
ORIGINAL RESEARCH
published: 25 June 2019

doi: 10.3389/fmats.2019.00145

Frontiers in Materials | www.frontiersin.org 1 June 2019 | Volume 6 | Article 145

Edited by:

Benjamin Klusemann,

Leuphana University, Germany

Reviewed by:

Stefan Sandfeld,

Freiberg University of Mining and

Technology, Germany

Tim Dahmen,

German Research Centre for Artificial

Intelligence, Germany

*Correspondence:

Orkun Furat

orkun.furat@uni-ulm.de

Specialty section:

This article was submitted to

Computational Materials Science,

a section of the journal

Frontiers in Materials

Received: 04 February 2019

Accepted: 07 June 2019

Published: 25 June 2019

Citation:

Furat O, Wang M, Neumann M,

Petrich L, Weber M, Krill CE III and

Schmidt V (2019) Machine Learning

Techniques for the Segmentation of

Tomographic Image Data of Functional

Materials. Front. Mater. 6:145.

doi: 10.3389/fmats.2019.00145

Machine Learning Techniques for the
Segmentation of Tomographic Image
Data of Functional Materials
Orkun Furat 1*, Mingyan Wang 2, Matthias Neumann 1, Lukas Petrich 1, Matthias Weber 1,

Carl E. Krill III 2 and Volker Schmidt 1

1 Institute of Stochastics, Ulm University, Ulm, Germany, 2 Institute of Functional Nanosystems, Ulm University, Ulm, Germany

In this paper, various kinds of applications are presented, in which tomographic image

data depicting microstructures of materials are semantically segmented by combining

machine learning methods and conventional image processing steps. The main focus of

this paper is the grain-wise segmentation of time-resolved CT data of an AlCu specimen

which was obtained in between several Ostwald ripening steps. The poorly visible grain

boundaries in 3D CT data were enhanced using convolutional neural networks (CNNs).

The CNN architectures considered in this paper are a 2D U-Net, a multichannel 2D

U-Net and a 3D U-Net where the latter was trained at a lower resolution due to memory

limitations. For training the CNNs, ground truth information was derived from 3D X-ray

diffraction (3DXRD) measurements. The grain boundary images enhanced by the CNNs

were then segmented using a marker-based watershed algorithm with an additional

postprocessing step for reducing oversegmentation. The segmentation results obtained

by this procedure were quantitatively compared to ground truth information derived by

the 3DXRD measurements. A quantitative comparison between segmentation results

indicates that the 3D U-Net performs best among the considered U-Net architectures.

Additionally, a scenario, in which “ground truth” data is only available in one time step, is

considered. Therefore, a CNN was trained only with CT and 3DXRD data from the last

measured time step. The trained network and the image processing steps were then

applied to the entire series of CT scans. The resulting segmentations exhibited a similar

quality compared to those obtained by the network which was trained with the entire

series of CT scans.

Keywords: machine learning, segmentation, X-ray microtomography, polycrystalline microstructure, Ostwald

ripening, statistical image analysis

1. INTRODUCTION

In materials science, supervised machine learning techniques are used to describe relationships
between the microstructure of materials and their physical properties (Stenzel et al., 2017;
Xue et al., 2017). Roughly speaking, these techniques provide high-parametric regression or
classification models. However, to analyze the microstructure and to determine quantitative
descriptors for its morphology or texture, one often requires image acquisition techniques like
X-ray microtomography or electron backscatter diffraction (EBSD). Therefore, image processing
is necessary for analysis, which generally entails some sort of semantic segmentation of image
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data. The non-trivial task of segmentation can range from
determining the material phases that are present in image data
to the detection and extraction of single particles, grains or
fibers. The quality of the segmentation has a significant influence
on the subsequent analysis of the material’s microstructure and
macroscopic physical properties.

Thus, in the present paper, we focus on machine learning
techniques that provide assistance in the segmentation of image
data. In recent years, numerous approaches for various fields
have been considered that deal with this issue, where specifically
convolutional neural networks (CNNs, Goodfellow et al., 2016)
enjoy an increased popularity. In the field of object detection
in 2D images the Region-CNN (R-CNN, Girshick et al., 2014)
was successfully used for determining bounding boxes around
objects of interest. In recent years this architecture was enhanced,
resulting in the Fast R-CNN (Girshick, 2015) and Faster R-
CNN (Ren et al., 2017). However, in many applications it
does not suffice to obtain a bounding box around objects
of interest—a much finer segmentation was achieved by He
et al. (2017) who extended the Faster R-CNN architecture to
assign image pixels to object instances detected in 2D image
data. Recently, another CNN architecture, namely the U-Net
(Ronneberger et al., 2015) was used for the segmentation of
biomedical 2D image data. In later works, variations of the U-
Net were introduced which are able to process and segment
volumetric image data, see Çiçek et al. (2016) and Falk et al.
(2019). Furthermore, conventional segmentation techniques,
like the watershed transform (Beucher and Lantuéjoul, 1979),
have been utilized in combination with methods from machine
learning in segmentation tasks, see Naylor et al. (2017) and
Nunez-Iglesias et al. (2013).

In the present paper, we give a short overview of several
applications in the field of materials science in which we
successfully combined methods of statistical learning—
including random forests, feedforward and convolutional neural
networks—with conventional image processing techniques
for segmentation, classification and object detection tasks, see
e.g., Furat et al. (2018), Neumann et al. (2019), and Petrich
et al. (2017). This shows the flexibility of the approach of
combining conventional image processing with machine
learning techniques, where the latter can be used either for
preprocessing image data to increase the performance of
conventional image processing algorithms or for postprocessing
segmentations obtained by conventional means in order to
improve segmentation qualities.

Based on our experience from previous studies, we apply
similar techniques to the segmentation of time-resolved
tomographic image data of polycrystalline materials. More
precisely, the focus of the present paper is on data of an
AlCu alloy that was repeatedly imaged by X-ray computed
tomography (CT) following periods of Ostwald ripening. In
order to investigate the relationship between grain geometry and
functional properties, the study of grain boundary movement—
caused by the growth of grains during the ripening process—is of
particular interest (Werz et al., 2014). Therefore, it is necessary
to segment the CT image data into single grains. Due to the poor
visibility of grain boundaries at high volume fractions in CT

data (Werz et al., 2014), this task is demanding, especially when
targeted using conventional image processing approaches.

Consequently, we will utilize convolutional neural networks,
in particular architectures based on the U-Net (Ronneberger
et al., 2015), for enhancing and predicting grain boundaries from
CT data obtained after several ripening steps. More precisely,
we use single- and multichannel U-Nets which receive 2D input
and can be applied slice-by-slice to image stacks. Additionally,
we trained a 3D U-Net which can evaluate volumetric data at
a lower resolution, due to higher memory consumption. For
training the neural networks we use “ground truth” information
derived from 3D X-ray diffraction (3DXRD) microscopy, which
allows grains and their boundaries to be extracted from the
technique’s measurement of local crystallographic orientation.
The trained networks can then recover grain boundaries of
poor visibility in CT data reasonably well, without drawing on
additional 3DXRD information.

The rest of this paper is organized as follows. In section 2, we
give a short overview of some applications that combine machine
learning methods with conventional techniques of image
processing for the semantic segmentation and classification
of image data. Section 2.1 deals with the trinarization
of the microstructure of Ibuprofen tablets using random
forests and the watershed algorithm (Neumann et al., 2019).
Then, in section 2.2, particulate systems of minerals are
considered that are of interest in the mining industry. Here,
a feedforward neural network is used to refine particle-wise
segmentations obtained from the watershed algorithm (Furat
et al., 2018). The watershed algorithm and feedforward neural
networks are also combined in section 2.3. However, in
the latter case, the focus lies on the detection of particle
cracks in the 3D microstructure of lithium-ion batteries
(Petrich et al., 2017).

The main results of the present paper are given in section 3.
To begin with, in section 3.1, we describe the problem at hand
when considering CT image data of AlCu alloys. In section 3.2,
we utilize 3DXRDmicroscopy data to train three neural networks
to extract grain boundaries from CT image data: a 2D U-Net
for slice-by-slice evaluation, a multichannel 2D U-Net which
can process consecutive slices and a 3D U-Net which uses
full 3D information at a lower resolution. The grain boundary
predictions of these networks are then segmented into single
grains with conventional image processing tools (Spettl et al.,
2015). In section 3.3, we quantitatively compare the presented
methods by matching segmented grains to the “ground truth”
obtained by 3DXRD measurement. Then, in section 3.4 we
discuss how similar approaches can be utilized in other fields
in which “ground truth” measurements are not easily feasible.
Finally, section 4 concludes.

2. OVERVIEW OF PREVIOUS RESULTS

In this section, we give a short overview of different applications
in the field of materials science in which we successfully
combined methods of statistical learning, including random
forests, feedforward and convolutional neural networks with
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conventional image processing techniques for segmentation,
classification and object detection tasks.

2.1. Segmentation of Ibuprofen Tablets
In Neumann et al. (2019), a hybrid algorithm combining
machine learning techniques with conventional tools of image
analysis has been used to trinarize tomographic image data
representing the microstructure of Ibuprofen tablets, i.e., to
classify each voxel of the grayscale image as one of the three
phases the tablet consists of. These phases are microcrystalline
cellulose (MCC), Ibuprofen (API) and pores. In the following, we
describe the challenges of this particular trinarization problem
and briefly summarize the developed hybrid trinarization
algorithm. Moreover, we discuss to which extent it improves
the algorithms which are based either on machine learning
techniques or on conventional image analysis. For details, we
refer to Neumann et al. (2019).

A 2D slice of the 3D image data, which is obtained by
synchrotron tomography and represents the microstructure of
Ibuprofen tablets, is visualized in Figure 1. The image data
consists of cubic voxels with a side length of 0.438 µm, while
the resolution limit is at about 2 µm. Although there is a
good contrast between the three constituents of the tablets, it is
challenging to perform an algorithmic tinarization, mainly due
to the following two aspects. First, the grayscale values of some
voxels within MCC are in the same range as the grayscale values
of those voxels which belong clearly to API. Second, long thin
pores occur at the boundary of MCC particles, the corresponding
grayscale values of which are similar to the ones of API. These
two aspects suggest that in this application it is not reasonable to
rely only on thresholding of grayscale values in order to obtain a
physically coherent trinarization.

To deal with these challenges by means of machine learning,
a random forest algorithm is used, i.e., a classification algorithm
is considered which is based on a large number of randomized
decision trees (James et al., 2013). To train the random forest
algorithm, N voxels of a 2D slice of the image are manually
classified by visual inspection. On the same 2D slice,M different
filters are applied. Doing so, we obtain for each of the N
manually classified voxels, an (M+1)-dimensional feature vector.
It contains the original grayscale value of the voxel as well as
the M grayscale values after application of the M filters. The
random forest is trained to classify the voxels, i.e., to trinarize
the image, by means of these feature vectors. For this purpose,
Ilastik (Sommer et al., 2011) is used in combination with the
parallelized random forest implemented in the computer vision
library VIGRA. The results of the random forest algorithm
are visualized in Figure 1B. One can observe that it leads
to a satisfactorily well trinarization. Regarding the challenges
mentioned above, the random forest algorithm leads to a good
classification of MCC particles, even if an occurrence of API
inside them is suggested by small grayscale values. Moreover,
the long and thin pores at the boundary of MCC particles are
reflected well in the trinarized image, since the algorithm is
trained to detect such thin pores. However, this leads to wrongly
detected pore voxels at the boundary between MCC and API
when there is no indication for pores, neither by grayscale

values nor by physical reasons. This effect can be removed by
combining the random forest algorithm with a trinarization
which is based on conventional image analysis and using the
watershed algorithm.

The main idea of the watershed-based trinarization is as
follows. At first, the pore space is determined via global
thresholding. Here the threshold value is manually chosen by
visual inspection. In the second step, regions, in which the
deviation of grayscale values is relatively small, are determined by
the watershed algorithm (Beucher and Lantuéjoul, 1979; Meyer,
1994; Beare and Lehmann, 2006). Then, each of these regions
is either classified as API or MCC according to their average
grayscale values. The results of the watershed-based trinarization,
visualized in Figure 1, shows that this approach leads to an
appropriate trinarization, when only the grayscale values are
considered without any additional physical information about
the material. But, the random forest trinarization is significantly
better with respect to the detection of MCC particles and
long, thin pores. Nevertheless, the watershed-based trinarization
does not detect unrealistic pores at the boundary between API
and MCC. Thus, the information obtained by the watershed-
based trinarization can be used to further improve the random
forest trinarization.

In particular, each pore voxel v of the random forest
trinarization is relabeled as API voxel if the closest pore voxel
in the watershed-based trinarization has a distance of more than
8.76 µm and the closest voxel classified as API in the random
forest trinarization has a distance of at most 8.76 µm. The
latter condition is necessary since pores within MCC, which are
not detected by the watershed-based trinarization should not
be removed. The value of 8.76 µm is manually chosen and is
justified by visual inspection of the obtained result. A 2D slice of
the final trinarization is shown in Figure 1D. The combination
of the random forest trinarization with the watershed-based
trinarizationmeets the required challenges of classifying the three
constituents of Ibuprofen tablets. Based on the trinarized image, a
characterization of the 3D microstructure of Ibuprofen tablets is
performed bymeans of spatial statistics in Neumann et al. (2019).

2.2. Segmentation of Mineral Particle
Systems
In the previous section, we discussed how to combine tools of
conventional image processing withmachine learning techniques
to determine the material’s phases in tomographic image data.
However, in many applications a much finer segmentation is
required, e.g., for tomographic images of particle or grain systems
the segmentation has to correctly separate these objects from
the background and from each other. For such segmentation
problems, modified versions of the watershed algorithm, which
entail some sort of pre- or postprocessing of image data, often
yield good results (Roerdink and Meijster, 2000; Rowenhorst
et al., 2006b; Spettl et al., 2015; Kuchler et al., 2018). The
preprocessing steps are necessary to determine unique markers
for each particle or grain, from which the watershed algorithm
grows regions which lead to a segmentation of the image.
A carefully adjusted marker detection is required: If multiple
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FIGURE 1 | 2D slice of a cutout of the grayscale image (A) and the

corresponding results of the three different trinarization algorithms, namely the

trinarization by statistical learning (B), by the aid of a watershed algorithm (C),

and by a hybrid approach (D). In the trinarized images (B–D), black, dark gray

and bright gray indicate the pore space, API and MCC, respectively.

markers are determined in a single particle, the watershed
splits the particle into multiple fragments, see Figure 2B. This
issue is referred to as oversegmentation. On the other hand,
too few markers lead to a segmentation, in which multiple
particles are assigned to a single region. The marker detection is
especially difficult if the particles depicted in the image data have
irregular, for example elongated or plate-like, shapes. Therefore,
a postprocessing step is required to correct the mentioned issues,
e.g., by merging regions to overcome oversegmentation.

In Furat et al. (2018) X-ray microtomography (XMT) image
data of a mixture of particles was considered. These particles
comprise of ores and other minerals and have a size of about
100 µm, see Figure 2A. In order to analyze particle properties
from such image data, for example, the distributions of volume
or some shape characteristics, one needs to extract single particles
from image data via segmentation. However, the watershed
algorithm often fails for the considered data, since, for example,
elongated particles are segmented into multiple fragments.
In Furat et al. (2018) a postprocessing step was described
which utilizes machine learning techniques, more precisely a
feedforward neural network, to eliminate oversegmentation.

Therefore, an oversegmented image Iover of a tomographic
grayscale image I of the sample under consideration, was
represented by an undirected graph G = (V ,E), where each
vertex v ∈ V represents a region of the oversegmented image
Iover. Furthermore, the set E contains an edge e = (v1, v2)

between two vertices v1, v2 ∈ V if the corresponding regions are
adjacent in the oversegmented image Iover. The goal of the neural
network was the elimination of edges between adjacent regions
which belong to different particles, while preserving those which
lie in the same one. This lead to a reduced set of edges Ẽ ⊂ E.
A remaining edge (v1, v2) ∈ Ẽ indicated that the corresponding
adjacent regions should be merged in the oversegmented image.
For the neural network to decide whether to remove an edge
e ∈ E, it required input, in form of feature vectors xe ∈ R

p,
obtained from the original grayscale image I.

Among the components of the input vectors xe, local contrast
information was stored. More precisely, the absolute gradient
image of I was computed using Sobel operators, see Soille (2013).
For an edge e = (v1, v2) the voxels in the vicinity of the interface
between the two regions surrounding the vertices v1 and v2 were
considered for the computation of the first four moments of
the absolute gradient values in this local neighborhood. These
values were stored in the feature vector xe. Furthermore, xe was
appended with the relative frequencies of the histogram of the
local absolute gradient values. Analogously, local information of
the first four moments and relative frequencies of the histogram
of local grayscale values of the original image I were stored
in xe. Note that the previously described features of the vector
xe contain only local contrast information. Therefore, some
local geometry features were included in a similar manner.
By computing local curvatures, the first four moments and
histogram frequencies of curvatures were obtained in the vicinity
of the interface between v1 and v2. Another geometrical feature
which was considered, characterizes the shape of the interface
itself. More precisely, a principle component analysis (PCA) of
the voxels (Hastie et al., 2009), which form the interface between
the adjacent regions, was performed. The eigenvalues obtained
by the PCA were stored in the feature vector xe.

Then the classification problem was formulated as

f (xe) =

{

1, if v1, v2 belong to the same particle,
0, else,

(1)

for each edge e = (v1, v2) ∈ E. As a model for the classifier
f a feedforward network was chosen and the target values for
feature vectors xe were determined by manually segmenting a
small cut-out of the image data. The trained network f was then
used to classify which edges e should be removed, i.e., edges with
f (xe) = 0. Figure 2B depicts the initial graph, in which edges are
set between adjacent regions. After the edge reduction with the
neural network, regions connected by an edge ewith f (xe) = 1 get
merged, thus leading to a less oversegmented system of particles,
see Figure 2C.

2.3. Crack Detection in Lithium-Ion Cells
In sections 2.1 and 2.2, machine learning is applied to image
segmentation problems. In this section we present an approach
that goes one step further and employs similar techniques,
but instead of identifying individual particles, the relationship
between two particles is investigated, which allows to localize
regions of interest in electrodes of lithium-ion batteries.

Lithium-ion batteries are among the most commonly used
types of batteries since they combine several beneficial properties,
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FIGURE 2 | (A) 2D cut-out of tomographic image data of ore particles. (B) Oversegmented image obtained by the watershed transformation. Red lines are set

between adjacent regions. Note that some regions are adjacent in 3D but not in the visualized planar section. (C) Segmentation after a postprocessing step using a

neural network.

FIGURE 3 | Overview of the model development for the crack detection in lithium-ion batteries. Reprinted from Petrich et al. (2017), Figure 1, with permission from

Elsevier.

such as high energy density and low self-discharge. However, one
of their biggest disadvantages is their vulnerability to thermal
runaway caused, e.g., by overheating or overcharging, which can
lead to disastrous incidents like fires or even explosions. An active
research field deals with the design of lithium-ion batteries with
minimal risk of failure. It is known that during thermal runaway
the particles in the electrode material break (Finegan et al., 2016),
and the resulting increase in surface area intensifies the heat
generation (Jiang and Dahn, 2004; Geder et al., 2014). However,
many questions are still unanswered and an in-depth analysis
on how the microstructure of the electrodes affects the safety of
the battery requires information on the locations of the broken
particles in post-mortem cells.

For this purpose, in Petrich et al. (2017) a method is
presented that allows an automatic detection of particle cracks
in tomographic image data of lithium-ion batteries and thus
reduces the amount of manual labeling, which is tedious at

best or outright infeasible for large datasets. More precisely, a
commercial LiCoO2 cell was overcharged, which led to a thermal
runaway. The post-mortem sample was imaged in a lab-based
X-ray nano-CT system and to prepare the data for further
analysis it was denoised, binarized, and individual particles were
segmented. In Petrich et al. (2017), pairs of adjacent particles are
considered and categorized in one of the following classes.

• The particle pair belonged to the same particle in the real
microstructure, but it broke apart during the thermal runaway.
(BROKEN)

• The particle pair is actually a single particle in the tomographic
image, but it was split during the image preprocessing.
(PREPROCESSSEP)

• The particle pair consists of unrelated, separate particles,
i.e., a pair which is neither BROKEN nor PREPROCESSSEP.
(PARTICLESEP)
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The goal is to automatically classify pairs of particles with
methods from machine learning, which require hand-labeling
only for a small subset of the data. In the presented case, an
expert labeled 294 particle pairs. An important part of many
machine learning applications is to translate the problem at
hand to quantitative features. In order to facilitate this feature
engineering step, synthetic data was used, for which it is possible
to generate arbitrarily many particle pairs and their true class
labels. This means that the quality of several features on a
bigger artificial dataset (3693 instances) was investigated by
training many different classification models and evaluating their
performance. The best features were selected and a new model
was trained and tested on the hand-labeled dataset, which was
used for validation. An overview of the approach is visualized
in Figure 3.

For the simulated dataset, first, a system of individual pristine
particles was generated based on the stochastic microstructure
model introduced in Feinauer et al. (2015a) and Feinauer et al.
(2015b), then a certain percentage of particles were broken in
two parts as described in Petrich et al. (2017). The individual
particles were discretized in a single 3D image and the same
image preprocessing was performed as on the tomographic image
data. Because in each step—the particle creation, the breakage,
and the image preprocessing—the relationships of the particles
to their neighbors were tracked, it is possible to generate a list of
particle pairs and their true class label. This list was subsampled
such that there were the same number of instances for each class.

Based on this simulated dataset numerical features were
designed. For these, not only the individual particles were
considered, but also a combination of the two, which here means
the morphological closing (Soille, 2013) of the two particles.
Some features are straight forward, like the fraction of the
volume of the smaller particle to the volume of the larger one
or the volume of the combined particles divided by the sum
of the individual volumes. The same ratios were calculated for
the surface area. The next quantity is more complicated, but
also showed more predictive power. Here, for each voxel on
the boundary of the particles the distance to the other particle
is computed and the histogram of these values forms another
(multidimensional) feature.

As in section 2.2 for the classification a multilayer perceptron
(MLP), i.e., a feed-forward neural network with one hidden
layer, was chosen. For an introduction to MLPs and machine
learning in general, see Bishop (2006) and Hastie et al. (2009).
The input for the classifier was the standardization of the feature
vector described above. The sigmoid function is used for the
non-linear activation functions in the input and hidden layer,
and the softmax function for the output layer. The network
was trained with the quasi-Newton method L-BFGS (Nocedal
and Wright, 2006), which minimizes the cross-entropy loss with
L2 regularization. The hyperparameters (i.e., number of hidden
neurons and weight of the L2 regularization term) were tuned
with a 5-fold stratified cross-validation maximizing the accuracy.

With this setup two classifiers were built, one for the simulated
and one for the hand-labeled dataset. In each set 75% of the
instances were used to train the classifier and the rest to evaluate
its performance. The results for the simulated dataset (2769

samples for training, 924 for testing) are shown in Table 1.
The overall accuracy is 82.1%. The evaluation results for the
hand-labeled data (220 samples for training, 74 for testing) are
presented in Table 2. Here, the classifier achieved an accuracy
of 73.0%.

All in all, a good prediction performance is observed. It is not
surprising that the hand-labeled data is harder to classify than the
simulated dataset since especially the breakage algorithm gives
only an approximation to the real degraded microstructure of
the electrode of a lithium-ion battery. However, the similarity of
the results shows that it is a valid strategy to perform the feature
engineering on the simulated dataset. As it can be seen inTable 2,
the classifier mostly struggles with separating PREPROCESSSEP
and BROKEN classes, but this is hard, even for humans, as can
be seen in Figures 4B,C. Further examples of particle pairs with
their true and predicted classes are depicted in Figure 4.

3. SEGMENTATION OF TIME-RESOLVED
TOMOGRAPHIC IMAGE DATA

3.1. Description of the Problem
Tomographic image data of materials provides extensive
information regarding microstructure, from which the latter’s
influence on a given sample’s functional properties can be
assessed. However, in most applications, this type of analysis
becomes possible only after successful segmentation of the image
data. Moreover, for some materials it can be difficult to obtain
adequate CT data for analysis—for example, when the material is
comprised of phases covering a broad spectrum ofmass densities,
which can lead to beam-hardening artifacts. Other issues can
occur when a given specimen is homogeneous in density or
X-ray attenuation, which causes low contrast in the resulting
image data. The latter is a challenge in the case of polycrystalline
materials, for which the grain microstructure manifests itself

TABLE 1 | Performance metrics for the classifier based on the simulated test data.

Precision Recall F1 Support

BROKEN 0.859 0.893 0.876 308

PREPROCESSSEP 0.749 0.727 0.738 308

PARTICLESEP 0.852 0.844 0.848 308

Average/total 0.820 0.821 0.821 924

Reprinted from Petrich et al. (2017), Table 1, with permission from Elsevier.

TABLE 2 | Performance metrics for the classifier based on the hand-labeled test

data.

Precision Recall F1 Support

BROKEN 0.630 0.680 0.654 25

PREPROCESSSEP 0.600 0.625 0.612 24

PARTICLESEP 1.000 0.880 0.936 25

Average/total 0.745 0.730 0.736 74

Reprinted from Petrich et al. (2017), Table 2, with permission from Elsevier.
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FIGURE 4 | 2D slices of three misclassified (A–C) and three correctly classified (D–F) examples of particle pairs from the hand-labeled dataset with their true and

predicted class label. Reprinted from Petrich et al. (2017), Figure 11, with permission from Elsevier.

through heterogeneities in crystallographic orientation. The
interfaces between neighboring grains, which are called grain
boundaries, give rise to such small changes in X-ray attenuation
that the boundaries are invisible to standard (i.e., absorption-
contrast) CT measurements. Consequently, techniques
that exploit other grain-to-grain contrast mechanisms—
such as 3D electron backscatter diffraction (3DEBSD) or
3DXRD microscopy—must be utilized to image single-phase
polycrystalline materials (Rowenhorst et al., 2006a; Bhandari
et al., 2007; Schmidt et al., 2008; Poulsen, 2012).

Alternatively, if a particular material has a two-phase region
in which one phase decorates the grain boundaries of the other
phase, then it may be possible to map out the network of
grain boundaries directly using only CT. For example, in Werz
et al. (2014), tomographic measurements were performed on
an Al-5 wt.% Cu alloy at various stages of Ostwald ripening,
during which a liquid layer of a minority phase was present
between the grains of the solid majority phase. X-ray absorption
contrast arose from the higher concentration of Cu in the liquid
than in the solid phase; this contrast was easily visible in CT
reconstructions of the characterized volume, see Figure 5A. The
subsequent image analysis is described in Spettl et al. (2015),
in which modified conventional image processing techniques
were employed to perform a grain-wise segmentation of the
considered image data.

Although the liquid phase is responsible for making the
polycrystalline microstructure visible to X-ray tomography, the
liquid itself can interact strongly with the network of grain
boundaries, thereby exerting a non-negligible influence on
the equilibrium shape of grains or on the migration kinetics
of boundaries during Ostwald ripening. For this reason, we

FIGURE 5 | (A) Two-dimensional cross-section of a CT reconstruction of

Al-5 wt.% Cu with 7% (by volume) of liquid phase; the lighter gray pixels

correspond to liquid regions located mainly at the boundaries between solid

grains (darker gray pixels). (B) The corresponding output of a U-Net which was

trained with 2D cross sectional images.

consider the analysis of CT image data for an Al-5 wt.% Cu
alloy containing only 2% (by volume) of the liquid phase.
This sample was imaged a total of seven times by CT;
between each measurement the specimen experienced 10 min of
Ostwald ripening.

From here on, we refer to the resulting 3D images as
C0, . . . ,C6, see Figure 8 (left column). Note that the grain
boundaries become less distinct during the Ostwald ripening
process, which exacerbates the difficulty of segmenting individual
grains by standard image processing algorithms. Therefore, we
turn our attention to machine learning techniques, namely
convolutional neural networks (CNNs) (Goodfellow et al., 2016),
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FIGURE 6 | (A) Cross-section of C2 depicting the sample after 20 min of Ostwald ripening. These images will be used as training input for the CNN. The blue square

indicates the size of an 80× 80 cutout with respect to the original resolution of the CT data. After downsampling the data to the resolution of 240× 240× 420 voxels

an 80× 80 cutout has the relative size indicated by the red square. (B) Segmentation of the corresponding section obtained via 3DXRD microscopy. (C) Cross-section

of the extracted grain boundary image L2 from the 3DXRD data. The grain boundary images Lt will be used as target images for the input images Ct during training of

the CNN.

FIGURE 7 | Adapted 3D U-Net architecture (Ronneberger et al., 2015): Feature maps are represented by boxes, where the number of channels is indicated by the

number above the box. Blue arrows indicate convolutional layers with kernel size of 3× 3× 3 and ReLu activation functions. Red arrows describe max-pooling layers

of size 2× 2× 2. Up-convolutional layers of size are 2× 2× 2 indicated by green arrows. Merge layers are visualized by gray arrows. The layer (black arrow)

generating the output is a convolutional layer with kernel size 1× 1× 1 and a sigmoid activation function. The sizes of input, feature and output images during training

is given in the boxes. After training the network can receive arbitrarily sized images as input, provided their size in each direction is a multiple of 24 = 16.

to extract grain boundaries from the tomographic images
Ct . In contrast to the method described in section 2.2, in
which a neural network was used as a postprocessing step to
refine a segmentation, CNNs are employed in the present section
as a preprocessing step to enhance and predict grain boundaries.
Another key difference between the methods described here

and in sections 2.2 and 2.3 is that the present CNNs do not
require user-defined image features for their decision making,
but are able to determine their own features. More precisely, the
trainable parameters of a CNN are discrete kernels that can detect
(depending on the kernel size) local features via convolution
with input images. The aggregation of such local features allows
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FIGURE 8 | Cross-sections (slice 350) of the 3D CT input images (Left column). Corresponding sections of the output of the trained 3D U-Net (Middle column). Note

that the white circle surrounding the specimen was added in a separate image-processing step. Ground truth obtained by 3DXRD microscopy (Right column). First

row: Initial state of the sample (t = 0). Second row: Sample after three time steps. Third row: Sample after six time steps.

the detection of larger-scale features. Thus, CNNs are capable
of learning and incorporating multi-scale features into their
decision-making process.

3.2. Materials and Methods
Like every supervised machine learning technique, CNNs require
training data in form of pairs of input and desired target
images. In the context of the present paper, this means that
for each 3D image obtained by CT we require a corresponding
3D image in which the grain boundaries have already been
extracted. Such grain boundary images were obtained by an
additional image acquisition technique: at each imaging step t =
0, . . . , 6, in addition to CT measurements (Ct) the same sample
volume was characterized by 3DXRD microscopy. This paired

information will be used to train CNNs such that they are able to
predict grain boundaries from CT image data without additional
3DXRD imaging. Now, we provide additional details regarding
the nature of the data, the chosen CNN architectures and the
training procedure.

Both CT and 3DXRD measurements were carried out on Al-
5 wt. % Cu at beamline BL20XU of the synchrotron radiation
facility SPring-8. The sample had a cylindrical shape with a
diameter of 1.4 mm. Mounted on a rotating stage, it was
illuminated by a monochromatic X-ray beam with an energy
of 32-keV. We recorded both far-field and near-field diffraction
patterns on 2D detectors. Followed the reconstruction routine
described in Schmidt et al. (2008) and Schmidt (2014), the grain
morphology together with the crystallographic orientation of
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FIGURE 9 | First row: Output of the trained 2D U-Net for three different consecutive CT slices (from left to right). Second row: Output of the trained multichannel

U-Net for predicting the grain boundaries of the consecutive slices considered in the first row.

individual grains was mapped. Heat treatment of the sample
took place at 575◦C, at which temperature the microstructure
consisted of a mixture of solid and liquid phases according
to the Al-Cu phase diagram (Massalski, 1996). Under these
conditions, the sample undergoes slow but steady Ostwald
ripening. After an annealing time of 10 min, the sample was
cooled to room temperature and characterized by both CT and
3DXRD microscopy. In total, the specimen was held for 60 min
at 575◦C and mapped seven times. Due to small misalignments
that occurred each time the sample was removed from the X-ray
beamline for annealing, it was necessary to register sequential CT
and 3DXRDmeasurements according to the method described in
Dake et al. (2016).

Reconstruction and processing of the 3DXRD data yielded
the local crystallographic orientation, from which segmented
3D images of grains and thus grain boundary images Lt were
obtained (Schmidt, 2014), see Figures 6B,C. Since the state
of the specimen did not change between CT and 3DXRD
measurements, the images Lt derived from the latter depict the
true grain boundary systems of the corresponding reconstructed
CT images Ct , for each t = 0, · · · , 6. The CT images Ct had
a size of 960 × 960 × 1678 voxels, with cubic voxels of size
0.75µm.

Due to the registration step of CT and 3DXRD measurements
the grain boundaries visible in Ct are aligned with those of Lt
for each t = 0, · · · , 6. A cross-section of such a matching pair is
visualized in Figures 6A,C. As a consequence, we can formulate

the issue of detecting grain boundaries from CT images as a
regression problem. More precisely, we seek a function f with

f (Ct) ≈ Lt , (2)

for each 3D CT image Ct with values in the interval [0, 1] and
the corresponding binary grain boundary image Lt with values in
{0, 1}, with 1 indicating grain boundaries and 0 grain interiors.

As regressionmodels for the function f we use CNNs based on
the U-Net architecture. In recent years, this architecture has been
used successfully in several segmentation tasks, see Çiçek et al.
(2016) and Ronneberger et al. (2015). The U-Net uses several
max-pooling layers, which downsample the image data. Then,
even small kernels applied to downsampled data can detect large-
scale features—see Figure 7 for the architecture of the considered
U-Net with volumetric input. In order to inspect the capabilities
of the U-Net architecture, we used CT measurements of an Al-
5 wt% Cu sample having a liquid content of 7% (thus grain
boundaries with a good visibility) to train such a neural network
to handle two-dimensional input images. Figure 5 indicates that
this U-Net can predict the location of grain boundaries, even
when they are not visible in CT data. This visual inspection of
the results obtained for 2D input images motivates the use of a
U-Net for three-dimensional CT images of such materials with
the low liquid content of 2%, see Figure 8 (left column).

Now, we describe the architecture of the chosen 3D U-Net for
detecting grain boundaries in 3D data. A size of 3 × 3 × 3 for
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FIGURE 10 | (A) 2D slice through the 3D image L̂t obtained by preprocessing with the 3D U-Net. (B) Binarization of L̂t after applying a global threshold, followed by

morphological closing. (C) Initial grain-wise segmentation obtained by a marker-based watershed segmentation. (D) Final segmentation after postprocessing. (E)

Grain boundaries extracted from the segmentation in (D). (F) Grain boundaries obtained by 3DXRD microscopy.

FIGURE 11 | Boxplots visualizing the quartiles of errors of volumes (A) and barycenters (B) for the considered segmentation techniques.

the trainable kernels of the 3D U-Net depicted in Figure 7 was
chosen. The activation functions of the 3D U-Net’s hidden layers
are rectified linear unit (ReLU) functions (Glorot et al., 2011),
and for the output layer a sigmoid function was chosen, such
that the voxel values of output images are normalized to values
in the interval (0, 1). Due to memory limitations the training
could only be performed on cutouts from the images Ct and Lt

with a size of 80 × 80 × 80 voxels. Since these cutouts cover
relatively small volumes, see Figure 6A, they do not provide the
necessary size for learning large scale features with the 3D U-Net.
In order to remedy this, the CT image data was downsampled
from 960 × 960 × 1678 voxels to 240 × 240 × 420 voxels,
with some manageable loss of information. Analogously, we
upsampled the corresponding grain boundary images Lt , which
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FIGURE 12 | Quantitative analysis of the segmentation procedure based on the 3D U-Net: (A) Kernel density estimation (blue) of relative errors in grain volume. The

red curve is the density of relative errors in volume under the condition that the grain is completely visible in the cylindrical sampling window. (B) Kernel density

estimation (blue) of normalized errors in grain barycenter location. The red curve is the density of the normalized error in barycenter location under the condition that

the grain is completely visible in the cylindrical sampling window. (C) Kernel density estimation of relative errors in grain volume obtained by the segmentation

procedure for each measurement step t = 0, . . . , 6. (D) Kernel density estimation of normalized errors in grain barycenter location obtained by the segmentation

procedure for each measurement step t = 0, . . . , 6.

initially had a voxel size of 5 µm, to obtain the same voxel
and image size. For simplicity, we denote the resampled CT
and grain boundary images by Ct and Lt , respectively. Then,
training was performed on cutouts with 80 × 80 × 80 voxels,
which can represent larger grain boundary structures at this
scale after downsampling, see Figure 6A. The cutouts were taken
randomly from the images Ct and the corresponding sections
of the grain boundary images Lt . Note that, in contrast to the
U-Net architecture proposed in Ronneberger et al. (2015), we
padded the convoluted images of the CNN such that input and
output images have the same size. Thus, the network’s input is
not restricted to images with a size of 80 × 80 × 80 voxels, i.e.,
it can be applied to the entire scaled CT image stack (240 ×

240 × 420 voxels) after training. The only limitation is that the
number of voxels in each direction of the input images must
be a multiple of 24 = 16, which can be achieved by padding
the image stack. This constraint arises from the four 2 × 2 × 2
max-pooling layers—which downsample images—followed by
the four up-convolutional layers, see Figure 7. The number of
max-pooling layers, which we call the depth of the U-Net in
the following, can be increased such that the network can learn
features of a larger scale. Note that in this case, the numbers of

convolutional, up-convolutional and merge layers are adjusted
accordingly. Furthermore, we point out that the cutouts used
for training were taken from image data among all seven time
steps, but only from the first 200 slices of each image stack;
thus, the remaining 220 slices could be used for validation and
testing. In order to increase the efficiency of the available training
data, we utilized data augmentation (Goodfellow et al., 2016)—
i.e., during training, pairs of chosen input and corresponding
target cutouts were transformed randomly, yet pairwise in the
same manner, via rotations/reflections. In this way we increased
the number of available input-target pairs, and, additionally,
the predictions of the neural network became more stable with
respect to rotated images.

As cost function for the training procedure, we chose the
binary cross-entropy (negative log-likelihood) function, see
Goodfellow et al. (2016). The U-Net’s initial kernel weights were
drawn from a truncated normal distribution. Then, training of
the kernel parameters was performed with the Adam stochastic
gradient descent method (Kingma and Ba, 2015), using 50 epochs
with 300 steps per epoch and a batch size of 1. These training
hyperparameters were manually tuned, while the batch size of
1 was chosen due to memory limitations. The network was

Frontiers in Materials | www.frontiersin.org 12 June 2019 | Volume 6 | Article 145

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Furat et al. Machine Learning Techniques for Segmentation

implemented using the Keras package in Python, see Chollet
(2015) and training was performed on a NVidia GeForce GTX
1080 graphics processing unit (GPU).

After the training procedure, we applied the CNN, denoted by
f , to each of the seven available CT images Ct on an Intel Core
i5-7600K CPU; that is, we computed predictions for the grain
boundary network, L̂t , from

L̂t = f (Ct), for each t = 0, . . . , 6. (3)

Figure 8 (middle column) visualizes the outputs L̂t of the
network in a cross-section (slice 350) that was not used for
training. Initial inspection indicates that the predictions of the
neural network become less reliable with increasing time or,
equivalently, with decreasing visibility of grain boundaries in the
CT data. Nevertheless, the predictions are, even for the final time
step, reasonably good.

Since the training and application of the 3D U-Net is coupled
with high memory usage, we reduced, as already mentioned, the
initial resolution of the CT data. Furthermore, Figure 5 indicates
that a 2D U-Net, which can be used at higher resolutions due

FIGURE 13 | (A) 2D cross-section of a CT image containing reconstruction

artifacts and (B) the corresponding prediction of the 3D U-Net.

to fewer memory requirements, is capable of detecting grain
boundaries from 2D slices—at least for grain boundaries with a
good visibility. Therefore, we trained a 2D U-Net using slices,
instead of volumetric cutouts. Since the 2D architecture requires
less memory than the 3D U-Net, for training we used patches
of size 256 × 256 × 1 voxels which were taken from the CT
images being downsampled to the resolution of 480 × 480 ×

839 voxels instead of 240 × 240 × 420 voxels. In order to
allow the 2D U-Net to learn features at a comparable scale as
the 3D U-Net, we increased the depth (as defined above) of
the 2D U-Net from 4 to 5. After training, the 2D U-Net has
been applied slice-by-slice to the seven image stacks, resulting
in volumetric grain boundary predictions. Because the 2D U-
Net evaluates consecutive slices independently, the network’s
output can lead to discontinuous grain boundary predictions,
see Figure 9. To overcome this, we used a 2D U-Net, which
was trained with 2D multichannel images with a size of 256 ×

256 × 11 voxels. More precisely, it was trained with sets of 11
consecutive CT slices and a ground truth slice corresponding to
the 6th input slice. This way, when predicting grain boundaries
in consecutive CT slices, the network receives overlapping and
correlated information which reduces the discontinuities in the
network’s output. In order to give the multichannel U-Net
additional information for its grain boundary predictions we
did not limit it to slice-by-slice predictions in one single axial
direction, namely top-to-bottom, of the image stacks. Thus, to
obtain the final grain boundary predictions of the multichannel
U-Net, the slice-by-slice predictions are computed in three
directions (top-to-bottom, left-to-right, front-to-back). For each
CT image stack, this results in three grain boundary predictions,
which are than averaged resulting in the final volumetric grain
boundary predictions.

As of now the procedures described above do not provide a
grain-wise segmentation. More precisely, the outputs of the U-
Net architectures are 3D images with voxel values in the interval
(0, 1). Therefore, the network predictions must be binarized
in order to localize the grain boundaries, which, however, do
not necessarily enclose grains completely. Therefore, additional

FIGURE 14 | Segmentation results obtained by a 3D U-Net that was trained only with CT/3DXRD data from time step t = 6. (A) Kernel density estimation (blue) of

relative errors in grain volume. The red curve is the density of relative errors in volume under the condition that the grain is completely visible in the cylindrical sampling

window. (B) Kernel density estimation of relative errors in grain volume obtained by the segmentation procedure for each time step t = 0, . . . , 6.
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image processing steps must be carried out in order to obtain a
full segmentation of individual grains.

To that end, we binarize the grain boundary predictions
(Figure 10A) of the networks L̂t with a manually determined
global threshold followed by morphological closing
(Figure 10B). The binarization is followed by a marker-based
watershed transformation (Figure 10C), which is performed
on the (inverted) Euclidean distance transform of the binary
images. In order to reduce oversegmentation in the image
obtained by the watershed transformation, a final postprocessing
step is carried out in which adjacent regions are merged if the
overlap between one region and the convex hull of the neighbor
is too large (Figure 10D). For more details on the marker
selection procedure for the watershed transformation or the
postprocessing step we refer the reader to Spettl et al. (2015).

In order to quantitatively compare segmentations of the
CT images C0, . . . ,C6 obtained by the 3D U-Net, 2D U-Net
and multichannel U-Net followed by the postprocessing steps
described above with segmentations derived from the 3DXRD
measurements, we first match grains among these segmentations.
More precisely, each grain GXRD ⊂ R

3 observed in a
segmentation obtained by 3DXRD microscopy is assigned to a
grain Gseg ⊂ R

3 in the corresponding segmentation of the CT
image data. We formulated this as a linear assignment problem
(Burkard et al., 2012), which minimizes the sum of the volumes
of the symmetric differences of matched grains

ν3(GXRD 1Gseg) = ν3(GXRD \ Gseg)+ ν3(Gseg \ GXRD), (4)

where ν3(·) denotes the volume and GXRD 1Gseg is the
symmetric difference given by

GXRD 1Gseg =
(

GXRD \ Gseg
)

∪
(

Gseg \ GXRD
)

. (5)

Thus, we will be able to quantitatively compare pairs of matched
grains (GXRD,Gseg) which, in turn, allows a comparison of the
presented methods.

3.3. Results
Even though the CNNs described in section 3.2 do not
provide grain-wise segmentation of CT data, they can
significantly enhance CT images such that conventional
image-processing techniques can be readily used to obtain a
grain-wise segmentation. By following the approach described in
Spettl et al. (2015), we obtained grain-wise segmentations of the
considered data set, despite its rather indistinct grain boundaries.
A visual comparison between grain boundaries extracted from
the segmentation utilizing a 3D U-Net and the true grain
boundaries obtained by 3DXRD microscopy indicates that the
segmentation is reasonably good, with some oversegmented
grains remaining, see Figures 10E,F. A more quantitative
comparison becomes available by the grain matching procedure
described in section 3.2, i.e., we will compute quantities to
measure how much grains segmented from CT deviate from
matched grains observed in the ground truth data. More

precisely, we determine for pairs of matched grains the relative
errors rV in grain volume given by

rV =
|ν3(GXRD)− ν3(Gseg)|

ν3(GXRD)
. (6)

Also, we computed errors rc in grain barycenter location
normalized by the volume-equivalent diameter of the grain
GXRD. These values are given by

rc =
‖c(GXRD)− c(Gseg)‖

3
√

6
π
ν3(GXRD)

, (7)

where ‖ · ‖ denotes the Euclidean norm and c(GXRD), c(Gseg)
are the barycenters of the grains GXRD and Gseg, respectively.
Figure 11 visualizes the quartiles of these relative errors in
grain characteristics for the segmentation procedures based
on the trained 3D U-Net, 2D U-Net and multichannel U-
Net. For reference, we also included results obtained by the
conventional segmentation procedure without applying neural
networks, which was conceptualized for grain boundaries with
good visibility and is described in Spettl et al. (2015). These
results indicate that the segmentation procedures based on
the U-Net architecture perform better then the conventional
method. Among the machine learning approaches, the slice-
by-slice approach with the 2D U-Net performs worst with a
median value for rV of 0.37. This could be explained by the
discontinuities of grain boundary predictions for consecutive
slices, see Figure 9. By enhancing the slice-by-slice approach with
the multichannel U-Net, we achieve a significant drop of this
error down to 0.21. The segmentation approach based on the 3D
U-Net performs best with a median error of 0.14, because it is
able to learn 3D features for characterizing the grain boundary
network embedded in the volumetric data.

Kernel density estimations (Botev et al., 2010) of the relative
errors for the 3DU-Net approach are visualized in Figures 12A,B
(blue curves). Furthermore, Figures 12C,D depict these densities
for each of the seven observed time steps t = 0, . . . , 6. Note that,
as expected, the errors show a tendency to grow with increasing
time step. In order to analyze possible edge effects, i.e., a reduced
segmentation quality for grains located at the boundary of the
cylindrical sampling window, we computed error densities only
for grains located in the interior of the sampling window, see
Figures 12A,B. The plots (red curves) indicate that, indeed, the
segmentation procedure based on the 3D U-Net works better for
interior grains. This effect can be explained by the information
that is missing for grains that are cut off by the boundary of the
sampling window.

3.4. Discussion
Although our procedures based on preprocessing with CNNs
followed by conventional image processing do not lead to
perfect grain segmentations, see Figure 12, especially the method
utilizing the 3D U-Net delivers relatively good results when
considering the nature of the available CT data. Furthermore,
the neural network is able to reduce local artifacts, like liquid
inclusions in the grain interiors, which cause small areas of high
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contrast far from grain boundaries, see Figure 8 (first row). Yet,
we warn that the predictions of the trained U-Net are prone
to error when there are large-scale image artifacts in the input
images, as illustrated in Figure 13. One possible way to reduce
the effect of such artifacts is to consider a modified architecture
of the 3D U-Net, with larger kernels or more pooling layers, such
that even larger features can be considered.

Nevertheless, without the machine learning approach, i.e.,
the preprocessing provided by the 3D U-Net, the segmentation
of CT data for later measurement time steps with poorly
visible grain boundaries is a complex and time-consuming
image processing problem. Still, in the presented procedure,
conventional image processing, i.e., binarization and the
watershed transform, was necessary to obtain a grainwise
segmentation of the considered data. Thus, the segmentation
techniques considered in sections 2 and 3 show the flexibility
of combining the watershed transform with machine learning
techniques either for pre- or postprocessing image data
for the purpose of segmenting tomographic image data of
functional materials.

Note that, in the 3D U-Net approach, there are some machine
learning techniques that could have been adopted to further
reduce the need for some of the subsequent image processing
steps. For example, the binarization step could be incorporated
into the network by using the Heaviside step function as
an activation function in the output layer. Morphological
operations, like the closing operation utilized in the procedure
above, could be implemented by additional convolutional layers
with non-trainable kernels followed by thresholding. In this way,
the necessary postprocessing steps will be considered during the
training procedure of the 3D U-Net. Alternatively, by describing
a segmentation with an affinity graph on the voxel grid, it is
possible to obtain segmented images as the final output of CNNs,
see Turaga et al. (2010). Note that such approaches require
cost functions which allow a quantitative comparison between
segmentations, see e.g., Briggman et al. (2009) and Liebscher
et al. (2015). Furthermore, we point out that there are techniques
for obtaining a grain-wise segmentation by fitting mathematical
tessellation models to tomographic image data using Bayesian
statistics and a Markov chain Monte Carlo approach, see Chiu
et al. (2013). In our case, such techniques could be applied
directly to tomographic or even to enhanced grain boundary
images obtained by the 3D U-Net.

Moreover, we note still another possible application of
machine learning methods for the analysis of CT image data. In
many applications, “ground truth”measurements are destructive,
which means that they can be carried out only for the final time
step of a sequence of measurements. This limits the available
training data for machine learning techniques.

We simulated such a scenario with our data by using
solely the CT image C6 and the 3DXRD data L6 of the
last measured time step to train an additional 3D U-Net.
Analogously to the procedure described in section 3.2, this
network was applied to the entire series of CT measurements.
The resulting grain boundary predictions were then segmented
using the same image processing steps as described in section 3.2.
Figure 14 indicates that the relative errors of grain volumes

are comparable to the errors made when considering every
time step during training, see Figure 12. This result suggests
that a “ground truth” measurement of only the final time
step would suffice for training in our scenario. Similarly,
machine learning approaches might be interesting for the
segmentation and analysis of time-resolved CT data in various
applications in which “ground truth” measurements cannot be
made during experiments, but only afterwards, in a destructive or
time-consuming manner.

4. CONCLUSIONS

We gave a short overview of some applications in the field of
materials science in which we successfully combined methods
of statistical learning, including random forests, feedforward
and convolutional neural networks with conventional image
processing techniques for segmentation, classification and object
detection tasks. More precisely, the methods of sections 2 and 3
utilize machine learning as either a pre- or postprocessing step
for the watershed transform to achieve phase-, particle- or grain-
wise segmentations of tomographic image data from various
functional materials—showing how flexible the approach of
combining the watershed transform with methods frommachine
learning is. In particular, we presented such an approach for
segmenting CT image data of an Al-5 wt.% Cu alloy with
very low volume fraction of liquid between grains. In total,
we considered seven CT measurements of the sample, between
which were interspersed Ostwald ripening steps. Especially
at later times, the aggregation of liquid leads to a decrease
in contrast of the image data, i.e., grain boundaries become
less distinct in the image data, which makes segmentation by
conventional image processing techniques quite difficult and
unreliable. Therefore, we employed matching grain boundary
images—which had been extracted from the same sample by
means of 3DXRD microscopy—as “ground truth” information
for training various CNNs: a 2D U-Net which can be applied
slice-by-slice to entire image stacks, a multichannel 2D U-Net
which considers multiple slices at once for grain boundary
prediction in a planar section of the image stack and, finally, a
3D U-Net which was trained with volumetric cutouts at a lower
resolution. After the training procedure, the U-Nets were able
to enhance the contrast at grain boundaries in the CT data.
Especially, the 3D U-Net successfully predicted the locations of
many grain boundaries that were either missing from the image
data or poorly visible. This shows that machine learning methods
can facilitate difficult image processing tasks, provided that
“ground truth” data is available, e.g., data obtained via additional
measurements or manual image labeling. Since the images output
by the convolutional neural networks were not themselves grain-
wise segmentations, we applied conventional image processing
algorithms to the outputs to obtain full segmentations at each
considered time step and for each presented method. These
were compared quantitatively with “ground truth” segmentations
extracted from 3DXRD measurements. The resulting relative
errors in grain volume and locations of grain centers of
mass indicated that the machine learning-based segmentation
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procedures worked reasonably well, particularly for grains that
were not cut off by the boundary of the observation window.
Finally, we trained an additional 3D U-Net only with CT and
3DXRD data obtained during the final time step. This simulated
the common scenario in which a “ground truth” measurement
can be performed only at the very end of an experiment. The
3D U-Net trained in this manner was applied as before to the
entire CT data set, followed by conventional image processing
steps, yielding grain segmentations. Quantitative comparison
of the latter to segmentations derived from 3DXRD data
indicated that the approach produced good results. Even though
a trained neural network does not make 3DXRD measurements
obsolete, the procedure presented here can potentially reduce
the amount of 3DXRD beam time that is needed for accurate
segmentation and microstructural analysis. Likewise, we believe
that a similar approach might be particularly beneficial whenever
nondestructive CT measurements can be carried out in situ, but
“ground truth” information can be acquired only by a destructive
measurement technique.
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