

SINGLE-FIDELITY

Samples – – – 9,920 9,920 1.00

Comp. time [s] – – – 9,543,040 9,543,040

UNIDIRECTIONAL MULTI-FIDELITY

q ≥ 2 Samples 496 496 496 8,432 9,920 1.17

Comp. time [s] 33 2,118 42,309 8,111,584 8,156,044

q = 1 Samples 496 496 1,488 7,936 10,416 1.23

Comp. time [s] 33 2,118 126,926 7,634,432 7,763,509

q = 0.4 Samples 5,952 3,968 1,488 1,488 12,896 6.06

Comp. time [s] 393 16,943 126,926 1,431,456 1,575,718

q ≤ 0.2 Samples 1,984 2,480 4,464 2,976 11,904 2.93

Comp. time [s] 131 10,590 380,779 2,862,912 3,254,412

BIDIRECTIONAL MULTI-FIDELITY

Samples 13,888 17,856 16,368 1,488 49,600 3.28

Comp. time [s] 917 76,245 1,396,190 1,431,456 2,904,808

calculating the most efficient transition points between levels of
fidelity. To eliminate this heuristic element and the problems
it entails, we proposed a second version of our multi-fidelity
framework where switching between different fidelity levels is
controlled in a smart and fully automated way. To this end,
our training algorithms probes at each fidelity level training
samples also from neighboring fidelity levels and dynamically
switches to the fidelity level where currently the largest training
progress per computational cost can be achieved. We would
consider this method a robust variant of the multi-fidelity
strategy, relying on fewer parameters than the unidirectional
approach. In summary, we found that our multi-fidelity training
strategy enables us to train ANNs to the same level of accuracy
as standard (single-fidelity) approaches but at a computational
cost that is by around a half to one order of magnitude lower.
This gives rise to the hope that the general multi-fidelity strategy
introduced herein can become a powerful and versatile tool
for the future combination of computational simulations and
artificial intelligence, in particular in the area of structural and
materials mechanics.

We conclude this paper by noting that the two specific
multi-fidelity training algorithms introduced in this paper, the

unidirectional and the bidirectional training algorithm, are but a
starting point. There are various ways how the underlying general
idea of systematic multi-fidelity training can be further developed
and optimized. For example, one could employ for ANN training
batches where samples with several different fidelity levels are
mixed. This would enable a seamless transition between different
fidelity levels during training, which might yield additional
computational savings.
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