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We present in this work the manufacturing, modeling, and testing of dome-shaped

cellular structures with auxetic (negative Poisson’s ratio) behavior. The auxetic

configurations allow the creation of structures with synclastic (i.e., dome-shaped)

curvatures, and this feature is used to evaluate the performance of cellular metamaterials

under quasi-static indentation conditions. We consider here different cellular geometries

(re-entrant, arrow-head, tri-chiral, hexagonal) and the implications of their manufacturing

using 3D printing techniques with PLA material. The dome-shaped configurations are

modeled using full-scale non-linear quasi-static and explicit dynamic FE models that

represent both the geometry and approximate constitutive models of the PLA filament

material derived from tensile tests on dogbone specimens. The cellular metamaterials

samples are subjected to indentation tests, with maps of strains obtained through

DIC measurements. The correlation between experimental and numerical simulations

is good, and shows the peculiar indentation behavior of these cellular structures. We

also perform a comparative analysis by simulation of the force/displacement, strain and

fracture history during quasi-static loading, and discuss the performance of the different

cellular topologies for these dome-shape metamaterial designs.

Keywords: auxetic domes, snap-through, buckling, re-entrant, arrow-head, tri-chiral, non-linear FE, digital image

correlation

1. INTRODUCTION

A mechanical metamaterial is a multiscale system of materials with engineered mechanical
properties that can vary dramatically from those of the base material. Mechanical materials can
therefore exhibit some global unusual deformation mechanisms. Lattice structures are a popular
example of mechanical metamaterials because of their high strength to density ratio, compared to
traditional structural materials (Ashby, 2006). Another important aspect of lattice structures is their
tailorable mechanical response, both at global and hierarchical scale (Sun and Pugno, 2013).

A subset of mechanical metamaterials is represented by auxetics. While conventional cellular
foams and rubber-like materials have a Poisson’s ratio varying from ν ≈ 0.5 (incompressible)
to ν = 0 (e.g., cork) with decreasing density, auxetics possess instead a negative Poisson’s ratio.
Negative ν means that the elongation in one direction is accompanied by an elongation in the
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transverse direction. On the opposite, the auxetic material will
shrink under compression. Auxetic structures can be deployed to
provide a required indentation resistance (Evans and Alderson,
2000), high compressive and shear stiffness (Sanami et al., 2014),
and high energy absorption (Mohsenizadeh et al., 2015). In
biomedical applications of auxetics have been sought in bone
implants (Warmuth et al., 2017; Kolken et al., 2018). Auxetics
can be also developed by applying patterns of cuts and holes
(Grima et al., 2005). Perforated auxetic composite plates have
been used in a hybrid flexible cushioning support for multiple
sclerosis patients (Mohanraj et al., 2016).

The mechanical properties of lattices can be changed
dramatically (Ashby, 2006) by varying the connectivity of the
struts and the angles between the same struts at joints, therefore
creating auxeticity in essentially bending-dominated lattices
(Grima et al., 2010; Bouakba et al., 2012; Saxena et al., 2016).
Auxetic structures exhibit synclastic behavior when bent, i.e.,
they deform into dome shapes (Alderson and Alderson, 2007),
rather than saddle ones, which are typical of structures with
positive ν. This makes auxetics useful in applications such as
pressure vessels (Adachi, 1968) and anti-blast protections (Sahu
and Gupta, 2015). Auxetic domes designs could therefore be
suitable for protective equipment applications. A lower cell
density in an auxetic lattice also leads to lower stiffness and higher
bending and rotation motion of the struts (Scarpa et al., 2000;
Carneiro et al., 2016), and this increases the effective negative
effective Poisson’s ratio νa (Carneiro et al., 2016). The energy
absorption of chiral auxetic topologies is greater than that of
the re-entrant dome as the strut thickness increased and the
νa reduced (Scarpa et al., 2000). This suggests that there is a
smaller dependence on cell geometry configurations like the
tri-chiral lattice.

The energy absorption of a foam increases with density,
because the indenter/impactor force is distributed over a larger
number of cells (Lakes and Elms, 1993; Fleck and Qiu, 2007). The
increase of the cell density in a structure like an auxetic dome
should therefore lead to a greater amount of strut deformation,
and thus to higher energy absorption.

In the arrow-head topology νa grows from a negative value to
zero with increasing strain (Yang et al., 2018). The arrow-head
and re-entrant topology has higher energy dissipation than the
hexagonal lattice due to the negative in-plane νa. The re-entrant
topology has the highest energy absorption (Yang et al., 2018).
Both re-entrant and arrow-head topologies are significantly
anisotropic (Zied et al., 2015).

Plasticity and non-linear geometry have a significant
effect on FE modeling of deformation of auxetic structures
(Zhang et al., 2018). Structures ranging from a unit
cell to full scale geometrical models have been modeled
successfully with beam elements and 3D solid elements
(Blachut and Galletly, 1988).

Although auxetic foams have received a lot of attention (Lakes
and Elms, 1993; Zied et al., 2015; Yang et al., 2018), little
research has been done on auxetic dome-shaped structures. The
work presented in this paper focuses on the buckling and post-
buckling behavior of novel auxetic lattice domes, such as those
shown in Figure 1.

2. DOMES AND THE EFFECT OF THE
POISSON’S RATIO

In 1946 Reissner showed that the term (1− ν2)1/2, where ν is the
Poisson’s ratio of the material, appears in the linear differential
equations for normal displacements, w, in thin shallow spherical
shells (Reissner, 1946). Reissner considered a spherical shell
segment being shallow if the ratio of its height to the base
diameter did not exceed 1/8. Ashwell extended Reissner’s theory
to large deflections w and showed that a spherical shell segment
loaded by an inward point load, F, does not exhibit instability
(Ashwell, 1960). Ashwell also demonstrated that the linear theory
predicts a linear relationship between F and w, while his non-
linear theoretical model predicts a non-linear F(w) response, but
still with no loss of elastic stability. A snap-through instability
(buckling) is predicted when distributed load (external pressure),
p, is applied to a spherical shell, with the same term (1 −

ν2)1/2 appearing in the expression for the critical pressure, pc
(Budiansky, 1960), see Equation (1), where E is the Young’s
modulus, and R and t are the shell radius of curvature and
thickness respectively.

pc =
2E

√

3(1− ν2)

(

t

R

)2

(1)

Leckie showed that a snap through instability does indeed
occur under the application of an inward radial force thorough
a rigid “boss” of a finite diameter, if plastic deformation
is allowed (Leckie, 1969). However, as a plastic deformation
is incompressible, no dependence of the critical load on ν

was found. This aspect is reinforced also by the particular
case we consider in the following example. The loading case
is somewhat intermediate between an inward radial force
and external pressure on a simply supported spherical shell
segment (hereafter–a dome) compressed between a pair of
rigid plates. A preliminary non-linear elastic FE study using
full 3D solid theory and an isotropic elastic homogeneous
material shows that, although a snap-through behavior is clearly
present, no sensitivity to ν is also apparent (see Figure 2).
In this figure w has been scaled by the dome thickness t;
F∗ is the applied load scaled as shown in Equation (2). The
parameters h and b correspond to the dome height and the base
radius, respectively.

F∗ =
F

ERt

h

b
(2)

In this particular example the following dimensions have
been considered: R = 50 mm, b = 40 mm, h =

20 mm, t = 2 mm. The Young’s modulus E =

2, 774 MPa represents a polymeric material (typical PLA
used in 3D printing). The elements considered in this
simulations were 2nd order tetra elements C3D10 (Dassault
Systèmes, 2014). The models feature 4 elements through
the thickness. The Abaqus eigenvalue (Dassault Systèmes,
2014) results for the “boss” loading of a simply supported

Frontiers in Materials | www.frontiersin.org 2 April 2019 | Volume 6 | Article 86

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Easey et al. Auxetic Domes

FIGURE 1 | The four cellular topologies considered here (Left): (a) hexagonal, (b) re-entrant, (c) arrow, and (d) tri-chiral. An arrow-head dome PLA specimen (Left)

and the spherical dome dimensions (Right). The sphere radius is 50 mm. The dome height is 20 mm and the dome base radius is 40 mm.

FIGURE 2 | FE snap-through response in the plate compression of a solid dome, showing: (Left) a snap through response, and the maximum principal logarithmic

strain, ǫ1, at (Middle) buckling and (Right) after snap-through.

dome are shown in Figure 3. Note that the predicted critical
loads are 3 order of magnitude higher than from plate
compression. However, the shape of the curve is the one
given by Equation (1).

Figures 2, 3 suggest that the issue of the stability of domes with
different Poisson’s ratio values is complex, and cannot be simply
resolved by using existing analytical solutions. In this work we
tackle this particular problem with a program of experimental
and numerical experiments on lattice domes, which possess
different lattice geometries that mimic varying Poisson’s ratios.

3. EXPERIMENTS

3.1. PLA Mechanical Properties
The domes were manufactured from PLA using a Raise3D N1
system with fused filament fabrication (FFF) to extrude the
filament into layers, with a single nozzle. The CAD model was
converted to the stereolithography (STL) format, compatible
with the 3D printer “slicing” software IdeaMaker. IdeaMaker
eventually translates the model into a G-code file that contains
commands of tool path and amount of extruded material for

the printer to execute and produce the domes. The “slicing”
process involves applying internal support structures to the
model to prevent the dome from collapsing, as the struts can
overhang at angles greater than 35◦ (Baumann et al., 2016).
A photo of the 3D printer used for this work is provided as
Supplementary Material.

The domes were manufactured with the following topologies:
hexagonal, tri-chiral, re-entrant, and arrow-head. A 0.2 mm
turquoise colored filament was used with 100% infill ratio,
extruder temperature of 235◦, 0.2 mm layer height, and 65◦ print
bed temperature. The strut thickness and width were 2 mm.

FFF 3D printing is known to induce mechanical anisotropy in
finished components due to its method of material deposition.
To reduce the printed material anisotropy, the “slicing” software
changes printer’s tool path by 90◦ at every layer by default. Thus,
it had to be edited manually to enforce specific direction at all
the layers. To measure this anisotropy, dog-bone specimens of 6
configurations were made, see Figure 4.

The tensile tests were carried out at a rate of 2 mm/min using
a clip gauge, according to ASTM D638-14 (2014) valid for 3D
printed polymers. The clip gauge, with a resolution of 0.5%, was
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FIGURE 3 | Eigenvalue analysis for “boss” loading of a solid dome, showing: (Left) the buckling load, (middle) the prescribed displacement of the “boss” area and

(Right) the 1st buckling mode.

FIGURE 4 | Six layouts for printing dog-bone specimens: (A) 90◦ with support walls, (B) 90◦ without support walls, (C) ±45◦ with support walls, (D) 0◦ with support

walls, (E) 0◦ without support walls, and (F) 0◦/90◦ with support walls.

chosen over the strain gauges because it allows quicker placement
on the samples and less time for the experimental set up (Motra
et al., 2014). The load cell uncertainty was also 0.5% The cross
section area (for stress calculations) was measured with Vernier
calipers with 0.02 mm resolution.

The measured PLA Young’s modulus was E = 2742 ± 129
MPa, which agrees with the published data (E = 2852± 88 MPa;
Innofil3D, 2017). The mean yield stress is 15 MPa and the mean
flow curve is provided as a Supplementary Material.

3.2. Compression Testing of Domes
The compression tests have been carried out with a Shimadzu
Universal testing equipped with a 10 kN load cell. A very low
displacement rate (3 mm/min) was used to avoid strain rate
effects, as the PLA properties are severely affected by the strain
rate (Richeton et al., 2006). The tests were performed at room
temperature, well below the PLA glass transition temperature of
59◦C (Narladkar et al., 2008).

The use of Digital Image Correlation (DIC) required that the
top and/or the bottom surfaces of the domewere visible. A rig was
designed to allow cameras to view the dome through transparent
acrylic plates, while being out of the way, Figure 5. A steel plate
was used at the base. Three 8 mm diameter steel threaded rods
were used to attach 10 mm thick acrylic plates. The base diameter
was 250 mm.

Given the relatively low stiffness of the acrylic, it was
important to measure the compliance of the rig, to subtract from
the measured dome displacement. Equation (3) expresses the rig
compliance as displacement δ, in mm, vs. applied force F, in N.

δ = 0.02849F0.545 (3)

The DIC and load/displacement data were captured at 10 Hz.

3.3. Digital Image Correlation (DIC)
A LaVision portable 3D StrainMaster DIC system was used, with
two illumination sources and two M-Lite 5 Megapixel cameras,
20mm lenses and polarizing filters (LaVision, 2017). The kit was
mounted on a leveled stand and placed within the experimental
rig, see Figure 5.

A zeromean normalized sum of squared difference correlation
function (ZNSSD) has been shown to be the most effective for 3D
DIC, because it compensates for errors associated with intensity
change along the deformation (Pan et al., 2010). For an image
subset with dimensions 2M + 1 × 2M + 1 pixels, the ZNSSD
correlation function is given in Equation (4).

C =

∑





f (xi, yj)− fm
√

∑

(f (xi, yj)− fm)2
−

g(x′i, y
′
j)− gm

√

∑

(g(x′i, y
′
j)− gm)2





2

(4)

where all summation is for i and j from −M to M, fm =
1

(2M+1)2

∑

f (xi, yj) and gm =
1

(2M+1)2

∑

g(x′i, y
′
j); and f and

g are pixel intensities in the reference and the target subsets
respectively (Pan et al., 2010).

The DIC method is inherently subjective. Numerous
parameters affect the quality of DIC results, such as the lighting,
the camera exposure (Zhu et al., 2018), the focal length (Reu et al.,
2015), the surface pattern (Lecompte et al., 2006; Sutton et al.,
2009; Reu et al., 2015), as well as the accuracy of the calibration.

A subset size of 13 × 13 pixels was used, as it allows
approximately three dominant features within a single subset.
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FIGURE 5 | The loading rig for the DIC application (Left) and a schematic of the positioning of the cameras (Right).

FIGURE 6 | Schematic of the FE dome compression test.

This was found to be the optimum value in this work and
consistent with best practice in literature (McGinnis et al., 2005).
To increase the spatial resolution, the step between the subsets
was 3 pixels, giving a 10 pixel overlap. A moving average
smoothing kernel of 9 × 9 pixels was used for the strain data.
The main purpose of smoothing in this work is to reduce the
noise produced at the strut edges. The kernel size was chosen to
reduce areas of outlying high strains without noticeably reducing
the accuracy of the displacements.

The refraction effects due to imaging through the acrylic
plates were measured by varying the angle between the camera
optical axis and the normal to the plate. The maximum

difference was 0.6%, i.e., the effects of refraction could be
considered negligible.

The DIC displacement agrees to within 1% with the Shimadzu
displacement, which was validated to within 0.02 mm using
Vernier calipers, 0.03% of the dome height. This comparison is
provided as a Supplementary Material.

4. FE MODELING OF THE EXPERIMENTS

The Abaqus FE package was used (Dassault Systèmes, 2014)
to model the compression of the auxetic cellular domes. Both
implicit and explicit solvers were used, depending on the analysis.
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FIGURE 7 | FE vs. experimental load/displacement results for (A) arrow-head and (B) re-entrant topologies.

FIGURE 8 | DIC vs. FE vertical displacements (DIC on the left and FE on the right), showing (A,B) at the onset of buckling, and (C,D) when the dome center touches

the bottom plate.

Continuum 3D 10-node quadratic tetrahedral elements (Abaqus
type C3D10) were used and isotropic homogeneous material
properties were assumed, with isotropic hardening. An analysis
of the material’s Poisson’s ratio concluded that it has a negligible
effect on the buckling load or post-buckling behavior. Therefore,
the reference value of ν = 0.3 was used in all simulations (Farah
et al., 2016). While a mesh sensitivity analysis (provided as a
Supplementary Material) shows that a global mesh size of 1.5
mm was acceptable for post-buckling analysis.

The static analysis was performed using Newton-Raphson
and Riks methods. The Riks method is typically used to
model the snap through buckling in solid domes. However,
since lattice domes (and auxetic domes in particular) exhibit
a much weaker snap through effect, the Newton-Raphson
method with displacement control was found in this work
to be sufficiently stable. Element deletion was used for
modeling fracture propagation with the explicit dynamic solver
(Abaqus/Explicit). Fracture simulations used the Johnson-Cook
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FIGURE 9 | DIC vs. FE displacement at 3 points on the domes, showing: (A) arrow-head, (B) re-entrant, and (C) tri-chiral topologies.

FIGURE 10 | DIC vs FE engineering strain on struts belonging to the central cell, for (Left) re-entrant topology (axial strut), (Middle) re-entrant topology (diagonal

strut), and (Right) tri-chiral topology (single strut).
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FIGURE 11 | FE (Left) vs. DIC (Right) ǫ1 at buckling for 3 topologies: arrow-head in the top row, re-entrant in the middle row and tri-chiral in the bottom row. The

most interesting features have been circled.

(JC) hardening and the JC failure criterion (Johnson and
Cook, 1985) due to their simplicity and ready availability in
the Abaqus explicit dynamic solver (tuning JC is described
in Supplementary Material).

Schematics of the FE compression test is shown in Figure 6,
where the bottom plate was fixed and the top plate was moved
vertically down under displacement control. Both plates were
modeled as rigid bodies and the interaction between them
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FIGURE 12 | FE (Left) vs. DIC (Right) ǫ23 at buckling for 3 topologies: arrow-head in the top row, re-entrant in the middle row and tri-chiral in the bottom row.

and the dome was defined as friction contact. the friction
coefficient, µ, of the interaction was found to have a significant
affect on buckling in the FE simulations, with higher friction
increasing the buckling load and the post-buckling stiffness. It
was found that µ = 0.4 gives the best agreement between

the FE results and the DIC data regarding the change in dome
base diameter.

Once the FE model was calibrated, several parametric studies
were performed (presented as a Supplementary Material)
showcasing their affect on the dome performance.
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TABLE 1 | Mean values and uncertainty of the Poisson’s ratio, for 2D lattices, and

of anisotropy for the domes.

2D lattices Domes

Topology ν Uncertainty [%] a Uncertainty [%]

Re-entrant –0.425 3.1 –0.499 12.8

Arrow-head –0.315 9.8 –0.285 6.5

Tri-chiral –0.72 11.1 –0.987 3.1

Hexagonal 0.8–1 (Ashby,

1983)

N/A –0.95 6.7

5. RESULTS

Figure 7 shows a very good agreement between the FE and the
experimental results for the arrow-head and re-entrant domes.
The experimental data error bars represent here the standard
deviation from 5 experiments. For the FE, the error bars represent
the mean and the upper and the lower bounds of the flow
curve. Note that the re-entrant topology exhibits virtually no snap
through behavior, and even the arrow-head topology shows a
much lower snap though compared to the one exhibited by a solid
dome (Figure 2).

The 3D printing using PLA produces struts of uneven
thickness. Our measurements showed that the mean strut
thickness was 2.14mmwith a standard deviation of 0.07mm. The
FE strut also thickness varied due to the limitations of converting
a CADmodel into a FE mesh. The mean thickness of the struts in
the Finite Element models was in reality equal to 2.12 mm, with a
standard deviation of 0.14 mm. This small systematic error might
explain the higher experimental loads observed in Figure 7.

The Finite Element results have been computed by
considering both large geometric deformations and the non-
linear mechanical properties of the PLA material. A question
may arise about the importance in the mechanical response of
the architecture of the domes vs. the core material behavior.
To this end we have performed simulations related to arrow,
re-entrant and trichiral configurations under large geometric
deformations, but with linear elastic material only (see Figure S5
right). The equivalent Young’s modulus of the PLA has also
been varied to assess any material scaling effect on the response.
The results clearly show that up to a scaled displacement of
0.4–0.5 the response of the dome is negligibly dependent of the
mechanical properties (both linear and non-linear—Figure 7).
The first post-buckling occurrence in the response is scarcely
dependent upon the linearity or non-linearity of the core
materials properties, and appear at the same scaled displacement
value. These are clear indications that the force/displacement
behavior of these cellular domes under indentation is essentially
governed by the architecture of the lattice.

Figure 8 shows a very good qualitative agreement of the
displacement contour plots between DIC and FE, and an
excellent quantitative agreement is seen in Figure 9, which shows
vertical (z) displacement at the center of the dome (G1), and
points located 2 struts away from the top (G2), and 4 struts away
from the top (G3). The DIC error bars are standard deviations
from 5 experiments.

Figure 10 shows a very good match between the DIC and FE
engineering strains in the struts of the central cell, up to the end
of the simulation/experiment, (Figure 7). The time variable in
the graphs corresponds to the displacement steps of the indentor
surface. One can also notice a dramatic change in the strain
histories between the 3 different auxetic topologies.

Figure 11 compares FE vs. DIC ǫ1 and Figure 12 compares
FE vs. DIC ǫ13, or ǫxz , where z is the vertical direction.
Note that the LaVision’s “normal” in Figure 11 means principal
(LaVision, 2017). All contour plots show the onset of buckling,
and the matching color bars are used for FE and DIC for
ease of comparison. Regions of particular interest are circled in
these figures.

Two-dimensional (flat) lattice specimens were also printed
and tested under tension to measure the lateral contraction
and determine an equivalent Poisson’s ratio, ν for the lattice
structures (Table 1). Analytical models of 2D tri-chiral lattices
report ν = −1 (Prall and Lakes, 1997), whereas our 2D tests
give ν = −0.72. However, Prall and Lakes (1997) assumed zero
specimen thickness; for higher thicknesses or lower slenderness
ratios of the struts the shear deformation of the cross section
becomes important (Scarpa et al., 2000).

The coefficient a for the domes is defined as the ratio between
the diameter extension along x to the diameter contraction in
y under a compression along z. Thus, a is an indicator of
anisotropy, as well as of the Poisson’s ratio of the dome lattices.
The hexagonal lattice has a ≈ −1, because it is an isotropic
topology, which expands equally in x and y under compression.
Note that the 3 auxetic lattices show similar trends for ν and a.

Fracture was observed experimentally during the testing of
the re-entrant, hexagonal, and tri-chiral domes. An example is
shown in Figure 13B, which is a DIC shear strain map. The
region circled in red, on the outer rim of the dome, was where the
ductile fracture first appeared. Soon after, the fracture propagated
fast toward the center of the dome along the path indicated by the
black dashed line. These later fractures were all brittle.

Explicit dynamic FE simulations of fracture were then carried
out using the JC failure criterion, on the 3 topologies (Figure 13).
In all cases the fracture initiation was predicted at the outer
rim. Fracture propagation was simulated using the element
removal technique. The solid and the arrow-head domes showed
a significant plastic strain prior to fracture, whereas, the tri-chiral
dome fractured with little plasticity. This could be attributed
to the rotation of the tri-chiral cells, which represents another
deformation mechanism to absorb energy, aside from the
bending/stretching/shear of the struts.

The SEM images of the PLA fracture surfaces are provided as
Supplementary Material. The amount of plastic deformation in
the 3D printed PLA depends on the print direction. Voids and
coalescence are signs of ductile fracture in 3D printed polymers
(Torrado Perez et al., 2014; Gao and Qiang, 2017). Brittle fracture
is seen as the presence of “river lines,” which are a sign of two
surfaces being rapidly torn apart, like those on a cleavage fracture
in crystalline materials. There is evidence of both ductile and
brittle fractures in the SEM images.

Figure 14 compares compression response of domes with
4 lattice topologies (3 auxetic and hexagonal). The tri-chiral
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FIGURE 13 | FE vs. DIC fracture initiation, showing: (A) FE re-entrant, (B) DIC re-entrant, (C) hexagonal, and (D) tri-chiral topologies. FE data is the value for the JC

fracture criterion. DIC data is the maximum shear strain.

FIGURE 14 | FE (Left) and experimental (Right) load/displacement curves from buckling tests for 4 dome topologies.
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topology shows a load which is monotonically increasing (within
the data uncertainty), with little indication of buckling. The other
3 topologies show similar response, even though the hexagonal
lattice is not auxetic.

6. CONCLUSIONS

An accurate and optimized DIC method was produced and
used to successfully validate the FE models of auxetic cellular
domes. Very good agreement was achieved between DIC and
FE for the onset of buckling and post-buckling response,
including strain, displacement, and loads. Experimental
results are highly dependent on the errors and inaccuracies
in 3D printing.

Auxetic cellular domes offer less indentation resistance under
compressive loading than solid domes. They also show reduced
snap-through in comparison with conventional lattices and
solid domes. Tri-chiral topologies show higher resistance to
compression than conventional lattices, which in turn show
marginally higher resistance than the re-entrant topologies. The
smallest snap-through effect is observed with the re-entrant
topology. The cell density and dome curvature (contact size)
were shown to affect the compressive resistance and the severity
of snap-through.

We are currently working on assessing the dynamic response
of auxetic lattices, using a similar experimental and modeling
setup. These results will be presented in a follow-up publication.
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