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Over the last decade, there has been a paradigm shift away from labor-intensive

and time-consuming materials discovery methods, and materials exploration through

informatics approaches is gaining traction at present. Current approaches are typically

centered around the idea of achieving this exploration through high-throughput (HT)

experimentation/computation. Such approaches, however, do not account for the

practicalities of resource constraints which eventually result in bottlenecks at various

stage of the workflow. Regardless of how many bottlenecks are eliminated, the fact

that ultimately a human must make decisions about what to do with the acquired

information implies that HT frameworks face hard limits that will be extremely difficult to

overcome. Recently, this problem has been addressed by framing thematerials discovery

process as an optimal experiment design problem. In this article, we discuss the need

for optimal experiment design, the challenges in it’s implementation and finally discuss

some successful examples of materials discovery via experiment design.

Keywords: materials discovery, efficient experiment design, Bayesian Optimization, information fusion, materials

informatics, machine learning

1. INTRODUCTION

Historically, the beginning of materials research centered around learning how to use the elements
and minerals discovered in nature. The chief challenge at the time was the separation of the pure
metal from the mined ore which lead over time to the science of metallurgy—the foundation of
current day materials research. Humans then discovered that these pure metals could be combined
to form alloys, followed by the principles of heat treatments—advances that shaped history; since
the ability to invent new and exploit known techniques to use metals and alloys to forge weapons
for sustenance and defense was instrumental in the success, expansion and migration of early
civilizations. Additionally, there is evidence that the oft-quoted sequence of copper-tin bronze-
iron which lend their names to the “ages” of human progress, occurred in different parts of the
world, sometimes even simultaneously (Tylecote and Tylecote, 1992). Thus, the desire to harvest
materials from nature and use them to improve the quality of life is a uniquely human as well as
universal trait.
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With the acceleration of scientific advances over the last few
centuries, mankind has moved on from developing applications
based on available materials, to demanding materials to suit
desired applications. Science and technology are continuously
part of this contentious chicken and egg situation where it is
folly to prioritize either–scientific knowledge for its own sake
or the use of science as just a tool to fuel new applications.
Regardless, the majority of the scientific breakthroughs from
the materials perspective have resulted from an Edisonian
approach and been guided primarily by experience, intuition and
to some extent, serendipity. Further, bringing the possibilities
suggested by such discoveries to fruition takes decades and
considerable financial resources. Also, such approaches when
successful, enable the investigation of a very small fraction
of a given materials design space leaving vast possibilities
unexplored. No alchemic recipes exist, however desirable, which
given a target application and desired properties, enables
one to design the optimized material for that application.
However, to tread some distance on that alchemic road, recently,
extensive work has centered on the accelerated and cost-
effective discovery, manufacturing, and deployment of novel
and better materials as promoted by the Materials Genome
Initiative (Holdren, 2011).

1.1. Challenges in Accelerated Materials
Discovery Techniques
The chief hurdle when it comes to searching for new materials
with requisite or better properties is the scarcity of physical
knowledge about the class of materials that constitute the
design space. Data regarding the structure and resultant
properties may be available, but what is lacking is usually the
fundamental physics that delineate the processing-structure-
property-performance (PSPP) relationships in these materials.
Additionally, the interplay of structural, chemical and micro-
structural degrees of freedom introduces enormous complexity,
which exponentially increases the dimensionality of the problem
at hand, limiting the application of traditional design strategies.

To bypass this challenge, the current focus of the field is
on the use of data to knowledge approaches, the idea being
to implicitly extract the material physics embedded in the data
itself with the use of modern day tools–machine learning, design
optimization, manufacturing scale-up and automation, multi-
scale modeling, and uncertainty quantification with verification
and validation. Typical techniques include the utilization of
High-Throughput (HT) computational (Strasser et al., 2003;
Curtarolo et al., 2013; Kirklin et al., 2013) and experimental
frameworks (Strasser et al., 2003; Potyrailo et al., 2011; Suram
et al., 2015; Green et al., 2017), which are used to generate large
databases of materials feature / response sets, which then must
be analyzed (Curtarolo et al., 2003) to identify the materials
with the desired characteristics (Solomou et al., 2018). HT
methods, however, fail to account for constraints in experimental
/ computational) resources available, nor do they anticipate
the existence of bottle necks in the scientific workflow that
unfortunately render impossible the parallel execution of specific
experimental / computational tasks.

Recently, the concept of optimal experiment design, within
the overall framework of Bayesian Optimization (BO), has been
put forward as a design strategy to circumvent the limitations
of traditional (costly) exploration of the design space. This was
pioneered by Balachandran et al. (2016) who put forward a
framework that balanced the need to exploit available knowledge
of the design space with the need to explore it by using a metric
(Expected Improvement, EI) that selects the best next experiment
with the end-goal of accelerating the iterative design process. BO-
based approaches rely on the construction of a response surface
of the design space and are typically limited to the use of a single
model to carry out the queries. This is an important limitation,
as often times, at the beginning of a materials discovery problem,
there is not sufficient information to elucidate the feature set (i.e.,
model) that is the most related to the specific performance metric
to optimize.

Additionally, although these techniques have been
successfully demonstrated in a few materials science
problems (Seko et al., 2014, 2015; Frazier and Wang, 2016;
Ueno et al., 2016; Xue et al., 2016a,b; Dehghannasiri et al., 2017;
Ju et al., 2017; Gopakumar et al., 2018), the published work tends
to focus on the optimization of a single objective (Balachandran
et al., 2016), which is far from the complicatedmulti-dimensional
real-world materials design requirements.

In this manuscript, we discuss the materials discovery
challenge from the perspective of experiment design-i.e.,
goal-oriented materials discovery, wherein we efficiently
exploit available computational tools, in combination with
experiments, to accelerate the development of new materials
and materials systems. In the following sections, we discuss
the need for exploring the field of materials discovery via the
experiment design paradigm and then specifically discuss two
approaches that address the prevalent limitations discussed
above: i) a framework that is capable of adaptively selecting
competing models connecting materials features to performance
metrics through Bayesian Model Averaging (BMA), followed
by optimal experiment design, ii) a variant of the well-
established kriging technique specifically adapted for problems
where models with varying levels of fidelity related to the
property of interest are available and iii) a framework for
the fusion of information that exploits correlations among
sources/models and between the sources and ‘ground truth’
in conjunction with a multi-information source optimization
framework that identifies, given current knowledge, the
next best information source to query and where in the
input space to query it via a novel value-gradient policy
and examples of applications of these approaches in the
context of single-objective and multi-objective materials design
optimization problems and information fusion applied to
the design of dual-phase materials and CALPHAD-based
thermodynamic modeling.

2. EXPERIMENT DESIGN

The divergence of modern science from its roots in natural
philosophy was heralded by the emphasis on experimentation in
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the sixteenth and seventeenth centuries as a means to establish
causal relationships (Hacking, 1983) between the degrees of
freedom available to the experimenter and the phenomena
being investigated. Experiments involve the manipulation of
one or more independent variables followed by the systematic
observation of the effects of the manipulation on one or
more dependent variables. An experiment design then, is the
formulation of a detailed experimental plan in advance of doing
the experiment that when carried out will describe or explain
the variation of information under conditions hypothesized to
reflect the variation. An optimal experiment design maximizes
either the amount of ‘information’ that can be obtained for
a given amount of experimental effort or the accuracy with
which the results are obtained, depending on the purpose of
the experiment. A schematic of the experiment design process is
shown in Figure 1.

Taking into consideration the large number of measurements
often needed in materials research, design problems are
formulated as a multi-dimensional optimization problem, which
typically require training data in order to be solved. Prior
knowledge regarding parameters and features affecting the
desired properties of materials is of great importance. However,
often, prior knowledge is inadequate and the presence of large
uncertainty is detrimental to the experiment design. Hence,
additional measurements or experiments are necessary in order
to improve the predictability of the model with respect to
the design objective. Naturally, it is then essential to direct
experimental efforts such that the targeted material may be found
by minimizing the number of experiments. This may be achieved
via an experiment design strategy that is able to distinguish
between different experiments based upon the information they
can provide. Thus, the experiment design strategy results in the
choosing of the next best experiment, which is determined by
optimizing an acquisition function.

FIGURE 1 | A schematic of the recursive experiment design process.

2.1. Experiment Design Under Model
Uncertainty
In most materials design tasks, there are always multiple
information sources at the disposal of the material scientist.
For example, the relationships between the crystal structure and
properties/performance can in principle be developed through
experiments as well as (computational) models at different levels
of fidelity and resolution (-atomistic scale, molecular scale,
continuum scale). Traditional holistic design approaches such
as Integrated Computational Materials Engineering (ICME), on
the other hand, often proceed on the limited and (frankly)
unrealistic assumption that there is only one source available
to query the design space. For single information sources and
sequential querying, there are two traditional techniques for
choosing what to query next in this context (Lynch, 2007;
Scott et al., 2011). These are (i) efficient global optimization
(EGO) (Jones et al., 1998) and its extensions, such as sequential
Kriging optimization (SKO) (Huang et al., 2006) and value-
based global optimization (VGO) (Moore et al., 2014), and (ii)
the knowledge gradient (KG) (Gupta and Miescke, 1994, 1996;
Frazier et al., 2008). EGO uses a Gaussian process (Rasmussen,
2004) representation of available data, but does not account
for noise (Schonlau et al., 1996, 1998). SKO also uses Gaussian
processes, but includes a variable weighting factor to favor
decisions with higher uncertainty (Scott et al., 2011). KG differs
in that while it can also account for noise, it selects the next
solution on the basis of the expected value of the best material
after the experiment is carried out. In the case of multiple
uncertain sources of information (e.g., different models for the
same problem), it is imperative to integrate all the sources
to produce more reliable results (Dasey and Braun, 2007). In
practice, there are several approaches for fusing information
from multiple models. Bayesian Model Averaging (BMA), multi-
fidelity co-kriging (Kennedy and O’Hagan, 2000; Pilania et al.,
2017, and fusion under known correlation (Geisser, 1965;Morris,
1977; Winkler, 1981; Ghoreishi and Allaire, 2018) are three
such model fusion techniques that enable robust design. These
approaches shall be discussed in detail in the following sections.

2.1.1. Bayesian Model Averaging (BMA)
The goal of any materials discovery strategy is to identify
an action that results in a desired property, which is usually
optimizing an objective function of the action over the Materials
Design Space (MDS). In materials discovery, each action is
equivalent to an input or design parameter setup. If complete
knowledge of the objective function exists, then the materials
discovery challenge is met. In reality however, this objective
function is a black-box, of which little if anything is known
and the cost of querying such a function (through expensive
experiments/simulations) at arbitrary query points in the MDS
is very high. In these cases a parametric or non-parametric
surrogate model can be used to approximate the true objective
function. Bayesian Optimization (BO) (Shahriari et al., 2016)
corresponds to these cases, where the prior model is sequentially
updated after each experiment.

Irrespective of whether prior knowledge about the form of
the objective function exists and/or many observations of the
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objective values at different parts of the input space are available,
there is an inherent feature selection step, where different
potential feature sets might exist. Moreover, there might be a set
of possible parametric families as candidates for the surrogate
model itself. Even when employing non-parametric surrogate
models, several choices for the functional form connecting
degrees of freedom in the experimental space and the outcome(s)
of the experiment might be available. These translate into
different possible surrogate models for the objective function.
The common approach is to select a feature set and a single family
of models and fix this selection throughout the experiment design
loop; however, this is often not a reliable approach due to the
small initial sample size that is ubiquitous in materials science.

This problem was addressed by a subset of the present authors
by framing experiment design as Bayesian Optimization under
Model Uncertainty (BOMU), and incorporating Bayesian Model
Averaging (BMA) within Bayesian Optimization (Talapatra
et al., 2018). The acquisition function used is the Expected
Improvement (EI) which seeks to balance the need to exploit
available knowledge of the design space with the need to explore
it. Suppose that f ′ is the minimal value of the objective function
f observed so far. Expected improvement evaluates f at the point
that, in expectation, improves upon f ′ themost. This corresponds
to the following utility function:

I = max(f ′ − f (x), 0) (1)

If ŷ and s are the predicted value and its standard error at x,
respectively, then the expected improvement is given by:

E[I(x)] = (f ′ − ŷ)8(
f ′ − ŷ

s
)+ sφ(

f ′ − ŷ

s
) (2)

where: φ(.) and 8(.) are the standard normal density and
distribution functions (Jones et al., 1998). The Bayesian
Optimization under Model Uncertainty approach may then be
described as follows:

• There is a collection of potential models (e.g., models based on
different features sets)

• The models are averaged, based on the (posterior) model
probabilities given initial data set to form a BMA.

• Using the expected acquisition function under the BMA
model, an experiment is chosen that maximizes the expected
acquisition.

• The experiment is run, each model is updated and the
(posterior) model probabilities are updated.

• The expected acquisition under the updated BMA model is
computed and an experiment is chosen.

• This iteration is done until some stopping criteria are
satisfied (e.g., while objective not satisfied and budget not
exhausted), and the best observation so far is selected as the
final suggestion.

Incorporating BMA within Bayesian Optimization produces a
system capable of autonomously and adaptively learning not
only the most promising regions in the materials space but
also the models that most efficiently guide such exploration.

FIGURE 2 | Schematic of the proposed framework for an autonomous,

efficient materials discovery system as a realization of Bayesian Optimization

under Model Uncertainty (BOMU). Initial data and a set of candidate models

are used to construct a stochastic representation of an experiment/simulation.

Each model is evaluated in a Bayesian sense and its probability is determined.

Using the model probabilities, an effective acquisition function is computed,

which is then used to select the next point in the materials design space that

needs to be queried. The process is continued iteratively until target is reached

or budget is exhausted. Used with permission from Talapatra et al. (2018).

The framework is also capable of defining optimal experimental
sequences in cases where multiple objectives must be met-we
note that recent works have begun to address the issue of
multi-objective Bayesian Optimization in the context of materials
discovery (Mannodi-Kanakkithodi et al., 2016; Gopakumar et al.,
2018). Our approach, however, is different in that the multi-
objective optimization is carried out simultaneously with feature
selection. The overall framework for autonomous materials
discovery is shown in Figure 2.

2.1.2. Multi-Fidelity co-kriging
As discussed in Pilania et al. (2017), co-kriging regression is
an variant of the well-established kriging technique specifically
adapted for problems where models with varying levels of fidelity
(i.e., variations both in computational cost and accuracy) related
to the property of interest are available. This approach was put
forward by Kennedy and O’Hagan (2000) who presented a
cogent mathematical framework to fuse heterogeneous variable-
fidelity information sources paving the way for multi-fidelity
modeling. This framework was then adapted by Forrester et al.
(2007) who demonstrated its application in an optimization
setting via a two-level co-kriging scheme. The auto-regressive
co-kriging scheme may be applied to scenarios where l-levels
of variable-fidelity estimates are available, however, practical
limitations pertaining to computational efficiency emerge when
the number of levels l or number of data points grow large.
Recent work by Le Gratiet and Garnier ( Le Gratiet, 2013;
Le Gratiet and Garnier, 2014) showed that any co-kriging
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scheme with l-levels of variable-fidelity information sources can
be effectively decoupled, and equivalently reformulated in a
recursive fashion as an l-independent kriging problem, thereby
circumventing this limitation. This facilitates the construction of
predictive co-kriging schemes by solving a sequence of simpler
kriging problems of lesser complexity. In the context of materials
discovery, this approach was successfully implemented by Pilania
et al., who presented amulti-fidelity co-kriging statistical learning
framework that combines variable-fidelity quantum mechanical
calculations of bandgaps to generate a machine-learned model
that enables low-cost accurate predictions of the bandgaps at
the highest fidelity level ( Pilania et al., 2017). Similarly, Razi
et al. introduced a novel approach for enhancing the sampling
convergence for properties predicted by molecular dynamics
based upon the construction of a multi-fidelity surrogate
model using computational models with different levels of
accuracy (Razi et al., 2018).

2.1.3. Error Correlation-Based Model Fusion (CMF)

Approach
As mentioned earlier, model-based ICME-style frameworks tend
to focus on integrating tools at multiple scales under the
assumption that there is a single model/tool which is significant
at a specific scale of the problem. This ignores the use of multiple
models that may be more/less effective in different regions of
the performance space. Data-centric approaches, on the other
hand, tend to focus (with some exceptions) on the brute-force
exploration of the MDS, not taking into account the considerable
cost associated with such exploration.

In Ghoreishi et al. (2018), the authors presented a framework
that addresses the two outstanding issues listed above in the
context of the optimal micro-structural design of advanced
high strength steels. Specifically, they carried out the fusion
of multiple information sources that connect micro-structural
descriptors to mechanical performance metrics. This fusion is
done in a way that accounts for and exploits the correlations
between each individual information source-reduced order
model constructed under different simplifying assumptions
regarding the partitioning of (total) strain, stress or deformation
work among the phases constituting the micro-structure-
and between each information source and the ground truth-
represented in this case by a full-field micro-structure-
based finite element model. This finite element model is
computationally expensive, and is considered as a higher fidelity
model as part of amulti-fidelity framework, the intention being to
create a framework for predicting ground truth. Specifically, the
purpose of the work is not to match the highest fidelity model,
but to predict material properties when created at ground truth.
There is usually no common resource trade-off in this scenario, in
contrast to traditional computational multi-fidelity frameworks
that trade computational expense and accuracy.

In this framework, the impact of a new query to an
information source on the fused model is of value. The search
is performed over the input domain and the information source
options concurrently to determine which next query will lead
to the most improvement in the objective function. In addition,
the exploitation of correlations between the discrepancies of the

information sources in the fusion process is novel and enables the
identification of ground truth optimal points that are not shared
by any individual information sources in the analysis.

A fundamental hypothesis of this approach is that any
model can provide potentially useful information to a given
task. This technique thus takes into account all potential
information any given model may provide and fuses unique
information from the available models. The fusion goal then
is to identify dependencies, via estimated correlations, among
the model discrepancies. With these estimated correlations, the
models are fused following standard practice for the fusion of
normally distributed data. To estimate the correlations between
the model deviations when they are unknown, the reification
process (Allaire and Willcox, 2012; Thomison and Allaire, 2017)
is used, which refers to the process of treating each model, in
turn, as ground truth. The underlying assumption here is that the
data generated by the reifiedmodel represents the true quantity of
interest. These data are used to estimate the correlation between
the errors of the different models and the process is then repeated
for eachmodel. The detailed process of estimating the correlation
between the errors of two models can be found in Allaire and
Willcox (2012) and Thomison and Allaire (2017).

A flowchart of the approach is shown in Figure 3. The next
step then is to determine which information source should be
queried and where to query it, concurrently, so as to produce the
most value with the tacit resource constraint in mind. For this
decision, a utility, which is referred to as the value-gradient utility
is used, which accounts for both the immediate improvement
in one step and expected improvement in two steps. The goal
here is to produce rapid improvement, with the knowledge that
every resource expenditure could be the last, but at the same time,
to be optimally positioned for the next resource expenditure.
In this sense, there is equal weight accorded to next step value
with next step (knowledge) gradient information, hence the term
value-gradient. As mentioned in the previous section, in the
BMA approach, the Expected Improvement (EI) metric is used
to choose the next query point, while in this approach, the value
gradient is used.

The knowledge gradient, which is a measure of expected
improvement, is defined as:

νKG(x) = E[VN+1(HN+1(x))− VN(HN)|HN] (3)

where HN is the knowledge state, and the value of being at state
HN is defined as VN(HN) = maxx∈χ HN . The KG policy for
sequentially choosing the next query is then given as:

xKG = argmax
x∈χ

νKG(x) (4)

and the value-gradient utility is given by:

U = µ∗
fused +max

x∈χ
νKG(x) (5)

where µ∗
fused

is the maximum value of the mean function of

the current fused model and maxx∈χ νKG(x) is the maximum
expected improvement that can be obtained with another query
as measured by the knowledge gradient over the fused model.
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2.2. Application of Experiment Design
Framework: Examples
2.2.1. Multi-Objective Bayesian Optimization
A Multi-objective Optimal Experiment Design (OED)
framework (see Figure 4) based on the Bayesian optimization
techniques was reported by the authors in Solomou et al. (2018).
The material to be optimized was selected to be precipitation
strengthened NiTi Shape memory alloys (SMAs) since complex
thermodynamic and kinetic modeling is necessary to describe
the characteristics of these alloys. The specific objective of this
Bayesian Optimal Experimental Design (BOED) framework
in this study was to provide an Optimal Experiment Selection
(OES) policy to guide an efficient search of the precipitation
strengthened NiTi SMAs with selected target properties by
efficiently solving a multi-objective optimization problem.
The EHVI (Emmerich et al., 2011) acquisition function was
used to perform multi-objective optimization. EHVI balances
the trade-off between exploration and exploitation for multi-
objective BOED problems, similar to EI for single-objective
problems. EHVI is a scalar quantity that allows a rational agent
to select, sequentially, the next best experiment to carry out,
given current knowledge, regardless of the number of objectives,
or dimensionality, of the materials design problem. The optimal
solutions in an optimization problem are typically referred as
Pareto optimal solutions or Pareto front or Pareto front points.
The Pareto optimal solutions in a selected multi-objective space,
correspond to the points of the objective space that are not
dominated by any other points in the same space.

For the NiTi SMA, the considered input variables were
the initial homogeneous Ni concentration of the material

FIGURE 3 | Flowchart of the information fusion approach. Adapted

from Ghoreishi et al. (2018).

FIGURE 4 | Autonomous closed-loop, multi-objective Bayesian Optimal

Experimental Design framework. Adapted from Solomou et al. (2018).

before precipitation (c) and the volume fraction (vf ) of the
precipitates while the objective functions were functions of the
material properties of the corresponding homogenized SMA.
The framework was used to discover precipitated SMAs with
(objective 1) an austenitic finish temperature Af = 30◦C,
(objective 2) a specific thermal hysteresis that is defined as the
difference of austenitic finish temperature and martensitic start
temperature, Af −Ms = 40◦C. The problem was solved for two
case studies, where the selected continuous MDS is discretized
with a coarse and a dense mesh, respectively. The refined MDS
has nT = 21021 combinations of the considered variables c and
vf . The utility of the queried materials by the BOED framework
within a predefined experimental budget (OES) is compared
with the utility of the corresponding queried materials following
a Pure Random Experiment Selection (PRES) policy and a
Pure Exploitation Experiment Selection (PEES) policy within
a predefined experimental budget. An experimental budget is
assumed of nB = 20 material queries and for the case of the
OES and PEES policies the experimental budget is allocated to
nI = 1 randomly queried material and to nE = 19 for sequential
experiment design.

The results are shown in Figure 5A. It is seen that the OES
policy, even under the limited experimental budget, queries
materials that belong to the region of the objective space which
approaches the true Pareto front. This is clear by comparing the
Pareto front calculated based on the results of the OES (blue dash
line) with the true Pareto front found during the case study 1
(red dot line). The results also show that the materials queried by
the PRES policy are randomly dispersed in the objective space,
as expected, while the materials queried by the PEES policy
are clustered in a specific region of the objective space which
consists of materials with similar volume fraction values which
is anticipated courtesy the true exploitative nature of the policy.
Further analysis demonstrates, that the OES on average queries
materials with better utility in comparison to the other two
policies, while the PRES policy exhibits the worst performance.

Same trends of performance are maintained through the
equivalent comparisons conducted for various experimental
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FIGURE 5 | (A) Calculated objective space and Pareto front using the OES,

PRES and PEES policies under the nB = 20 experimental budget.

Reproduced with permission from Solomou et al. (2018), (B) Comparison of

the utility of the queried materials by the OES, PRES and PEES policies as

function of the experimental budget for the 2-objectives materials discovery

problem. Reproduced with permission from Solomou et al. (2018).

budgets as shown in Figure 5 which also indicates similar curves
for the coarse mesh. It is apparent that if the OES policy is
employed to query a material in a discrete MDS with defined
variables bounds, its relative performance in comparison to the
PRES policy becomes more definitive as the discretization of
the MDS is further refined, as the gap between PRES and OES
policies for the case of the dense discretized MDS (red lines)
is much bigger than that in the case of the coarse discretized
MDS (blue lines) optimally queried materials. The results of
the BOED framework thus demonstrate that the method could
efficiently approach the true Pareto front of the objective space of
the approached materials discovery problems successfully. Such
treatment was also carried out for a three-objective problem with
the additional objective of maximizing the maximum saturation
strain (Hsat) that thematerial can exhibit and similar conclusions
were drawn.

While exact algorithms for the computation of EHVI
have been developed recently (Hupkens et al., 2015; Yang
et al., 2017), such algorithms are difficult to be extended
to problems with more than 3 objectives. Recently, a subset
of the present authors (Zhao et al., 2018) developed a fast
exact framework for the computation of EHVI with arbitrary
number of objectives by integrating a closed-formulation
for computing the (hyper)volume of hyperrectangles with
existing approaches (While et al., 2012; Couckuyt et al., 2014)
to decompose hypervolumes. This framework is capable of
computing EHVIs for problems with arbitrary number of
objectives with saturating execution times, as shown in Figure 6.

2.2.2. Bayesian Model Averaging: Search for MAX

Phase With Maximum Bulk Modulus
As was mentioned above, the BMA framework has been
developed by the present authors to address the problem of
attempting a sequential optimal experimenta design over a
materials design space in which very little information about the
causal relationships between features and response of interest
is available. This framework was demonstrated by efficiently

FIGURE 6 | Comparison between traditional (grid-based) and fast approaches

(CCD13, WGF) for computing the EHVI with arbitrary number of objectives.

WFG corresponds to the updated framework developed in (Zhao et al., 2018).

exploring the MAX ternary carbide/nitride space (Barsoum,
2013) through Density Functional Theory (DFT) calculations
by the authors in Talapatra et al. (2018). Because of their rich
chemistry and the wide range of values of their properties (Aryal
et al., 2014), MAX phases constitute an adequate material system
to test simulation-driven-specifically DFT calculations- materials
discovery frameworks.

The problem was formulated with the goals of (i)
identifying the material/materials with the maximum bulk
modulus K and (ii) the maximum bulk modulus and
minimum shear modulus with a resource constraint of
permitting experiments totally querying 20% of the MDS.
The case of the maximum bulk modulus K is designed
as a single-objective optimization problem while the
second problem is designed as a multi-objective problem.
Features describing the relation between the material
and objective functions were obtained from literature and
domain knowledge.

In this work, a total of fifteen features were considered:
empirical constants which relate the elements comprising the
material to it’s bulk modulus; valence electron concentration;
electron to atom ratio; lattice parameters; atomic number;
interatomic distance ; the groups according to the periodic
table of the M, A & X elements, respectively; the order of
MAX phase (whether of order 1 corresponding to M2AX
or order 2 corresponding to M3AX2); the atomic packing
factor ; average atomic radius ; and the volume/atom
. In relevant cases, these features were composition-
weighted averages calculated from the elemental values
and were assumed to propagate as per the Hume-Rothery
rules. Feature correlations were used to finalize six
different feature sets which are denoted as F1, F2, F3, F4,
F5, and F6.
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Complete details may be found in Talapatra et al. (2018).
Some representative results are shown here. Calculations were
carried out for a different number of initial data instances N =

2, 5, 10, 15, 20. One thousand five hundred instances of each
initial set N were used to ensure a stable average response. The
budget for the optimal design was set at ≈ 20% of the MDS i.e.,
80 materials or calculations. In each iteration, two calculations
were done. The optimal policy used for the selection of the
compound(s) to query was based on the EI for the single objective
case and the EHVI for the multi-objective case. The performance

trends for all problems across different values of N are consistent.
The technique is found to not significantly depend on quantity of
initial data. Here, representative results for N = 5 are shown.

Figure 7A indicates the maximum bulk modulus found in
the experiment design iterations based on each model (feature
set) averaged over all initial data set instances for N = 5.
The dotted line in the figure indicates the maximum bulk
modulus = 300 GPa that can be found in the MDS. F2 is found
to be the best performing feature set on average, converging
fastest to the maximum bulk modulus. F6 and F5 on the

FIGURE 7 | Representative results for single objective optimization–maximization of bulk modulus for N = 5: (A) Average maximum bulk modulus discovered using all

described feature sets, (B) swarm plots indicating the distribution of the number of calculations required for convergence using all described feature sets, (C) average

maximum bulk modulus discovered using the best feature set F2, worst feature set F6, BMA1, and BMA2, (D) swarm plots indicating the distribution of the number of

calculations required for convergence using the best feature set F2, worst feature set F6, BMA1, and BMA2, (E) Average model probabilities for maximizing bulk

modulus using BMA1, (F) Average model probabilities for maximizing bulk modulus using BMA2.

Frontiers in Materials | www.frontiersin.org 8 April 2019 | Volume 6 | Article 82

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Talapatra et al. Experiment Design Frameworks

FIGURE 8 | The optimal solution obtained by our proposed approach and by

applying the knowledge gradient on a GP of only the true data (RVE) for

different number of samples queried from the true model. Image sourced from

Ghoreishi et al. (2018); use permitted under the Creative Commons Attribution

License CC-BY-NC-SA.

other hand, are uniformly the worst performing feature sets
on average, converging the slowest. It is evident that using
a regular optimization approach will work so long there is,
apriori, a good feature set. Figure 7B shows the swarm plots
indicating the number of calculations required to discover the
maximum bulk modulus in the MDS using experiment design
based on single models for the 1500 initial data instances with
N = 5. The width of the swarm plot at every vertical axis value
indicates the proportion of instances where the optimal design
parameters were found at that number of calculations. Bottom
heavy, wide bars, with the width decreasing with the number of
steps is desirable, since that would indicate that larger number of
instances needed fewer number of steps to converge. The dotted
line indicates the budget allotted, which was 80 calculations.
Instances that did not converge within the budget were allotted
a value of 100. Thus, the width of the plots at vertical value of
100, corresponds to the proportion of instances which did not
discover the maximum bulk modulus in the MDS within the
budget. From this figure, it is seen that for F1 , F2, and F4 in almost
100% of instances the maximum bulk modulus was identified
within the budget, while F5 is the poorest feature set and the
maximum was identified in very few instances.

Unfortunately, due to small sample size and large number of
potential predictive models, the feature selection step may not
result in the true best predictive model for efficient Bayesian
Optimization. Small sample sizes pose a great challenge in model
selection due to inherent risk of imprecision and, and no feature
selectionmethod performs well in all scenarios when sample sizes
are small. Thus, by selecting a single model as the predictive
model based on small observed sample data, one ignores the
model uncertainty.

To circumvent this problem the Bayesian Model Averaging
(BMA) method was used. Regression models based on
aforementioned six feature subsets, were adopted in the
BMA experiment design. The BMA coefficients were evaluated

in two ways: first-order (BMA1) and second-order (BMA2)
Laplace approximation. Figure 7C shows the comparison of the
average performance of both the first-order and second-order
BMA over all initial data set instances with the best performing
model (F2) and worst performing model (F6). It can be seen
that both the first-order and second-order BMA performance in
identifying the maximum bulk modulus is consistently close to
the best model (F2). BMA1 performs as well as if not better than
F2. Figure 7D shows the corresponding swarm plots indicating
the number of calculations required to discover the maximum
bulk modulus in the MDS for N = 5 using BMA1 and BMA2. It
can be seen that for a very high percentage of cases the maximum
bulk modulus can be found within the designated budget. In
Figures 7E,F, the average model coefficients (posterior model
probabilities) of themodels based on different feature sets over all
instances of initial data set are shown with the increasing number
of calculations for BMA1 and BMA2 respectively. Thus, we see
that, while prior knowledge about the fundamental features
linking the material to the desired material property is certainly
essential to build the Materials Design Space (MDS), the BMA
approach may be used to auto-select the best features/feature sets
in the MDS, thereby eliminating the requirement of knowing the
best feature set a priori. Also, this framework is not significantly
dependent on the size of the initial data, which enables its use in
materials discovery problems where initial data is scant.

2.2.3. Multi-Source Information Fusion: Application

to Dual-Phase Materials
In Ghoreishi et al. (2018), the authors demonstrated the Multi-
Source Information Fusion approach in the context of the
optimization of the ground truth strength normalized strain
hardening rate for dual-phase steels. They used three reduced-
order models (iso-strain, iso-stress, and iso-work) to determine
the impact of quantifiable micro-structural attributes on the
mechanical response of a composite dual-phase steel. The finite
element model of the dual-phase material is considered as the
ground truth with the objective being the maximization of
the (ground truth) normalized strain hardening rate at ǫpl =

1.5%. The design variable then is the percentage of the hard
phase, fhard, in the dual-phase material. A resource constraint
of five total queries to (any of) the information sources before
a recommendation for a ground truth experiment is made was
enforced. If ground truth results were found to be promising,
five additional queries were allocated to the information sources.
The initial intermediate Gaussian process surrogates were
constructed using one query from each information source and
one query from the ground truth.

The value-gradient policy discussed earlier was used to select
the next information source and the location of the query in
the input space for each iteration of the process. The KG policy
operating directly on the ground truth was also used to reveal
the gains that can be had by considering all available information
sources for comparison purposes. To facilitate this, a Gaussian
process representation was created and updated after each query
to ground truth. The convergence results of the fusion approach
using all information sources and the KG policy on the ground
truth are indicated in Figure 8. Here, the dashed line represents
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FIGURE 9 | The fused model and Gaussian processes of the isowork, isostrain, and isostress models in comparison with the true (RVE) model in iterations 1, 15, and

30. Image sourced from Ghoreishi et al. (2018); use permitted under the Creative Commons Attribution License CC-BY-NC-SA.

the optimal value of the ground truth quantity of interest. The
proposed approach clearly outperforms the knowledge gradient
applied directly to the ground truth, and also converged to
the optimal value much faster, thereby reducing the number of
needed ground truth experiments. This performance gain may
be attributed to the ability of the information fusion approach

to efficiently utilize the information available from the three
low fidelity information sources to better direct the querying
at ground truth. The original sample from ground truth used
for initialization was taken at fhard = 95%, which is far away
from the true optimal as can be observed in Figure 9 in the
left column. The proposed framework, was thus able to quickly
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FIGURE 10 | Number of samples queried from the true model (RVE) and the

information sources in each iteration. Image sourced from Ghoreishi et al.

(2018); use permitted under the Creative Commons Attribution License

CC-BY-NC-SA.

direct the ground truth experiment to a higher quality region
of the design space by leveraging the three inexpensive available
information sources.

Figure 9 shows the updates to each information source
Gaussian process surrogate model and the fused model
representing the total knowledge of ground truth for iterations 1,
15, and 30 of the information source querying process. Note that
an iteration occurs when an information source is queried. which
is distinct from any queries to ground truth. As is evident from
the left column, the first experiment from ground truth and the
first query from each information source gave scant information
about the location of the true objective. However, by iteration
15, the fused model, shown by the smooth red curve, still under-
predicts the ground truth at this point but has identified the best
region of the design space. At iteration 15, only three expensive
ground truth experiments have been conducted. By iteration 30,
six ground truth experiments have been conducted and the fused
model is very accurate in the region surrounding the optimal
design for ground truth. It is clear from Figure 9 that none of the
information sources share the ground truth optimum. It is worth
highlighting that the ability of the proposed framework to find this
optimum rested upon the use of correlation exploiting fusion, and
would not have been possible using traditional methods.

Figure 10 presents the history of the queries to each
information source and the ground truth. Note that the iteration
now counts queries to each information source as well as ground
truth experiments. From the figure, it is evident that all three
information sources are exploited to find the ground truth
optimal design, implying that, however imperfect, the optimal
use of all sources available to the designer is essential in order
to identify the optimal ground truth.

2.2.4. Bayesian Model Averaging and Information

Fusion: CALPHAD-Based Thermodynamic Modeling
Calculation of phase diagrams (CALPHAD) is one of the
fundamental tools in alloy design and an important component
of ICME. Uncertainty quantification of phase diagrams is the
first step required to provide confidence for decision making
in property- or performance-based design. In work that was
the first of its kind (Honarmandi et al., 2019), the authors
independently generated four CALPHAD models describing
Gibbs free energies for the Hf − Si system. The calculation of
the Hf − Si binary phase diagram and its uncertainties is of great
importance since adding Hafnium to Niobium silicide based
alloys (as promising turbine airfoil materials with high operating
temperature) increases their strength, fracture toughness, and
oxidation resistance significantly (Zhao et al., 2001). The Markov
Chain Monte Carlo (MCMC) Metropolis Hastings toolbox in
Matlab was then utilized for probabilistic calibration of the
parameters in the applied CALPHAD models. These results
are shown for each model in Figure 11 where it is seen that
there is a very good agreement between the results obtained
from model 2 and the data with a very small uncertainty
band and consequently a small Model Structure Uncertainty
(MSU) (Choi et al., 2008). Models 3 and 4 on the other hand
show large uncertainties for the phase diagrams which are mostly
attributed to MSU. In the context of BMA, the weight of the
applied models was calculated to be 0.1352, 0.5938, 0.1331, and
0.1379, respectively, indicating that Model 2 thus has three times
the weight of the other models, which otherwise have similar
Bayesian importance, consistent with the phase diagram results
in Figure 11. The phase diagram obtained using BMA is shown
in Figure 12. The posteriormodes of the probability distributions
in the BMA model exactly correspond to the posterior modes of
the probability distributions in model 2. Thus, the best model
results can be considered as the optimum results for the average
model, but with broader uncertainties, contributed by the inferior
models. In BMA, each model has some probability of being true
and the fused estimate is a weighted average of the models.
This method is extremely useful in the case of model-building
process based on a weighted average over the models’ responses,
and/or less risk (more confidence) in design based on broader
uncertainty bands provided by a weighted average over the
uncertainties of the models’ responses.

Error Correlation-based Model fusion was then used to fuse
the models together in two ways: (i) Fuse models 1, 3, 4 to
examine whether the resulting fused model maybe closer to
the data and reduce the uncertainties and (ii) Fuse models 1,
2, 3, and 4 together. Figure 13A shows that the approach can
provide a phase diagram in much better agreement with data and
with less uncertainty compared to phase diagrams obtained from
each one of the applied models individually. This result implies
that random CALPHAD models can be fused together to find
a reasonable estimation for phase diagram instead of trial-and-
error to find the best predicting model. It is also apparent that
better predictions can be achieved as shown in Figure 13B if
model 2 (the best model) is also involved in the model fusion.
The information fusion technique allowed the acquisition of

Frontiers in Materials | www.frontiersin.org 11 April 2019 | Volume 6 | Article 82

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Talapatra et al. Experiment Design Frameworks

FIGURE 11 | Optimum Hf-Si phase diagrams and their 95% Bayesian credible intervals (BCIs) obtained from models 1–4 (A–D) after uncertainty propagation of the

MCMC calibrated parameters in each case. Reproduced with permission from Honarmandi et al. (2019).

FIGURE 12 | Posterior modes and 95% Bayesian credible intervals (BCIs) at

different compositions/regions in Hf-Si phase diagram obtained after BMA.

Reproduced with permission from Honarmandi et al. (2019).

more precise estimations and lower uncertainties compared to
results obtained from each individual model. In summary, the
average model obtained from BMA shows larger 95% confidence
intervals compared to any one of the individual models, which
can provide more confidence for robust design but is likely
too conservative. On the other hand, the error correlation-
based technique can provide closer results to data with less

uncertainties than the individual models used for the fusion.
The uncertainty reductions through this fusion approach are also
verified through the comparison of the average entropies (as a
measure of uncertainty) obtained for the individual and fused
models. Therefore, random CALPHAD models can be fused
together to find reasonable predictions for phase diagrams with
no need to go through the cumbersome task of identifying the
best CALPHADmodels.

3. CONCLUSIONS AND
RECOMMENDATIONS

In this work, we have reviewed some of the most important
challenges and opportunities related to the concept of optimal
experiment design as an integral component for the development
of Materials Discovery frameworks, and have presented some
recent work by these authors that attempts to address them.

As our understanding of the vagaries implicit in different
design problems progresses, tailoring experiment design
strategies around the specific material classes under study
while further developing the experiment design frameworks
will become increasingly feasible and successful. As techniques
improve, we will be able to access and explore increasingly
complex materials design spaces, opening the door to precision
tailoring of materials to desired applications. Challenges
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FIGURE 13 | Error correlation-based model fusions of (A) three models (1, 3, and 4) and (B) all four models.Reproduced with permission from

Honarmandi et al. (2019).

in the form of the availability and generation of sufficient
and relevant data of high quality need to be continuously
addressed. The optimal way to accomplish this would
be the implementation of universal standards, centralized
databases and the development of an open access data-sharing
system in conjunction with academia, industry, government
research institutions and journal publishing agencies which is
already underway.
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