
ORIGINAL RESEARCH
published: 13 August 2019

doi: 10.3389/fmats.2019.00181

Frontiers in Materials | www.frontiersin.org 1 August 2019 | Volume 6 | Article 181

Edited by:

Norbert Huber,

Helmholtz Centre for Materials and

Coastal Research (HZG), Germany

Reviewed by:

Ercan Gürses,

Middle East Technical University,

Turkey

Elías Cueto,

University of Zaragoza, Spain

*Correspondence:

Alexander Hartmaier

alexander.hartmaier@rub.de

Specialty section:

This article was submitted to

Computational Materials Science,

a section of the journal

Frontiers in Materials

Received: 04 February 2019

Accepted: 10 July 2019

Published: 13 August 2019

Citation:

Reimann D, Nidadavolu K, ul

Hassan H, Vajragupta N,

Glasmachers T, Junker P and

Hartmaier A (2019) Modeling

Macroscopic Material Behavior With

Machine Learning Algorithms Trained

by Micromechanical Simulations.

Front. Mater. 6:181.

doi: 10.3389/fmats.2019.00181

Modeling Macroscopic Material
Behavior With Machine Learning
Algorithms Trained by
Micromechanical Simulations
Denise Reimann 1, Kapil Nidadavolu 1,2, Hamad ul Hassan 1, Napat Vajragupta 1,

Tobias Glasmachers 3, Philipp Junker 4 and Alexander Hartmaier 1*

1 Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universität Bochum, Bochum, Germany, 2Department of

Metallurgical and Materials Engineering, Indian Institute of Technology, Madras, India, 3 Institut für Neuroinformatik,

Ruhr-Universität Bochum, Bochum, Germany, 4 Lehrstuhl für Mechanik-Materialtheorie, Ruhr-Universität Bochum, Bochum,

Germany

Micromechanical modeling of material behavior has become an accepted approach

to describe the macroscopic mechanical properties of polycrystalline materials in

a microstructure-sensitive way. The microstructure is modeled by a representative

volume element (RVE), and the anisotropic mechanical behavior of individual grains is

described by a crystal plasticity model. Such micromechanical models are subjected

to mechanical loads in a finite element (FE) simulation and their macroscopic behavior is

obtained from a homogenization procedure. However, suchmicromechanical simulations

with a discrete representation of the material microstructure are computationally very

expensive, in particular when conducted for 3D models, such that it is prohibitive to

apply them for process simulations of macroscopic components. In this work, we

suggest a new approach to develop microstructure-sensitive, yet flexible and numerically

efficient macroscopic material models by using micromechanical simulations for training

Machine Learning (ML) algorithms to capture the mechanical response of various

microstructures under different loads. In this way, the trained ML algorithms represent

a new macroscopic constitutive relation, which is demonstrated here for the case of

damage modeling. In a second application of the combination of ML algorithms and

micromechanical modeling, a proof of concept is presented for the application of trained

ML algorithms for microstructure design with respect to desired mechanical properties.

The input data consist of different stress-strain curves obtained from micromechanical

simulations of uniaxial testing of a wide range of microstructures. The trained ML

algorithm is then used to suggest grain size distributions, grain morphologies and

crystallographic textures, which yield the desired mechanical response for a given

application. For validation purposes, the resulting grain microstructure parameters are

used to generate RVEs, accordingly and the macroscopic stress-strain curves for

those microstructures are calculated and compared with the target quantities. The two

examples presented in this work, demonstrate clearly that ML methods can be trained

by micromechanical simulations, which capture material behavior and its relation to
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microstructural mechanisms in a physically sound way. Since the quality of the ML

algorithms is only as good as that of the micromechanical model, it is essential to validate

these models properly. Furthermore, this approach allows a hybridization of experimental

and numerical data.

Keywords: machine learning, micromechanical modeling, crystal plasticity, damage, homogenization,

microstructure design

1. INTRODUCTION

Most of the processes that happen in nature are too complex to
analyze, have too many independent parameters, and sometimes
even the interrelation between parameters is unknown. In
materials science, Machine Learning (ML) techniques such as
Support Vector regression (SVR) (Swaddiwudhipong et al., 2005;
Owolabi et al., 2014, 2015), linear regression models (Cheng
et al., 2017) and Neural Networks (Ihom and Offiong, 2015)
are becoming more and more important to describe complex
phenomena for which the governing principle is not known or
the proper implementation of which is too tedious and prone
to errors. Among others, ML techniques have also been used
in the field of material science to predict material properties
(Swaddiwudhipong et al., 2005; Lin et al., 2008; Versino et al.,
2017), characterize microstructure (Lubbers et al., 2017; Gola
et al., 2018) and even to design better and efficient materials (Liu
et al., 2015). A vast amount of applications of ML methods in
materials science lies in the area of microstructure classification.
However, it is beyond the scope of this article to provide a
comprehensive literature overview on this topic.

A number of strategies have been proposed in the literature for
the prediction of different material properties. Swaddiwudhipong
et al. used least square support vector machines (LS-SVMs) to
relate load displacement curves from indentation directly to the
elastic modulus and yield stress of materials obeying power law
hardening. They used data from a simulation of indentation
of different geometries in ABAQUS (Swaddiwudhipong et al.,
2005). They were able to validate their predicted material
parameters against the actual material values based on uniaxial
tests to a reasonably good accuracy. Lin et al. used Artificial
Neural Network (ANN) to predict the flow stress dependence
on temperature, strain and log strain rates of 42CrMo steel by
training on experimental data (Lin et al., 2008). They used a
feed-forward network with back propagation learning algorithm
which showed good agreement with the experimental values. ML
techniques are also gainingmore importance in the field of crystal
plasticity and microstructural modeling. Mangal and Holm
investigated the formation of stress hotspots in polycrystalline
materials (Mangal and Holm, 2018) under uniaxial tensile
deformation by integrating full field crystal plasticity based
deformation models and ML techniques. They used synthetic 3D
microstructures and a number of crystallographic and geometric
factors are defined to describe the relevant features. It has been
found that the Schmid factor, equivalent diameters of the grains,
distance from the inverse pole figure and average misorientations
are the top most influencing factors. They showed that Random
Forest models can predict stress hotspots with receiving an

operating characteristic curve (ROC-AUC) metric equal to
0.7403 in FCC material.

In the recent years, ML has gained significant interest in the
mechanics ofmaterials community. In this context, finite element
(FE) simulations provide a powerful tool for understanding
deformation and damage mechanisms, because they yield insight
into local stresses and strains within components under complex
loading states, where experiment can merely assess the global
component behavior. The combination with data-driven ML
techniques enables further applications of numerical modeling,
in particular the efficient use of inverse methods for model
parameter identification. In 2006, Tyulyukovskiy and Huber
used neural networks trained by FE simulations of spherical
indentation with a variety of material parameters to solve
the inverse problem of identifying material parameters from
experimental load-indentation measurements (Tyulyukovskiy
and Huber, 2006). Artificial neural networks were also used
by Abbassi et al. (2013) to calibrate parameter sets of
the Gurson-Tvergaard-Needleman model to describe ductile
damage behavior during sheet forming (Abbassi et al., 2013).
Furthermore, Collins et al. used neural networks to approximate
the yield and ultimate tensile strength as a function of
microstructural properties (such as phase volume fractions)
(Collins et al., 2012). The hole drilling method is widely used
to determine residual stresses in a component. However, the
method has its limitations because the evaluation methods are
typically based on the assumption of linear elastic material
behavior. To overcome this limitation, Chupakhin et al.
developed a method to correct the stress analysis for effects
of plastic deformation, and hence to increase the range of
applicability of the hole drilling method (Chupakhin et al., 2017).

Phenomenological models formulated in a mathematically
closed form as analytical functions are currently the state of the
art for computationally modeling of ductile damage behavior on
themacro- as well as on themicro-scale. To create an appropriate
estimation of specific material behavior, damage evolution
has to be described by appropriate constitutive relationships.
For bridging material behavior from the microscopic to the
macroscopic scale, a micromechanical modeling approach
explicitly considering microstructural features, becomes an
appealing solution. One benefit of this modeling technique is
the possibility to derive microstructure-property relationships
through microstructure-based simulations. However, using FE
simulations to describe a macroscopic process (such as deep
drawing or sheet bending) by explicitly considering the
microstructure, is computationally prohibitive. One common
multiscale approach is the FE2 method which combines the
micro- and the macroscale, and therefore enables one to include
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microstructural information into a macroscopic model (see
El Halabi et al., 2013 and Schröder, 2014). Another approach is
based on the response surfaces method which has been applied
in the literature for the numerical homogenisation of non-
linear porous materials (Beluch and Hatlas, 2019). At the same
time, adding microstructural information directly into current
analytical damage models seems to be overly complex. Hence,
different homogenization approaches to map damage from the
micro- to the macro-scale are required to bring microstructural
information into macroscopic simulations. To accomplish this, a
novel approach using an ML based framework is suggested here
and compared to the well-established analytical damage model
proposed by Chaboche (see Chaboche, 1988; Ambroziak, 2007).

With the emergence of ML in the materials research
during the last years, another application of ML has been
to design microstructures that meet targeted mechanical
properties. To fulfill this challenging goal, a set of
microstructure-property relationships must be used in terms
of training data. Therefore, another clear application of a
micromechanical modeling approach is to use results from
microstructure simulations as training data for ML models for
microstructure design.

In a second application (cf. section 5) microstructure-based
simulations are used to create training data for ML models that
are able to predict microstructural properties to a given flow
curve. The input of these trained ML models is the flow curve
and the output is the grain size of the microstructure. In this
part, microstructure models with various grain size distribution
parameters are simulated by using a nonlocal crystal plasticity
model, and they are homogenized to obtain the flow cures.
Simulation results are fed to selected ML models in terms of
training data.

This paper is structured as follows: First, the FE simulation
model and the crystal plasticity material model are explained
in section 2, which also includes the homogenization method
of the simulation data. In section 3, the ML algorithms (SVR
and Random Forest regression (RFR)) are described. Afterwards,
the two applications of the ML algorithm discussed in this
publication are given. In section 4, the approach to homogenize
damage from the micro- to the macroscale is given, and the
prediction of microstructural features from the flow curve
is presented in section 5. Finally, the conclusion is given
in section 6.

2. MATERIAL MODELING

In this section, the basic framework of micromechanical
modeling is detailed. The described model consists of a
geometrical description of the grain structure of a polycrystal
with equiaxed grains. This microstructure model is generated
with a so-called dynamic microstructure generator (DMG)
(Boeff, 2016) based on particle simulation to distribute the
centers for a subsequent radical Voronoi tessellation. The
constitutive modeling of plastic deformation in the individual
grains is carried out with a crystal plasticity method implemented
as user-defined material model (UMAT) for ABAQUS. The data

set consists of finite element (FE) simulations on the micro-scale
for the homogenization of damage as well as of plastic properties.

2.1. Representative Volume Element
For the investigation in both applications, quasi-2D
representative volume elements (RVEs) were generated using the
DMG, which couples a particle simulation method with a radical
Voronoi tessellation algorithm (Boeff, 2016). In the first step,
the target grain size distribution is determined via a log-normal
distribution. Hence, the average grain diameter as well as the
standard deviation are required. With respect to prescribed
distribution parameters, the number and size of spheres are
predefined, which mimic the targeted grain size distribution. In
the second step, spheres are randomly distributed into a finite
volume which is larger than the intended final RVE. This finite
volume is then compressed, allowing spheres to move freely
under a repulsive potential and to avoid their overlapping. In
the third step, updated sphere positions and diameters of each
sphere from selected time steps are then fed to a radical Voronoi
tessellation algorithm from the open-source software Voro++
(Rycroft, 2009) to construct RVEs. The resulting grain size
distribution of these RVEs is then compared to the targeted grain
size distribution, and the RVE with the minimum difference
is selected accordingly. It must be noted that the shape of the
RVE, generated using DMG, is rugged to leave the grain intact
and to improve the mesh quality. In the forth step, to create the
RVE for the microstructure simulations, the geometry of the
2D RVE is extruded for 1% of a side length of RVE and meshed
with eight-nodes-linear-brick elements (C3D8) by using CUBIT
(Sandia National Laboratories, 2016).

In the final step, periodic boundary conditions, following an
approach introduced by Smit et al. (1998), are applied to the RVE.
Further details on the implementation are described in Kulosa
et al. (2017). The basic idea of this approach is that opposite
nodes are coupled such that their displacements are the same.
The global boundary conditions and strain are imposed to the
reference vertex points V1, V2, V4, and H1, which are located at
the corners of the RVE. An example of an RVE generated by using
the introduced method is illustrated in Figure 1. Furthermore,
comparison of diameter distribution between defined seed
spheres and constructed RVEs with an average grain size µ of
6.0 µm and a standard deviation σ of 1.0 µm, and an average
grain size µ of 13.0 µm and a standard deviation σ of 1.0 µm are
illustrated in Figures 1C,D, respectively. From the comparison,
grain size distributions of both RVEs are in good agreement with
the targeted size distributions. In the next section, the crystal
plasticity-based material model is described.

2.2. Crystal Plasticity Model
The material behavior of the FE simulation is described by a
phenomenologically based crystal plasticity model. To resolve
the heterogeneous deformation resulting from abrupt changes in
mechanical behavior across grain boundaries of the considered
polycrystal and to consider size effects between small and
large grains, a nonlocal crystal plasticity model proposed by
Ma and Hartmaier (2014) is implemented. As the applied
nonlocal crystal plasticity model is already described in Ma and
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FIGURE 1 | (A) Quasi-2D RVE with vertex nodes (V1, V2, V4, H1) needed for the boundary conditions (see section 2.3.3); RVE with a mean grain size of 59µm and a

standard deviation of 10µm contains 51 grains between 40 and 90µm, has a side length of 348.8µm and a thickness of 1.7µm and is used as model for the damage

evolution (cf. section 4). (B) Loading cases applied to the RVE used for the prediction the damage evolution in section 4. Comparisons of diameter distribution

between defined spheres and constructed RVEs with (C) average grain size µ of 6.0 µm and standard deviation σ of 1.0 µm, and (D) average grain size µ of 13.0

µm and standard deviation σ of 1.0 µm.

Hartmaier (2014), only an overview of the formulation is given.
For further details on the non-local flow rule, the reader is
kindly referred to Ma and Hartmaier (2014). In the following,
quantities written in bold letters refer to vectors (small letters)
and matrices of second rank tensors (capital letters). From the
kinematics of deformation, the total deformation gradient F

can be multiplicatively decomposed into the elastic deformation
gradient Fe and the plastic deformation gradient Fp,

F = FeFp. (1)

The elastic deformation is calculated using the Hooke’s law.
The plastic deformation is characterized by the plastic velocity
gradient Lp, which is a function of the plastic deformation
gradient Fp and its rate as,

Lp = ḞpFp-1. (2)

For this study, a crystallographic slip of dislocations is defined as
the only mechanism for plastic deformation. Thus, Lp is taken as
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the sum of the shear rates of all slip systems,

Lp =
N∑

α=1

γ̇αMα . (3)

Here, γ̇α is the plastic shear rate. Mα = dα ⊗ nα is the Schmid
tensor for slip system α, which is defined by the slip direction dα

and the slip plane normal nα . The symbol ⊗ denotes the dyadic
product of two vectors resulting in a second rank tensor. The total
number of slip systems is N.

With respect to the nonlocal crystal plasticity model proposed
byMa and Hartmaier (2014), the flow rule and the hardening law
can be expressed as:

γ̇α = γ̇0

∣∣∣∣∣
τα + τ̂GNDkα

τ̂α + τ̂GNDiα

∣∣∣∣∣

p1

sgn(τα + τ̂GNDkα ), (4)

and,

˙̂τα =
N∑

β=1

h0χαβ

(
1− τ̂α

τ̂sat

)p2 ∣∣γ̇β

∣∣ , (5)

where, γ̇0 is the reference shear rate, and p1 is the inverse value
of the strain rate sensitivity. Furthermore, h0 is the reference
hardening parameter, χαβ is the cross hardening matrix, which
is assigned as 1.0 for coplanar slip systems and 1.4 otherwise,τ̂sat
is the saturation slip resistance, and p2 is a fitting parameter. The
initial value of the slip resistance τ̂α is defined as τ̂0, and sgn() is
a mathematical function that extracts the sign of a real number.
The resolved shear stress τα for each slip system can be calculated
from the stress Sα in the intermediate configuration or the state
involving only the plastic deformation gradient Fp as,

τα = Sα :Mα . (6)

The flow rule in Equation (4) consists of two additional back
stresses τ̂GNDkα and τ̂GNDiα describing the hardening contributions
from geometrically necessary dislocations (GNDs) (Ma and
Hartmaier, 2014). The nonlocal constitutive model, in this
context, is derived from the concept of super GNDs densities
and incorporates the plastic strain gradient. Within a continuum
mechanical approach, it is not possible to define crystallographic
GND based on the Nye tensor in a unique way. To capture
the internal stresses resulting from GND, the concept of super
dislocations is followed, which allows us to define the dislocation
Burgers vectors and line directions uniquely (Ma and Hartmaier,
2014). This hardening from plastic strain gradients is split up into
an isotropic hardening part τ̂GNDiα and a kinematic hardening
part τ̂GNDkα .

The second rank dislocation density tensor G in the reference
configuration is computed from the curl of Fp as introduced by
Nye (1953),

Gij = −F
p
ik,l

1jk,l, (7)

where1jkl is the third rank permutation tensor and “l” represents
the derivative with respect to the cartesian coordinate “l”. It must

be noted that in Equation (7) the dislocation density tensor is
written in index notation (G = Gij). Since a reconstruction
of meaningful crystallographic dislocation populations in a
unique way is impossible, a unique definition of super GNDs is
obtained by projecting the dislocation density tensor to the global
Cartesian coordinates of the system. As a result, the stress fields of
the crystallographic GNDs can be described with a good accuracy
(Ma and Hartmaier, 2014), and the GND density tensor can be
segmented into nine independent parts ρ̄α by evaluating,

9∑

α=1

ραdα ⊗ tα = 1

b
G, (8)

where dα and tα are permutations of the Cartesian unit vectors as
determined in Ma and Hartmaier (2014), and b is the magnitude
of the crystallographic Burgers vector. The super GND densities
for α = 1, 2, 3 represent screw-type superdislocations, while the
remaining 6 components represent edge-type superdislocations,
which are vital for determining the internal stress fields as a
consequence of the super GNDs.

The isotropic hardening for the dislocation slip contributed by
these super GNDs can be expressed using a Taylor-type equation,

τ̂GNDiα = c1µb

√√√√
9∑

β=1

χGND
αβ

∣∣ρβ

∣∣. (9)

Here, c1 is the Taylor hardening coefficient or a geometrical
factor [38], and µ is the shear modulus. χGND

αβ is the cross
hardening matrix between crystallographic mobile dislocations
and super GNDs.

The long-range internal stresses, caused by GNDs in
dislocation pile-ups, contribute to the kinematic hardening effect.
This part is calculated by evaluating the second order gradient of
Fp, which results in a super GND gradient ρα in the form,

ρα,l =
1

b
Gjk,ldαjtαk. (10)

By evaluating these gradients within a small volume of dimension
L3, the internal stresses S̃GND in the intermediate configuration
caused by dislocation pile-ups at grain boundaries can be
calculated as explained in Ma and Hartmaier (2014). Thus, the
kinematic hardening can be given by:

τ̂GNDkα = SGND :Mα . (11)

For the FCC crystal structure, the dislocation slip on the
common crystallographic 〈110〉{111} slip systems is considered.
On the other hand, we only take the dislocation slip on the
crystallographic 〈111〉{110} slip systems into account for the case
of BCC crystal structure.

2.2.1. Damage Model
For the first application of damage homogenization using
Machine Learning (ML), a formulation to compute the local
damage is also needed in addition. This applies for the prediction
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FIGURE 2 | Local damage model for the numerical computation with p1 and

p2 being the lower and upper limit defining the start and saturation of damage.

of the damage evolution (cf. section 4). The damage of a material
can be assessed by using the damage parameter D, which is
defined as the ratio of the damaged volume to the initial volume
(cf. Lemaître, 1985) and can, therefore take values between zero
and one. The increase of damaged volume leads to a reduction
of the stiffness of the material. In general, for an ideal isotropic
and uniaxial case, the damage parameter, Dstiff, can be described
in terms of the Young’s modulus as,

Dstiff = 1− Edamage

Einitial
, (12)

where Einitial is the initial Young’s modulus and the Edamage

is the E-modulus after the damage occurred. More generally,
both quantities can be interpreted as the material stiffness
along a given loading path. In our model, the damage is
calculated numerically using a ramp function, which depends
on the equivalent plastic strain p. The equivalent plastic strain
is computed as the Frobenius norm (Gentle, 2007) as,

p =
√
2

3

∥∥Ep
∥∥
F
, (13)

where the subscript F indicates the Frobenuis norm, and Ep is
the plastic Green-Lagrange, strain which is computed by using
the plastic deformation gradient Fp (Haupt, 2002). The plastic
deformation gradient is computed according to Equations (2)
and (3) in section 2.2 using the plastic velocity gradient Lp, which
depends on the shear rate γ̇α and the Schmidt tensorMα . After an
initial threshold value of the plastic strain is reached locally, the
damage increases linearly with the plastic strain. Once the upper
limit of the plastic strain occurs, the damage parameter reaches
its maximum value. Locally, the damage parameter is computed
as follows,

D = p− p1

p2 − p1
for p1 ≤ p ≤ p2 , (14)

p1 and p2 are the lower limit and the upper limit. In Figure 2,
the damage model is given graphically. For values smaller than
the lower limit of the plastic strain, the damage parameter equals

zero. Hence, the damage parameter reaches its maximum value
for plastic strains higher than the upper limit, which numerically
is realized by setting the parameter close to, but not equal to, one
(Dmax = 0.999). The damage evolution is the rate of the damage
parameter. Here, the limits were chosen so that the resulting
model reaches its uniaxial tensile strength at around 10% total
strain: p1 = 0.3 and p2 = 0.5. Note that the limits were not
chosen to describe a specific alloy.

2.3. Homogenization Methods
In the previous section, the material model for the microscopic
FE simulations was described. For the ML algorithms,
homogenized values (or global values) that describe the RVE
are used. In the following, the global homogenized parameters
have the superscript RVE. The homogenization procedure is
different for the two applications presented here (cf. sections 4
and 5). For the prediction of the damage evolution, the global
values are homogenized according to the Hill-Mandel condition
(Hill, 1963, 1972) in section 2.3.1 and with respect to the stiffness
reduction in section 2.3.2. It is necessary to use such volume
average technique, because the damage needs to be calculated
locally. For the prediction of microstructural features from the
flow curve, macroscopic stress and strain tensors are calculated
with respect to the approach of Nemat-Nasser (Nemat-Nasser,
1999). In this case, we only need to formulate a macroscopic
stress and strain tensor in order to calculate the flow curve.
Therefore, we use a much simpler and numerically more
effective efficient approach described in section 2.3.3. In this
section, methods to homogenize global values or macroscopic
properties from microstructure simulations are described.

2.3.1. Volume-Average Method
From the FE simulation, the value of each Gauss point is
extracted, i.e., eight values for each element (cf. section 2.1). The
bullets in brackets stand for the parameter that is homogenized,
i.e., the stresses and strains. The Gauss point values of each
element are averages, so one value for each element is obtained,

(•)e =
1

8

8∑

Gauss=1

(•)Gauss . (15)

Here, the index Gauss refers to the current Gauss point, which
can take values from one to eight. To obtain global representative
values for each time step, the local values, which are the average
values of the eight Gauss points, are averaged by using the
element volume,

(•)RVE = 1

VRVE

Nel∑

e=1

(•)e ·Ve, (16)

where the index e indicates the current element and Nel is the
total number of elements. The symbol V is the volume, andVRVE

is the total volume of the RVE. As Equation (16) shows, the
global (homogenized) value is the sum of the local element value
multiplied with the corresponding volume, which is then scaled
by the total volume of the RVE. This averaging procedure is well
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established for stresses and strains (see Jänicke, 2010, Nguyen
et al., 2012b) and is based on the Hill-Mandel condition (cf. Hill,
1963, 1972). Nevertheless, the application of Equation (16) is not
appropriate to define a suitable measure for the homogenized
damage state: consider a microstructure that is fully damaged,
i.e., a crack with distinct width runs through the entire ensemble
of grains. Then, the volume fraction of the damaged areas may
be less than few percent of the entire microstructural volume.
However, the microstructure is not able to sustain any load (in
the direction that caused the damage evolution). Consequently,
the usage of this small value for the volume-averaged damage
state would underestimate a comparable measure according to
Equation (17) for the effective damage state at the macroscale
to a large extent: the volume average for the damage does not
reflect the true physical properties of the microstructure. We
thus propose a different homogenization scheme for the damage
variable in the next subsection.

2.3.2. Homogenization of the Damage Variable
As indicated earlier, a homogenization of the damage variable via
volume averaging is not appropriate for defining a reasonable
measure for the effective damage state that can be used for
a description of the macroscopic behavior. In the available
literature some attempts have been made to solve this problem.
Nguyen et al. developed a multiscale cohesive damage model
to determine the macroscopic behavior of a quasi-brittle
material. They homogenized the response of a microscale
sample representing the heterogeneous microstructure inside
the adhesive crack (see Nguyen et al., 2012b, Nguyen et al.,
2012a). Fish and Yu derived a closed-form expression relating
microscopic, mesoscopic and overall strain and damage (Fish and
Yu, 2001) for brittle materials. These approaches are, however,
applicable to the small strain regime and to brittle/semi brittle
materials. Souza and Allen developed homogenization-based
multiscale frameworks for impact modeling of heterogeneous
viscoelastic material. The damage was modeled through a field
of evolving microcracks using XFEM method and cohesive law.
In the above mentioned approaches, the correlation between
damage evolution and large plastic strain ismissing. It was, hence,
necessary to develop an approach which is also valid for large
plastic strain regime (Souza and Allen, 2009). We, therefore,
define a homogenization approach that is in accordance with the
definition of the damage parameter (at the microscale):

DRVE
:= 1− CD

C0
, (17)

where CD and C0 define the effective structural stiffness of the
microstructure in the damage (subscript D) and the initial state
(subscript 0). Consequently, DRVE has an identical meaning to
the local definition of the damage variable according to (12). The
important difference is, however, that Equation (17) accounts
also for geometrical aspects. Thereby, DRVE depends on both
the damage (evolution) and the microstructural arrangement
provided by the specific microstructural composition, e.g., in
terms of grain sizes, grain orientation and grain boundaries.

The values for the stiffness CD and C0 can be extracted
from the equivalent stress σ eq for equivalent elastic strain ǫ

eq
e

(both scalar-valued quantities): The equivalent strain results
from volume averaging of the local elastic strain components,
following from local total strain and the local plastic parts as
function in time. In a comparable manner, the equivalent stress
results from the volume averaging of the stress distribution.
Then, the initial stiffness is defined by:

C0 :=
σ
eq
0

ǫ
eq
e,0

(18)

and for the damaged stiffness we define accordingly:

CD := σ
eq
D

ǫ
eq
e,D

. (19)

The initial stiffness represents the stiffness of the undamaged
state, indicating that the tuple (ǫ

eq
e,0, σ

eq
0 ) can be read off the

equivalent stress/equivalent strain curve at any load step before
damage sets in. For this case, the initial stiffness was computed
as the slope between the first stress/equivalent strain point and
the point corresponding to the maximum stress. The damaged
stiffness CD evolves in time as the fraction between σ

eq
D and ǫ

eq
e,D

is no longer constant (in contrast to C0): the crack evolution at
the microscale renders the volume-averaged equivalent stress σ

eq
D

being a monotonously decreasing function such that limCD =
0, whereas CD = C0 just before damage sets in. Accordingly,
DRVE ∈ [0, 1], where DRVE = 0 indicates a completely intact
and undamaged microstructure, whereas DRVE = 1 represents a
completely damaged microstructure. Consequently, this measure
can be used for future applications of our approach presented
here: the microstructural behavior is computed for reference
states on which the machine-learning algorithm is built. This
results in an effective material model for the simulation at the
macroscale while taking into account the microstructural effects
that are synthesized in the effective damage parameterDRVE. The
macroscopic damage evolution is computed as the change of the
homogenized damage parameter 〈D〉 with respect to the time, t,
according to,

ḊRVE
n =

DRVE
n − DRVE

n−1

tn − tn−1
, (20)

where, n indicates the current time step. Note that we apply this
homogenization approach only for monotonous loading paths in
this work.

2.3.3. Homogenization of Macroscopic Stress and

Strain Tensors From Periodic Boundary Conditions
With respect to periodic boundary conditions applied to the
RVE, the global deformation is imposed to the four reference
nodes, V1, V2, V4, and H1 as highlighted in Figure 1A. The RVE
boundary nodes are imposed on the kinetics of these reference
nodes. Therefore, macroscopic quantities can be homogenized
directly from nodal displacement, reaction force, and position
vector of these reference nodes as introduced in Kulosa et al.
(2017). For further details on the implemented homogenization
technique, the reader is kindly referred to Boeff (2016), Kulosa
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et al. (2017). The macroscopic strain tensor can be formulated
from the nodal displacement unodei and be mathematically
expressed as:

ǫRVE =




uV2
1

1x

1

2

(
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)
1
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(
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3
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)

1
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1y

1

2
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1z
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)

1
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(
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1
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)
1

2

(
uH1
2

1z
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3

1y

)
uH1
3

1z




.

(21)

1x, 1y, and 1z are dimensions of the periodic box in the global
Cartesian coordinate system. Similarly, the macroscopic stress
tensor can be formulated from the reaction force vectors Fnode at
the four reference nodes and the current nodal position vectors
xnode of the reference nodes which is given as:

σRVE = 1

VRVE
sym[(xV4 − xV1 )⊗FV4 + (xV2 − xV1 )⊗FV2 + (xH1 − xV1 )⊗FH1 ].

(22)

The symmetrization function is defined as sym=1/2[A+AT] for
tensor A and its transpose. With the formulated macroscopic
stress and strain tensor, the vonMises stress (σvM) and equivalent
plastic strain (p) can be calculated accordingly.

3. MACHINE LEARNING

This section gives a short description of the types of supervised
learning algorithms used in this work. In case of supervised
learning (as opposed to unsupervised learning), the actual output
is known and has to be approximated by the algorithm. In
general, the algorithm learns to predict the target output for
given features (input parameters) with a minimal error by
adjusting parameters. A function y(x) is created by the Machine
Learning (ML) algorithms, where y is the predicted output
depending on the input features x. In general, the input and
output are vectors, their length depending on the given problem.
Here, for both applications (predicting the damage evolution
in section 4 and predicting the grain size from the flow curve
in section 5), there are several input features, so that the input
is a vector. However, the output is a single scalar quantity.
Furthermore, the target values are real-valued and known, and
therefore supervised regression algorithms are used. For both
cases, Support Vector regression (SVR) and Random Forest
regression (RFR) algorithms are used. In this section, both
algorithms (sections 3.1 and 3.2) are explained briefly with
respect to regression.

3.1. Support Vector Regression
Following the work of Hastie et al. (2008), SVR is an extension
of linear regression and used for non-linear problems. In the
following, the theory of SVR is briefly described. A more detailed
description can be found in Appendix 7.3. The main idea is to
gain a function fitting the given data points so that all points lie
within a (small) distance of ǫ to the function (see Figure 3A). In

Figure 3A, a simple two-dimensional problem is shown, in which
all data points are supposed to be described by a linear function.
The green area is called the margin, and its width is equal to two
times ǫ. To obtain the best fit, the main task is to minimize the
margin, and for doing so to solve a convex optimization problem
(cf. Smola and Schölkopf, 2004; Hastie et al., 2008). Furthermore,
so-called slack variables ξ are introduced, for measuring the
relative distance by which the target distance of ǫ is violated
(cf. Figure 3A). The points far away from the margin are the
so-called support vectors. In addition, a regularization or cost
parameter C is specified. It balances the contradictory goals of
a good fit vs. a simple model by weighting the penalty for the
slack variables. Furthermore, outliers have more influence in
shaping the predicted output. To enable the algorithm to develop
complex non-linear functions, so-called Kernels are introduced
(Ng, 2016). Kernels are customizable to the needs of the target
domain, which gives the algorithm the advantage to be adaptable
to many problems. With the kernel function, it is possible to map
the input data into an enlarged feature space. Since this mapping
is in general non-linear, kernels enable SVRs to represent highly
non-linear functions. In this work the Gaussian radial basis
function kernel:

krbf (x1, x2) = exp
(
−γ ‖ x1 − x2 ‖2

)
. (23)

is used (Müller and Guido, 2017). The parameter γ controls
the width of the Gaussian kernel. The decision function is
then no longer linear, but rather a flexible weighted sum of
Gaussian kernels.

3.2. Random Forest Regression
RFRs are a combination of multiple Decision Trees (DTs) or,
more precisely in our case, regression trees. It is a prototypical
ensemble method, which builds a highly accurate predictive
model by combining many simple models (often referred to as
weak learners). Each DT predicts an output, and their results
are averaged. DTs are hierarchy-based models where the goal is
to find the right answer by “asking as few if/else questions” as
possible (Müller and Guido, 2017). For regression, nodes contain
the distinction whether a value is below or above a threshold
value. Themain idea is to split the feature space into regions using
recursive binary partitioning (cf. Hastie et al., 2008), so that every
new data point can be assigned to one region. A visual example of
a RFR is given in Figure 3B. Here, the single DT has a so-called
depth of two. The tree depth is equal to the longest number of
consecutive nodes in a tree. Every DT starts with a root (the top
node), which contains the first question, e.g., whether a chosen
feature of the data point is smaller or larger than a specific value.
The nodes of the last layer of the tree are called leaves. Each
leaf corresponds to one target value, i.e., a single value of the
output domain. Each data point is assigned to exactly one leaf by
following the decisions down the tree. If a leaf contains only data

points that correspond to the same target value, the leaf is called

pure. Using DTs with pure leaves results in a model that can fit
the training data perfectly, but can result in over-fitting. There

are four important algorithm parameters that are tuned for the

RFR in this work (cf. Müller and Guido, 2017). The number of

used DTs (estimators) influences the amount of over-fitting and
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FIGURE 3 | Illustration of the Machine Learning (ML) regression models. (A) SVR: example of a two-dimensional problem as described in section 3.1 with the margin

of two times ǫ and slack variables ξi (B) RFR: example of Decision Tree (Tree 1) with depth three (cf. section 3.2).

also the computation time. In addition, the maximum depth of

each tree can be chosen specifically, or the tree is built until each
leaf is pure or reaches a minimum number of samples inside the
node. Furthermore, a criterion to decide whether to split a node

needs to be defined, e.g., mean squared error. Another important
parameter is the maximum number of features used for splitting
a node. In general, a low value of this parameter means that
each tree is different and may not need to be deep enough to
be sufficiently accurate. A high maximum feature parameter or
setting the value equal to the total number of features, results in
DTs that are quite similar and thus defeating the purpose of an
ensemble in the first place. The training data are fitted well by
building deep trees and using the most distinctive features.

4. HOMOGENIZE DAMAGE EVOLUTION
FROM MICRO- TO MACROSCALE

As mentioned in section 1, a new method to map damage from
the micro- to the macroscale using Machine Learning (ML) is
proposed. Based on the described representative volume element
(RVE) (cf. section 2.1) and the local crystal plasticity model
(cf. section 2.2) with damage (cf. section 2.2.1), several finite
element (FE) simulations using Abaqus (version 6.12–3) are
conducted. Here, the local crystal plasticity model is used, hence
no influence of the geometrically necessary dislocations GNDs is
considered. The main aim of the damage evolution application
is to show that the global material response, gained from FE
simulations, can be generally approximated with ML algorithms.
For this application, we do not compare results obtained with
different meshes. The material parameters are given in Table 4
in the Appendix 7.1. First, the data set for the ML algorithms is
explained (cf. section 4.1), then the ML parameters are presented
(cf. section 4.2). Finally, the results are given in section 4.3. Note
that all parameters, such as stresses and strains, are the global,
hence homogenized (cf. section 2.3), parameters. For simplicity

reasons, the superscript RVE of the global parameters are skipped
throughout the current section 4.

4.1. Data Set
A variety of loading states are simulated to make the data base
valid for damage occurring under general monotonous loading
paths. Hence, nine displacement-controlled simulations with
different loading states are performed: uniaxial tension, biaxial
tension cases, and shearing as shown in Figure 1B. The nine
loading cases are uniaxial tension in x- (Tx) and y-direction (Ty),
biaxial tension Txy, T2xy, and Tx2y (see Figure 1B). In addition,
four shearing cases were applied: Shearing in x- (Sx, S2x) and y-
direction (Sy, S2y) according to Figure 1B. The RVE used for
the creation of the data set for ML is presented in Figure 1A

in section 2.1. It contains 51 grains with a mean grain size of
59µm and a standard deviation of 10µm, which results in a
grain size range between 40 and 90µm. The material model,
as well as the damage model and the homogenization methods,
are described in sections 2.2 and 2.3, respectively. First, the
local results are presented. Then the global material behavior is
presented. As an example, Figure 4 shows contour plots of the
von Mises stress and the damage parameter for uniaxial tension
in x-direction.

In both Figures 4A,B, a strain localization in form of a
band can be seen inside the RVE. Note that the damaged zone
is split up because of the periodic boundary conditions. It is
due to such a morphology of the damage band that a new
homogenization scheme is required to homogenize it from the
micro to the macro-scale (see section 2.3.2). At the flanks of
the localization band, the stress is close to zero and the damage
parameter has reached its maximum of 0.999. Furthermore,
it is noted that the damage band propagates through the
grains, i.e., in a transgranular manner, as one would expect
for a ductile material, where damage and fracture occurs by
void nucleation, coalescence and growth. From the simulations,
relevant parameters for the homogenization are extracted:
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FIGURE 4 | Contour plot of the (A) von Mises stress and (B) damage parameter for uniaxial tension in x-direction at about 14.3% total strain.

equivalent total, elastic and plastic strain, equivalent plastic strain
rate, von Mises and hydrostatic stress, as well as the element
volume. Locally, the parameters are computed as follows: The
equivalent plastic strain is computed as described in section 2.2.1
and its rate is computed equivalently to the rate of the damage
parameter according to Equation (20). The equivalent total and
elastic strains are computed in the same way as the equivalent
plastic strain using the Frobenius norm and the Green-Lagrange
strain (cf. Equation 13). The total deformation gradient F is
calculated as the gradient of the displacement, and the elastic
deformation tensor is computed as Fe = F Fp−1 (Haupt, 2002).
The von Mises and hydrostatic stress are computed according
to Gross et al. (2011). The extracted values are homogenized as
described in section 2.3.1 and 2.3.2: The global stress and strain
values are the volume average of the local (element) values, and
the global damage is calculated based on the stiffness reduction of
the entire RVE. This results in eight global parameters: equivalent
plastic strain (p) and its rate (ṗ), equivalent total (ǫ

eq
t ) and

equivalent elastic strain (ǫ
eq
e ), von Mises stress (σvM), hydrostatic

stress (σhyd), and the damage parameter (D) and its rate (Ḋ).
After the homogenization, a further pre-processing of the points
is applied (see Appendix 7.2), which spaces the data equally with
respect to the equivalent plastic strain. Each data point represents
one time step of the FE simulation. For each time step, there is a
set of parameters consisting of the global parameters previously
mentioned. Therefore, the complete data set has the size 9×(•)×
8, where (•) is the number of time increments for each of the
9 loading cases applied to the single RVE (cf. Figure 1A), and 8
is the number of global parameters (p, ṗ, σvM, σhyd, ǫ

eq
t , ǫ

eq
e , D,

Ḋ). In total, the time increments of all loading cases equal 3454.
For all data points used in this application, the reader is kindly
referred to Data Sheet 1_v1 in the Supplementary Material. The
global values are used as the data set for the training and testing
of the ML algorithms. The number of training and test data has
been verified to be sufficient by using so-called learning curves,
which are further described in section 4.2. The global material
response in terms of the von Mises stress and damage rate with
respect to the equivalent total strain can be seen in Figures 5A,B.
The global behavior is given in the following by showing five out
of the nine loading cases with the most significant difference in
the material response.

It can be seen in Figures 5A,B that different loading
conditions result in (quantitatively) different stress and damage
evolution, although the general curve shapes are (qualitatively)
similar. Each loading condition shows a distinct starting
point for the initiation of damage, which corresponds to
the maximum stress occurring at different global strains. In
addition to the given global plots, it is worth having a look
at the maximum global damage parameter. For the uniaxial
and biaxial tension, the value is quite similar: 35.77% of
maximum global damage for biaxial tension (Txy), and 35.78
and 37.7% for uniaxial tension in x-direction (Tx) and y-
direction (Ty), respectively. The two shearing cases Sx and S2y
have a lower maximum value for the global damage parameter.
For shearing in x-direction (Sx), the maximum global damage
occurring is 24.86%, and for S2y it is 27.18%. It should be
noted that even though the tension cases share a similar
maximum global damage value, the evolution of damage, with
respect to the total equivalent strain, is different as seen in
Figure 5B. In the following, the ML models and their parameters
are presented.

4.2. Machine Learning Models and
Parameters
For this application, Support Vector regression (SVR) and
Random Forest regression (RFR) are used to predict the damage
evolution Ḋ. The ML is conducted using python and scikit-
learn 0.19.1 (cf. Pedregosa et al., 2011). The data set is split
into training (75%) and testing (25%) data sets. For validation,
the training set with 75% of the data is used as the “complete”
data set, and therefore further split into a training set (for
validation purposes) with 56.25% of all data points, and a
validation set with 18.75% of the data. The testing and validation
data set is unseen data that is only used for evaluating the
final model, i.e., after the final ML parameters are set. The
validation set acts as a test set during the fitting of the ML
parameters. Before splitting the data into sets, the order of the
data was randomized in a way that can be reproduced (constant
random state of 666 Müller and Guido, 2017, Pedregosa et al.,
2011). To assess the accuracy of the learning algorithms, the
so-called R2 score is used (Müller and Guido, 2017), which
is computed as a fraction of the mean squared error and the
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FIGURE 5 | Global data plots for uniaxial tension in x- and y-direction (Tx, Ty), biaxial tension (Txy), and shearing in x- and y-direction (Sx, S2y): (A) von Mises stress

plotted against the total equivalent strain, (B) Damage rate as a function of the total equivalent strain.

variance (Pedregosa et al., 2011),

R2 = 1−
∑(

ytrue − ypred
)2

∑(
ytrue − ytrue,mean

)2 . (24)

Here, y represents the output vector, index true indicates the
reference output data, true, mean the mean value of the reference
output data, and index pred represents the output data predicted
by the ML algorithm. The total number of data points is assessed
to be sufficient by using learning curves (cf. Ng, 2016) and
cross-validation. Learning curves are a tool to check whether the
number of data points used for training and testing is sufficient
(Pedregosa et al., 2011). The training data is split several times
into different set sizes to see the development in training and
validation score with respect to the number of data used. Here,
RFR is used to train and validate the model since its training
process is very robust and shows only little sensitivity to the
training parameters. As mentioned in section 4.1, a total number
of 3454 data points are available. For the training and validation,
56.25 and 18.75% of the data is used, i.e., 2071 (training) and
519 (validation) data points, respectively. The training data is
split seven times, so that the following absolute training split
sizes result: 207, 517, 828, 1139, 1449, 1760, 2071. The validation
set is 20% of each split. The resulting training and validation
scores converge after using 1449 training data points to 97.3–
97.5% for training and 82.3–82.8% for validation. Selecting the
most predictive subset of features can help to avoid over-fitting.
Therefore, the features were chosen according to conducted
feature importance methods and to an ductile damage model
from the literature (cf. Equation 25), which is formulated in
a mathematically closed form as analytical function. Feature
importance is used to assess the influence of each feature with
respect to the result. The attribute importance can be understood
as a value of how informative each feature is and therefore
shapes the result. For the feature importance, RFR is used
(cf. section 3.2) with the only non-default parameter being

the number of Decision Tree (DT) (=500). Note that feature
importance gives a rank of all features with respect to their
impact on the results. Less important features are not necessarily
trivial, and neglecting them does not automatically improve
the results. Nevertheless, feature importance can provide an
understanding of the relationship between input and output
parameters with respect to the ML algorithms. As mentioned
above, the training data contain 56.25% of the data, and the
validation set accounts for 18.75% of all data points. The other
25% of the data is the test set, i.e., the unseen data that
is only used after the training process to assess the ability
of the ML algorithm to generalize. As mentioned in section
4.1, for the feature importance all extracted features are used
without additional polynomial features or interactions. The
results of the feature importance are presented in a bar plot
in Figure 6.

The conducted feature importance results in the damage
parameter being the most informative feature with a validation
score of 89.37%. This leaves the importance of all other features
to around 10% in total with 3.4% for the hydrostatic stress
being the second most relevant feature, and the plastic strain
rate the least important feature with 0.9%. Selecting half of
the most important features (D, σvM, σhyd, ǫ

eq
t ) produces a

validation score of about 94.58%. One can see that the damage
parameter and the stresses seem to be the most relevant, based
on feature importance. For the RFR, selecting only the most
relevant features (D, σvM, σhyd, ǫ

eq
t ) leads to better results than

other feature combinations. In contrast, these input parameters
induce a lower accuracy for the SVR. Choosing the same
features for SVR as chosen for RFR, results in a training
score of just about 77.6% and a test score of 82.2%. Both
score values are below acceptance. The SVR cannot extract
enough information from the given features to approximate the
damage rate sufficiently. Therefore, leaving out features causes
an under-fitting problem so that all features are used: D, p,
ṗ, σvM, σhyd, ǫ

eq
t , ǫ

eq
e . Taking a look at the analytical ductile

damage model,
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Ḋ =
(

σvM
2

2E S (1− D)2

[
2

3
(1+ ν)+ 3(1− 2 ν)

(
σhyd

σvM

)2])s
· ṗ,

(25)

one can see a similarity in the input parameters compared to the
results of the feature importance (Chaboche, 1988; Ambroziak,
2007). In the above Equation (25), s and S are material damage
parameters. In addition, constant material parameters such as
the Young’s modulus [E = 228.96(GPa)] and Poisson’s ratio
[ν = 0.27(−)] are used, which can be calculated from uniaxial
stress and strain curves. The input parameters for the analytical
damage model are similar to the selected parameters by the
feature importance, damage parameter and stresses. Later, the
ML results are compared to the analytical damage model given in
Equation (25) to investigate whether ML algorithms can describe
the damage evolution at least as well as a well-established closed-
form damage model.

Furthermore, cross-validation is used to find the best ML
parameters. First, the most appropriate method to scale the data
is determined for the SVR (as RFR does not require a scaling
of the data). The input data are scaled according to a Gaussian
normal-distribution with zero mean value and a variance of
one (standard scaler Pedregosa et al., 2011). Moreover, cross-
validation is used to assess the most suitable kernel and whether
to use additional polynomial features. In this case, the Gaussian
kernel and no additional polynomial features result in the highest
accuracy. Furthermore, grid-search, i.e., finding a parameter set
that results in the highest accuracy, is used to find the best
parameter value of the regularization parameter C (cf. Equation

FIGURE 6 | Results of the feature importance presented in a bar plot showing

the importance of each feature in percent. Here, the x-axis is only properly

shown up to 4% for clarification because all features, except for the damage

parameter, show values < 4%.

25) and the Gaussian kernel coefficient γ (cf. Equation 32).
During grid-search, both parameters are fitted simultaneously.
Here, the epsilon-SVR model is used, which is named after
the parameter ǫ which can be found in Equation (28) of the
Appendix 7.3. This precision parameter defines the distance
between data point and target value, which is still considered
accurate, and has no negative influence on the overall accuracy
(Pedregosa et al., 2011). For the RFR, the cross-validation is used
to choose the best number of DTs, the maximum tree depth
and the split criterion of a node. A number of 500 DTs gives
the best results with respect to a reasonable compromise on the
computation time. Each DT is built until all leaves are pure,
i.e., each last node corresponds only to a single target value,
and the criterion to split a node is the mean absolute error.
In Table 1, the optimum parameters of both ML algorithms
are summarized. The other parameters, as defined in the scikit-
learn library (Pedregosa et al., 2011), are set to their default
values. RFR is rather robust with respect to the parameter values.
Generally, SVR is more sensitive to parameter tuning. Therefore,
its parameters were tuned within a smaller range. Within this
range, the SVR parameters are not as sensitive to tuning. For
example, changing the values for the parameters C and γ from
their optimized values (based on the Grid-Search method) by
10% changes the training score by about 0.02% and the test score
by around 0.04%. With the described data set and the fitted ML
parameters, the two algorithms are trained. The results of the
training processes are given in the next section 4.3.

4.3. Results and Discussion
For the homogenization of damage, two algorithms are used: SVR
and RFR. The same randomly partitioned data set for the training
and the testing process is used for both algorithms. The final
training processes are conducted by using the previously defined
parameters (cf. Table 1) and by using the features that lead to
the best results as described in section 4.2. For SVR the training
and testing processes both have a considerably high accuracy:
99.73% (training) and 98.25% (testing). One can see that the
high accuracy for training as well as testing indicates no over-
or under-fitting (high bias or high variance) problems. The same
applies for the RFR: the training score is 97.66%, and the test
score is 97.48%. The results of the algorithms are presented in
Figures 7A,B. In both cases, only the testing data set (25% of all
data) is displayed in the form of a predicted data against the target

TABLE 1 | ML parameters used for SVR and RFR (scikit-learn library, cf.

Pedregosa et al., 2011); Other parameters are default values.

Parameter Value/Choice

Support Vector regression

Precision ǫ 0.01

Regularization parameter C 200.0

Gaussian kernel coefficient γ 1.0

Random Forest regression

Number of trees 500

Maximum depth pure leaves

Split criterion mean absolute error

Maximum features (for split) all features
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damage rate plot. The red lines in both figures represent the 5%
mismatch area calculated based on the R2 score (see Equation
24). Here, the predicted data are the output of the ML algorithm,
and the real data are the reference damage rate gained from
the simulations.

From the data set, one can see that the majority of data points
have damage rate values below 1/s. Hence, the damage evolution
is predicted more accurately for such values. Even though, both
algorithms have a sufficiently high accuracy on the test set, the
SVR is able to approximate the damage rate more accurately
for higher damage rates. SVR lacks to approximate the damage
rate sufficiently for values near zero as one can see in Figure 7A,
where a reference damage rate of around 0.3/s is predicted for

one point. The RFR has a lower accuracy for larger damage rate
values but can approximate values near zeromore accurately than
the SVR. Some data points were predicted incorrectly with an
error of more than 5% for both algorithms, but the SVR shows
less scattering inside the ±5% mismatch area. Furthermore, the
SVR is able to predict high values for the damage rate more
precisely than the RFR.

In Figure 8A, the ML algorithm results are given in a damage
rate against equivalent total strain plot for five loading cases.
Both ML algorithms are able to capture the damage evolution
with increasing strain, even though not every value can be
predicted perfectly. Hence, the ML algorithms are capable of
predicting the damage evolution for different loading states

FIGURE 7 | ML results of the test set (25% of the data) with predicted values plotted against target values, a ±5% mismatch border (red line) of the R2 score and

points with a lower or equal R2 score of 95% (cyan color) (A) SVR with a score of R2 = 98.25% (B) RFR with a score of R2 = 97.48%.

FIGURE 8 | ML results with numerical data, SVR and RFR results plotted in a damage rate against total equivalent strain plot (A) for different loading states: uniaxial

tension in x- and y-direction: Tx and Ty, biaxial tension: Txy, shearing in x- and y-direction: Sx and S2y (Numerical data points before damage initiation are not plotted)

and (B) compared to the analytical damage model according to Equation (25) with the parameters s = 5.06(−) and S = 0.24(MPa) for the test data of the uniaxial

tension in x-direction.
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precisely. In general, the ML algorithms can approximate the
material response with respect to damage behavior almost as
well as the full-field FE simulations as shown in Figures 7, 8.
The comparison of the trained ML algorithms to the analytical
damage model is given in Figure 8B for the test data points for
the uniaxial tension in x-direction. For the analytical damage
model, the two material parameters had to be adjusted: s =
5.06(−) and S = 0.24(MPa) (cf. Equation 25). Both, SVR
and RFR, are trained as described previously and shown in
Figure 7. The ML algorithms are able to describe the damage
evolution well as mentioned above. Nevertheless, SVR shows
a slight over-fitting problem as the damage rate marginally
decreases after the maximum of around 1.58(1/s) (cf. Figure 8B).
One can see a small roughness in the course, but no over-
fitting is visible for the RFR. Consequently, the RFR method is
more robust to describe the damage evolution for the presented
cases than the SVR method. Furthermore, the fitting of the
algorithm parameter is less demanding for RFR compared to
SVR. The analytical damage model is able to describe the general
damage evolution (see blue line in Figure 8B). Nonetheless,
some limitations for the analytical model are worth noting.
According to the analytical model, a damage evolution is

visible even before the actual damage initiation occurs (after
about 10% of total strain). The reason for this is that in the
numerical model we explicitly gave the limit of the strain
value as the initiation criteria, while the damage evolves in the
analytical model as soon as plasticity occurs; however, due to
the selection of parameters it stays small until some level of
plastic strain is reached. After the actual damage initiation, the
analytical damage model also shows a gradual increase, although,
some difference is observed between analytical model and the
numerical simulations regarding the point of sharp increase in
damage. Moreover, the analytical model is compared to only one
loading state, and its generalization to a variety of loading states
would require re-adjusting its material parameters. Furthermore,
the analytical model does not allow to take microstructural
quantities into account.

5. PROPERTY-BASED DESIGN OF
MICROSTRUCTURES

With the micromechanical modeling approach, the influence of
important microstructural features on the mechanical response

FIGURE 9 | Flow curves comparison between 2 RVEs with different grain size distribution parameter and corresponding flow curves plotted using fitted modified Voce

law parameters.
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can be investigated through numerical simulations, yielding
microstructure-property relationships. Thus, it is possible to use
synthetical microstructures in form of representative volume
elements (RVEs) together with their homogenized mechanical
response that result from micromechanical simulations
as training data for Machine Learning (ML) algorithms.
Consequently, the input parameters of ML models are the
required mechanical properties, and these trained models
shall recommend microstructures that posses such properties
accordingly, which represents one way of microstructure design.

5.1. Virtual Mechanical Testing of RVEs
In a first step, 74 RVEs consisting of 100 grains with various grain
size distribution parameters following a log-normal distribution
function were generated using the dynamic microstructure
generator (DMG) introduced in section 2.1. In this context,
the average grain size µ and the standard deviation σ are
varied between 6–13 and 0.1–1 µm respectively. To exclude
any influence of crystallographic orientation on the deformation
behavior of RVEs, 100 different sets of randomly chosen Euler

angles have been assigned to all RVEs. In this way, the remaining
factor influencing the strain hardening behavior must be the
grain size distribution parameters of the microstructure. In the
next step, the nonlocal crystal plasticity model described in
section 2.2 is implemented onto a user-defined material model
(UMAT) and applied in a finite element (FE) simulation with the
commercial software ABAQUS to assess the mechanical response
of RVEs. By using a nonlocal crystal plasticity model, size effects
including the influence of grain size are taken into account. For
this part of the study, a BCC crystal structure is assigned to all
grains in the RVEs; nonlocal crystal plasticity parameters are
summarized in Table 4 in the Appendix 7.1 (Vajragupta et al.,
2017).

5.2. Homogenization of Empirical
Hardening Law
In the next step, the mechanical response of RVEs is simulated
under a uniaxial tension loading condition, and macroscopic
flow curves are homogenized from reference nodes using
the method introduced in section 2.3.3. Examples of two

FIGURE 10 | Influence of the average grain size on fitted material parameters of the modified Voce law (A) Y0, (B) R0, (C) Rinf , and (D) β.
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TABLE 2 | Optimized ML parameters of SVR and RFR (scikit-learn library, cf. Pedregosa et al., 2011) for prediction of microstructural features from flow curve.

Parameter Value/Choice

SVR

Precision ǫ 0.001

Penalty parameter C 1.0

Tolerance 0.001

RFR

Number of trees 300

Maximum depth pure leaves

Split criterion Gini

The maximum number of features considered to make a split
√
number of features

The minimum number of samples required to split a node 2

The minimum number of samples required to be at a leaf node 2

RVEs with different grain size distribution parameters and the
corresponding homogenized flow curves are shown in Figure 9.
With a nonlocal crystal plasticity model, the influence of the grain
size on the strain hardening behavior can be observed. These
results prove the validity of implemented strain gradient crystal
plasticity model and demonstrate that grain size effects can be
incorporated properly in microstructure simulations. For the
sake of simplicity, these flow curves are fitted with an empirical
isotropic hardening law in order to reduce the dimensionality of
the training data. In this context, the modified Voce law (Kim
et al., 2013) is chosen and expressed as,

σS = Y0 + R0p+ Rinf (1− exp(−βp)). (26)

Y0, R0, Rinf , and β are material parameters to be determined,
and p is the equivalent plastic strain. To parameterize the
aforementioned hardening law from results of RVEs simulations,
the nonlinear least square fitting method is implemented (Bates
and Watts, 1988). As a result, two sets of calibrated modified
Voce isotropic hardening parameters from two selected RVEs
simulations are used to plot flow curves as illustrated in Figure 9.
From the comparison, both fitted flow curves are in a good
agreement with simulation results and can be used to represent
microstructure simulations. Furthermore, the evolution of these
fitted material parameters with respect to the average grain size is
plotted as shown in Figure 10.

From Figure 10, the influence of the average grain size on
fitted material parameters of the modified Voce law is observed.
According to Equation (26), Y0 is directly related to the yield
stress. Fitted Y0 as plotted in Figure 10A linearly decreases
with an increasing average grain size, and standard deviation
influences a scatter of Y0 at the same average grain size. From
Figures 10B,C, R0 and Rinf non-linearly decrease with larger
average grain size. These two parameters behave similarly to the
Hall-Petch relation. However, the standard deviation does not
contribute to a scatter of R0 and Rinf . β , which inversely governs
the slope of the hardening law and increases with an increasing
average grain size. With respect to the hardening law, smaller
average grain size results in a more pronounced strain hardening
behavior. In the next step, thesemicrostructure simulation results
are fed as training data for ML models.

5.3. Training of Machine Learning Models
For this application, Support Vector regression (SVR) and
Random Forest regression (RFR) are implemented to predict the
average grain size producing a given material behavior, which is
described by the parameters of the modified Voce hardening law.
SVR and RFR are performed using Python and scikit-learn 0.19.1
(Pedregosa et al., 2011). The data are split into training (80 %)
and testing (20 %) data sets. Similar to section 4, the R2 score is
used to evaluate the performance of ML models. To determine
hyperparameters of selected ML models yielding the highest
accuracy, Grid-Search with 3-fold cross validation is applied,
which manually considers all combinations of hyperparameters
in a search space.

In Table 2, the optimized parameters of both ML models are
summarized while other parameters as introduced in the scikit-
learn library (Pedregosa et al., 2011) are set to default values.

5.4. Results and Discussion
The training processes of both ML models for predicting the
grain size from the flow curve are performed by using the
defined parameters (cf. Table 2). For SVR, both, training and
testing processes, give a high accuracy of 99.39% (training) and
97.95% (testing), respectively. These results indicate no over- or
under-fitting issues. Similarly, trained RFR also results in a great
accuracy for both training (99.62%) and testing (97.86%). The
results of algorithms for the test data set (20% of all data) in the
form of predicted grain size vs. reference grain size are shown
in Figure 11. In this case, the predicted grain size data are the
output from ML models and the reference grain size data are
the grain sizes of RVEs used in microstructure simulations. From
Figure 11, most of the data points from both trained ML models
are within 5% error and there are only some data points, which
give more than 5% error. Therefore, it can be concluded that
there is no significant difference between both models in terms
of scatter from the 100% accuracy line.

Furthermore, trained ML models are tested with data that
are out of range of the training data. In this context, an
RVE consisting of 100 grains with average grain size of 15
µm and a standard deviation of 0.1 µm are generated using
DMG. Plastic behavior is again described with a nonlocal
crystal plasticity model, with parameters given in Table 4
in the Appendix 7.1, and uniaxial tension loading conditions
are simulated. This microstructure simulation is homogenized
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FIGURE 11 | ML results of the test data set (20% of the data) with predicted grain size vs. reference grain size and a ±3% mismatch border (red line): (A) SVR; and

(B) RFR.

to obtain macroscopic flow curves and modified Voce law
parameters are determined using the non-linear least square
fitting method accordingly. The fitted modified Voce law
parameters are summarized in Table 3. For the validation
process, these parameters are then used as input for both trained
ML models to determine the average grain size.

By comparing the average grain size of the RVE to produce
the flow curve with grain sizes predicted from ML models,
significant deviations are observed when out-of-range-data are
used, because predicted grain sizes are always within the range of
training data. Therefore, such results show that an application of
these trained ML models are only valid when the input data are
within a certain range. Furthermore, it must be verified that the
output data lie within the space covered by the training data. To
further improve accuracy and to extend applicability of trained
ML models, more training data covering a wider range of grain
sizes should be used. In any case, within the range of training
data, predicted grain sizes are still in a very good agreement with
the reference data.

6. CONCLUSION

In this work, two novel applications with respect to using
Machine Learning (ML) in material science were given
and discussed. Both included microstructurally informed
representative volume elements (RVEs) and crystal plasticity
material modeling and used finite element (FE) simulations to
study the mechanical response of different microstructures to
applied loads. The results of the FE simulations were used to
train and test the ML algorithms.

The first application was the approximation of damage
evolution in an RVE using Support Vector regression (SVR) and
Random Forest regression (RFR). Furthermore, their results were
compared to the analytical damage model, which was formulated
in a mathematically closed form as analytical function. The FE
simulations included several loading conditions to be generally

TABLE 3 | Summary of fitted modified Voce parameters from microstructure

model with the average grain size of µ=15.0 µm and σ=0.1 and predicted grain

size using trained ML model.

Fitted modified Voce parameters Predicted grain size [µm]

Y0 [MPa] R0 [MPa] Rinf [MPa] β [-] SVR RFR

165.66 2339.23 144.58 46.57 11.23 12.87

valid for monotonous load paths. The data gained from the
simulations were homogenized and pre-processed before being
used as training data for ML algorithms. Both regression schemes
succeeded to predict the damage evolution correctly, with an
accuracy (R2 score) higher than 97% on the test data set.
Additionally, both algorithms were able to predict the damage
rate for different loading conditions appropriately. Comparing
the results of ML to the analytical damage model, the limitations
of such an analytical model became visible. Both ML methods,
SVR and RFR, were able to describe the damage evolution of
a microstructure with very good precision. However, for the
prediction of damage evolution, SVR showed a lower ability
to generalize to unseen data than RFR and, furthermore, RFR
shows a lower over-fitting problem, and its parameters are
easier to calibrate.

It is observed that damage homogenization with ML
algorithms exhibits several interesting features that are also
observed in real experiments and macroscopic modeling, e.g.,
the shape of the damage evolution curve over the total
equivalent strain or the fact that once damage is initiated,
the increase in plastic strain leads to a sharp increase in the
damage rate. These investigations show the capabilities of this
method to predict macroscopic damage such that in future
macroscopic applications, like deep drawing or sheet bending, it
will become possible to include microstructure information into
the constitutive relations of the materials.

The second application of ML methods aimed at predicting
the necessary grain size in microstructure models to produce
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given flow curves with a desired work hardening behavior. This
was accomplished, again, by using SVR and RFR. In this context,
74 RVEs with various grain size distribution parameters were
generated, simulated for uniaxial tension and homogenized to
obtain macroscopic flow curves. These simulated flow curves
were fitted with amodified Voce law and the obtained parameters
together with grain size distribution parameters of RVEs were
used as input for the ML algorithms. For both ML models,
the grain size prediction gave a good accuracy with R2 scores
higher than 97.8% on the test data set. However, when out-
of-range data were applied to trained ML models, predicted
grain sizes strongly deviated from the reference quantities. It
is hence concluded that the trained ML models are restricted
to the space covered by training data. To further enhance
the prediction accuracy, training data should cover a wider
range of grain sizes. In any case, with a proper range of
training data, one can see the prospect of using ML models
to suggest microstructural parameters that produce desired
mechanical properties.
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