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This study aimed to determine the effects of curing regime on shrinkage of alkali-activated

concretes produced from a Swedish high-MgO blast furnace slag. Sodium carbonate

(SC), sodium silicate (SS), and their combination were used as alkali activators. The

studied curing procedure included heat-treatment, no heat-treatment, sealed and

non-sealed conditions. The heat curing increased the compressive strengths of the

concretes activated with SS and with the combination of SS and SC. Sealed-curing

applied for a period of 1 month reduced the measured drying shrinkage by up to 50%

for all studied heat-treated samples. Conversely, the same curing procedure significantly

increased the development of the drying shrinkage once the seal was removed after

28 days of curing in the case of the SC-activated concretes non-heat treated. Higher

degree of reaction/hydration reached by the binders in these concretes was indicated

as the main factor. All of the concretes studied had showed a significant microcracking

of the binder matrix, with the most extensive cracking observed in the sealed lab-cured

mixes. The heat-cured mixes activated with SS and combination of SC and SS showed

the most homogenous microstructure and low extensive micro cracking comparing with

lab-cured ones.

Keywords: Alkali activated slag concrete, microstructure, drying shrinkage, curing regime, high MgO granulated

blast furnace slag

INTRODUCTION

Granulated blast furnace slag (GBFS) is a by-product derived from the iron-making process,
and is quenched from its molten state to form an amorphous material consisting mainly of a
calcium-magnesium aluminosilicate glass. Ground GBFS is also widely used as a supplementary
cementitious material in Portland cement—based systems (PC), to lower the hydration heat
and to improve the chemical durability of concrete, especially in acid exposures (Chidiac and
Panesar, 2008). The use of the alkali-activated slag (AAS) binders to produce concretes enabled
up to 75% reduction of the carbon emissions footprint in comparison with plain Portland
cement (Yang et al., 2013).

The mechanical properties of AAS concretes are controlled by physical properties and chemical
composition of the used slag precursor, the activator type and its dose, curing temperature but also
a number of other parameters (Atiş et al., 2009; Bernal et al., 2014a; Myers et al., 2017; Criado
et al., 2018). The most commonly used alkali activators include; sodium hydroxide, sodium silicate,
sodium sulfate, and sodium carbonate (Provis and Van Deventer, 2014; Criado et al., 2018).
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The setting times of AAS pastes activated by sodium silicate
and sodium carbonate were found to be significantly longer than
that of the OPC. On the other hand, slag paste activated with
sodium carbonate had similar setting behavior as the PC-based
concretes (Atiş et al., 2009).

AAS concretes showed good resistance to acid attack, fire
exposure and corrosion (Jiang et al., 1997; Chidiac and Panesar,
2008; Karahan and Yakupoglu, 2011; Mundra et al., 2017). Most
AAS concretes activated by sodium silicate or sodium hydroxide
showed higher early and flexural strength (Bakharev et al., 1999),
but they are more sensitive to the curing temperature than PC.
The apparent activation energy is higher but it develops lower
hydration heat and faster reaction rates (Shi and Day, 1996; Shi
et al., 2006; Aydin and Baradan, 2012; Provis et al., 2015).

In general AAS develop higher shrinkage in comparison with
PC concretes (Allahverdi et al., 2017; Humad et al., 2018; Orosz
et al., 2019). In the case of the SS activated GGBFS concretes, the
high shrinkage was linked with the presence of more mesopores
(Shi, 1996) which led to the increased tensile stresses and thus
to a greater drying shrinkage (Häkkinen, 1993). SS-activated slag
mortars developed up to six times higher drying shrinkage in
comparison with mortars based on PCmortars (Atiş et al., 2009).
Conversely, SC-activated slag showed lower or equal drying
shrinkage values in comparison with PC based systems. The
shrinkage kinetics appeared to be slower at a similar RH (Zheng,
2010; Ye and Radlinska, 2016). The hydration products of the
AAS included C-S-H gel with a lower Ca/Si ratio than that in
PC, with a Si-rich gel, containing higher amount of un-combined
water content. This un-combined water would evaporate during
the drying process, subsequently causing a significant shrinkage
(Collins and Sanjayan, 2000; Ye and Radlinska, 2016; Ye et al.,
2017). Shrinkage of the ASC is strongly influenced by the applied
curing conditions. For example exposure to the relative humidity
(RH) between 50 and 70%was indicated as especially unfavorable
(Douglas et al., 1992; Bakharev et al., 1999; Krizan and Zivanovic,
2002; Provis and Van Deventer, 2014; Ye et al., 2017). A partial
replacement of BFS with FA tended to lower the drying shrinkage
(Wallah and Rangan, 2006; Singh et al., 2016; Humad et al.,
2019). Decrease of the NaO to SiO2 molar ratio of the SS alkali
activation reduced the drying shrinkage values, but increased the
autogenous shrinkage (Krizan and Zivanovic, 2002; Atiş et al.,
2009; Humad et al., 2019).

Heat treatment can significantly accelerate the strength
development of AAS concrete, and has been observed to reduce
the ultimate shrinkage values in comparison with the PC concrete
(Bakharev et al., 1999). The heat curing resulted in a coarser
porosity and thus decreased drying shrinkage (Bakharev et al.,
2000; Ismail et al., 2013). A similar effect was observed while
using shrinkage reducing admixtures (SRA). In that case, the
drying shrinkage was reduced by formation of a coarser pore
structure which led to the reduction of the pore fluid surface
tension (Palacios and Puertas, 2007).

The high MgO content GGBFS, which is the focus of the
research results presented in this publication, can be found only
in few locations around the world. Sweden is one example where
all locally produced GGBFS has MgO content between 12 and
19-wt.%. Previous studies showed that the reaction chemistry

and the developed microstructure are remarkably altered in
those systems with a possible strong effect on shrinkage. The
incorporation of Al in the C-S-H type gel which is typical for
AAS systems was reduced at a high BFS MgO content. The
available Al was strongly consumed through the formation of
hydrotalcite-group minerals (Ben Haha et al., 2011). An increase
of the MgO content in AAS systems activated by SS, enhanced
the formation of hydrotalcite and formed a more disordered
silicate gel microstructure (Ben Haha et al., 2011; Bernal et al.,
2014b). Increasing the MgO content in alkali-activated slag
system showed increased carbonation resistance (Bernal et al.,
2014b; Park et al., 2018).

The problem of an excessive drying shrinkage in AAS concrete
is known and has been studied well relatively for binder systems
based on commonly available low MgO content blast furnace
slags. On the contrary, the amount of the available data related
to AAS based on high MgO content BFS is rather limited.
The present research aimed to fill in this lack of knowledge
and focused on effects of various curing conditions, mechanical
properties, and microstructure on shrinkage of a typical high
MgO blast furnace slag available in Sweden on the development
of drying and autogenous shrinkage.

MATERIALS AND METHODS

A (GBFS), type Merit 5000 (MEROX, Sweden), was used as a
main binder in this study. Its chemical composition determined
using a PANalytical-Zetium XRF spectrometer is shown in
Table 1. The physical properties were provided by the supplier,
Sodium carbonate and sodium silicate were used as alkali
activators. The powdered sodium carbonate (SC) was provided
by CEICH SA from Poland while the liquid sodium silicate
(SS) by the PQ Corporation. The SS as supplied had the alkali
modulus (Ms =mass ratio SiO2/Na2O) of= 2.2, with 34.37 wt.%
SiO2, 15.6 wt.% Na2O and solids content of 49.97 wt.%. The
Ms value was adjusted to 1.0 by addition of sodium hydroxide
pellets (98% purity), with 76.31 wt.% Na2O. The alkali activator
dosage varied between 5 and 10 wt.% of the total binder content,
Table 2. The BFS content in all concrete mixes was 450 kg/m3,
and the total water to binder (w/b) ratio was 0.45. Jehander group
from Sweden provided coarse granite aggregates (size 4–8mm)
and fine aggregates which grading curves are shown in Figure 1.
The fine aggregate content in the concrete mix was about 80
wt.% of the total aggregate amount. Liquid sodium silicate and
powder sodium carbonate were dissolved in the mixing water
24 h before production of concrete. All dry ingredients including
GBFS, coarse and fine aggregates were mixed for 1min followed
by an addition of the mixing water containing alkali activators
and mixed for another 3min. A rotating pan mixer type Zyklos-
ZZ75HE was used to prepare all the mixes.

Initial and final setting times were determined using the
Vicat apparatus, following the ASTM C191-13 standard. Flexural
strength was determined on 28-day old beams of 100× 100× 500
mm3, in three point bending following the SS-EN 12390-5:2009
standard. The applied load rate was 160 N/sec. 7 and 28-days
compressive strengths were determined as average values from
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TABLE 1 | Details of GGBFS used in this work.

Component CaO SiO2 Al2O3 Fe2O3 MgO Na2O K2O TiO2 MnO SO3 L.O.I

Composition represented as oxides wt.% 30.4 35 14.3 0.3 16.1 0.6 0.7 2.8 0.5 0.7 0.9

Physical data Specific surface(cm2/g) Bulk density (kg/m3) Particle density (kg/m3)

5,000 1,100 2,950

TABLE 2 | Mix proportions of concretes.

Mix ID Binder (GBFS)

content kg/m3

Total w/b

ratio

Aggregate content

(0–8mm) kg/m3

Activator type, % dosage as

solid materials

Curing

condition

pH value of the

activator solution

Slump results

in mm

SC10L 450 0.45 1,663 10% SC Lab curing 11.2 80

SC10H 450 0.45 1,663 10% SC Heat curing

SS10 L 450 0.45 1,663 10% SS, Ms =1 Lab curing 13.7 250

SS10H 450 0.45 1,663 10% SS, Ms =1 Heat curing

SC5 + SS5L 450 0.45 1,663 5% SC+5% SS Lab curing 13.3 180

SC5 + SS5H 450 0.45 1,663 5% SC+5% SS Heat curing

SS, sodium silicate; SC, sodium carbonate; L suffix after mix refers to laboratory-cured mix; H suffix after mix refers to heat-cured mix.

FIGURE 1 | Grading curve of combined coarse and fine aggregates.

three tests on 100 × 100 × 100 mm3 cubes following the SS-EN
12390-3 standard. The loading rate was set to 10 KN/s.

Shrinkage was determined using cylinders having a diameter
of 100mm and a height of 200mm. The shrinkage measurements
started 1.5 days after casting for the heat-cured sample and
after 2–3 days for the laboratory-cured samples, depending on
the measured final setting time, Figure 2. All samples were
subsequently stored in laboratory conditions. Strain values were
recorded using a strain gauge DEMEC type product by Mayes
Instruments Limited. Two pairs of stainless steel measuring discs
were glued with an epoxy resin onto each cylinder and were
spaced at 100 mm apart.

The curing procedure applied to samples used for the
determination of the compressive and flexural strength tests
included sealing with plastic bags followed by storage of the
specimens in the laboratory conditions at 20 ± 2◦C and 40 ±

3% RH until testing. The second procedure included heat curing

FIGURE 2 | Initial and final setting times of AAS concrete mixes.

at 65◦C for 24 h applied immediately after casting followed by
a storage in the laboratory at 20 ± 2◦C and 40 ± 3% RH.
Samples used for shrinkage tests determination were subjected to
two additional curing procedures, Table 3. The third procedure
included sealing only for 2–3 days after hardening. After seal
removal samples were stored at 20 ± 2◦C and 40 ± 3% RH (L
unsealed), Table 3. Heat curing of sealed samples at 65◦C for 24 h
was applied in the 4th variant and was followed by removal of the
seal and storage of the specimens in the laboratory conditions at
20± 2◦C and 40± 3% RH (H unsealed).

“Microstructure and microchemistry of hardened samples
were studied using scanning electron microscope (SEM) model
JSM-IT100 combinedwith aQUANTAXEDX (Energy-dispersive
X-ray spectroscopy) analysis system from BRUKER and the
ESPRIT 2 software. Concrete samples for the SEM analysis
were cut from 28-days old specimens. Moisture was moved
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TABLE 3 | Curing details symbols of lab- and heat-cured samples of

shrinkage measurement.

Mix ID Lab- or heat-cured samples

sealed for 1 month

Lab- or heat-cured samples

opened after hardened

SC10L SC10L sealed SC10L unsealed

SC10H SC10H sealed SC10H unsealed

SS10 L SS10 L sealed SS10 L unsealed

SS10H SS10H sealed SS10H unsealed

SC5 + SS5L SC5 + SS5L sealed SC5 + SS5L unsealed

SC5 + SS5H SC5 + SS5H sealed SC5 + SS5H unsealed

SS, sodium silicate; SC, sodium carbonate; L sealed suffix after mix refers to laboratory-

cured mix sealed for 1 month; H unsealed suffix after mix refers to heat-cured mix opened

after hardening.

from all specimens using an alcohol exchange techniques where
sample were stored in alcohol for 48 h. In the following
step, specimens were moved to the low vacuum impregnation
chamber and impregnated with low viscosity resin. No heat
drying of the samples was applied to maximally limit formation
of microcracks. After curing for 24 h resin impregnated samples
were grinded and polished in steps using polishing spray
containing 9, 3, and 1µm synthetic diamond particles. During
polish a load of 35N was applied in the polishing head. The SEM
was operating at using 15.0 kV accelerating voltage and probe
current of 61–72 mA.”

RESULTS AND DISCUSSION

The shortest initial setting times were measured for mixes
activated with 10 wt.% of SC and 10 wt.% of SS (SC10, SS10,
respectively). The longest final setting times were observed for
mixes activated with 10 wt.% SC and the combination of 5 wt.%
of SC + 5 wt.% of SS (SC10, SC5 + SS5), Figure 2. These results
can be explained by a high concentration of calcium carbonate
and high MgO content which resulted in formation of gaylussite,
hydrotalcite and calcite (Humad et al., 2018). Earlier studies
showed that a presence of calcite CaCO3 tends to shorten the
initial setting time rapidly and decreases the viscosity of the fresh
mix. At the same time, it extended the final setting due to slower
reaction rates and a longer induction period. The pH values
of those systems were also observed to be significantly lower,
(Sariibrahimoglu et al., 2012; Provis and Van Deventer, 2014;
Bernal, 2016).

The flexural strength of the AAS concrete beams reached
between 4.5 and 6.0 MPa with slightly lower values for the heat-
cured samples, Figure 3. The highest 7- and 28-day compressive
strength was measured for the heat-treated samples activated
with 10 wt.% SS, while the lowest for the heat-cured sample
activated with 10 wt.% SC (mix SC10H), Figure 4. There is no
evident correlation between compressive and flexural strength
among tested samples. Fewmixes had relatively high compressive
strengths but showed lower flexural strengths, which could be
related tomicrocracking of the bindermatrix. Similar trends were
also observed by others in the PC based systems (Wedatalla et al.,

FIGURE 3 | Flexural test results of concrete beams after 28 days of

sealed curing.

FIGURE 4 | Compressive strength test results of concrete cubes after 7 and

28 days of sealed curing.

2019). The chemical composition and particles size distribution
strongly affects the kinetics reaction and the evolution of solid
structural phases forming in alkali-activated slag (AAS) system.
At high MgO contents (MgO > 5%), the hydrotalcite phases and
the C–(N)–A–S–H type gels were observed to be formed (Bernal
et al., 2014b). The lowered Al uptake by the C-S-H resulted in
an increased 28-days compressive strength. An increasing MgO
content of SH- and SS-activated slag pastes showed more rapid
strength development and higher compressive strength at early
and late hydration times (Ben Haha et al., 2011). The highest
increase of the compressive strength between 7 and 28 days was
observed for the non-heat-treated samples activated with 10 wt.%
SS (mix SS10 L) while the lowest for the heat-treated samples
activated with 5 wt.% SC and 5 wt.% SS (mix SC5 + SS5H). A
lack of the moisture required to continue the reaction of GBFS
could be indicated as one of the possible reasons (Collins and
Sanjayan, 2001). Higher initial hydration/reaction rate observed
in heat-cured mixes followed by its significant slowdown can
be also related to the formation of a dense impermeable binder
matrix surrounding the unreacted particles. The efficient amount
of available GBFS will be limited. The formed binder matrix will
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FIGURE 5 | Shrinkage of the laboratory- and heat-cured AAS concrete

samples activated by 10% sodium carbonate SC.

FIGURE 6 | Shrinkage of the laboratory- and heat-cured AAS concrete

samples activated by 10% sodium silicate SS.

be also less homogenous with larger amount of pores (Helmuth
and Verbeck, 1968; Shi et al., 2006).

The used curing procedure aimed to simulate real life
conditions where sufficient control is only possible for a limited
amount of time. The main difference between the sealed
and unsealed samples was the ultimate contribution of the
autogenous and drying shrinkage. The sealed curing hindered the
development of the drying shrinkage and produced a strong and
dense binder matrix able to resist volumetric changes without
extensive microcracking. Contrary, the used unsealed curing
enabled a development of both types of shrinkage. The measured
shrinkage values are shown in Figures 5–7. In general, concretes
activated with the sodium carbonate, had a significantly lower
shrinkage in comparison with mixes activated with the sodium
silicate. The lowest shrinkage of 1.1 mm/m was measured on SC-
activated slag concrete (mix SC10H sealed) subjected to the heat-
treatment, which was followed by one-month curing in sealed
conditions, Figure 5. Mixes activated with 10 wt.% SS and 5

FIGURE 7 | Shrinkage of the laboratory- and heat-cured AAS concrete

samples activated by 5% SC + 5% SS.

FIGURE 8 | SEM-BSE images of fragments of 28 days (sealed) AAS concrete

samples show the microcracking which filled with resin.The right side shows

the lab-cured samples (marked L), and the left side shows the heat-cured

samples (marked H). Agg., aggregate particle; BFS, unreacted or partially

reacted blast furnace slag particle. The scale bar in each image represents 50

µm.

wt.% SC + 5 wt.% SS, subjected to the same curing procedure
developed 2.4 and 1.5 mm/m of shrinkage, respectively. Those
higher values can be related to more intensive chemical reactions
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FIGURE 9 | Efflorescence of lab-cured samples when de-molded at early age and left open in a laboratory environment for 2–3 h.

triggered by a high pH values. The formed microstructure was
finer presumably also leading to intensive self-desiccation as
observed by others (Zhang et al., 2013; Mosale Vijayakumar,
2014). The number of empty pores most probably increased due
to more intensive reactions which eventually resulted in a higher
shrinkage (Neto et al., 2008).

The applied heat treatment decreased themeasured shrinkage.
In the case of mixes activated with a combination of 5 wt.% SC
+ 5 wt.% SS the maximum reduction reached 41%. The heat

treatment presumably produced coarser microstructure of the
binder matrix which lead to lower tensile strains induced by
the evaporation of the pore water and lower shrinkage values
(Bakharev et al., 2000; Collins and Sanjayan, 2000; Ismail et al.,
2013). As described earlier, a higher curing temperature most
probably lead to a more intensive formation of reaction products
around slag particles thus limiting or fully inhibiting its further
dissolution which provides all required for the solidification
reaction species (Bakharev et al., 1999). The heat-cured samples
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showed only a moderate enhancement of the measure ultimate
compressive strength, which further supports that mechanism.
A similar effect of the high curing temperature was observed in
Portland cement based concretes (Helmuth and Verbeck, 1968).
A significant and unfortunately, unmeasured proportion of the
shrinkage developed already during the heat treatment. The
application of the 1-month sealed-curing reduced the measured
shrinkage by up to 61% in the case of concretes activated with
10-wt.% SC, Figure 5. A combination of the heat treatment and
the 1 month sealed curing reduced the measured shrinkage by
up to 50% for the mix SC5 + SS5, Figure 7. The sealed curing
presumably additionally increased the tensile strength of the
binder matrix and decreased its carbonation (Ma and Dehn,
2017).

The SEM-BSE analysis showed an intensive microcracking
of the binder matrix. In the analysis of the obtained images
only cracks filled with resin were considered which excluded
crack, which could form due to vacuum conditions present in
the SEM specimen chamber. In general, the microcracking was
more extensive in non-heat-treated samples, which can be related
with the high early age shrinkage, Figure 8. Conversely, the
heat-cured samples showed less microcracking, especially the
mixes SS10H and SC5 + SS5H due to stronger matrix and
coarser microstructure.

Efflorescence was observed in non-heat-treated samples
during de-molding, Figure 9. The phenomenon was caused
by a migration of sodium hydroxide from the pore solution
to the surface of samples during drying and its subsequent
reaction with atmospheric carbon dioxide. As a results the
sodium carbonate was formed (Higgins, 1982). The hydroxide
remains water-soluble only for a short period after the exposure
to the atmosphere as it reacts with CO2 to form carbonate
salts (Higgins, 1982). The observed strong tendency of AAS
binders toward the efflorescence can be related to the high alkali
concentration in the pore solution. In certain alkali activated
concretes, this can be exaggerated by an open microstructure
caused by for example a lower reaction degree, and a weak
exchangeable binding of Na (Wang et al., 1995; Lloyd et al.,
2010; Allahverdi et al., 2017; Longhi et al., 2019). Earlier studies
showed that in SC-activated binders, calcium and sodium-
calcium carbonates tend to form at early stages rather than
the strength-defining C-A-S-H phases (Fernández-Jiménez et al.,
2003). After 28 days, a highly cross-linked C-A-S-H providing a
higher strength phase was reported to form (Fernández-Jiménez
et al., 2003; Xu et al., 2008).

The high MgO content of the slag tends to affect the early-age
properties of the binder matrix. Earlier studies, also performed
by the authors, indicated formation of hydrotalcite-like Mg-
Al layered double hydroxides (Bernal et al., 2016; Humad
et al., 2018; Abdollahnejad et al., 2019). The consumption of
Al may also contribute to the strength development. The phase
composition at each age can be controlled by the consumption
of CO3

2− species from the activator. For example, calcium
carbonates are formed using Ca2+ released from the GBFS.
Carbonates can be up taken by the Mg–Al layered double
hydroxide phases. When the CO3

2− species are consumed, the
pH will increase and the reaction is believed to continue similarly
as in the case of binders activated with sodium hydroxide (Xu

FIGURE 10 | Ternary diagrams showing the oxide composition regions of the

sealed AAS concretes (28 days old) measured with SEM/EDX and compared

with (Garcia-Lodeiro et al., 2011; Van Deventer et al., 2014) results; (A) for

heat-cured samples, (B) for lab-cured samples.

et al., 2008; Bernal et al., 2015). In the present study, the applied
heat curing (at 65◦C) affected the dissolution process of the
GBFS, and thus also the availability of Ca2+ and CO3

2− at the
early age. Although, not verified experimentally, it is very likely
that the dissolution rate of GBFS was higher in the heat-cured
samples thus leading to a more intensive formation of calcite and
gaylussite. The formation of gaylussite was shown earlier to be
predominant at an early age, in high-MgO AAS binders (Humad
et al., 2018). The high sodium carbonate content in the mix SC10
provided an excess of Na ions, which supported the formation
of gaylussite Na2Ca(CO3)2·5H2O (Allahverdi et al., 2017). In the
next stage, the gaylussite started to dissolve and changed to more
stable phases besides the formation of C-A-S-H was initiated
(Allahverdi et al., 2017; Humad et al., 2018).

The results from the SEM-EDX analysis are shown in the
form of ternary diagrams; CaO, Al2O3 and SiO2, Figure 10.
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FIGURE 11 | EDX analysis results after 28-day, show atomic ratio Al/Si vs.

Mg/Si of AAS concrete, heat, and lab-cured.

Based on earlier studies typical regions for CSH, N(A)-S-
H and C(A)-S-H are marked (Garcia-Lodeiro et al., 2011;
Van Deventer et al., 2014). The values obtained from spot
analyses of the binder matrix appeared to be located in
the area predominantly assigned to C(A)-S-H phase, thus
further supporting earlier formulated conclusion. Furthermore,
higher amounts of SiO2 and lower amounts of calcium
were detected in the laboratory cured samples, Figure 10A.
It could be related to a lower degree of reaction/hydration
similarly as in the case of the Portland cement based
systems (Helmuth and Verbeck, 1968).

The amount of Al up takes in C-S-H could be predicted from
Figure 11, where all the mixes displayed overlapping at the same
area. The presence of a positive value in x-axis in the Al/Si vs.
Mg/Si ratios indicates the formation of a hydrotalcite-like phase
and the presence of Al in the C-S-H (Ben Haha et al., 2011),
with Mg/Al ratio of 1.1, 0.91, and 0.94 for mixes SC10H, SS10H
and SC5 + SS5H, respectively. While for lab-cured samples the
Mg/Al ratios were 0.88, 0.89 and 1.06 for mixes SC10 L, SS10 L
and SC5 + SS5 L respectively. However, the Al incorporation in
C-S-H decreased with increased MgO content. Ben Haha et al.
(2012) stated that the hydrotalcite-like phases formed during the
first days having an Mg/Al ratio of∼2, then declines with time at
later age to be 1.3 or even 0.5, which means poor hydrotalcite was
presented in all mixes of this study, Figure 11.

CONCLUSIONS

High MgO content Swedish GGBFS was studied to determine
effects of curing conditions on the development of shrinkage
of alkali activated concretes. Additionally, setting times,
microstructure, chemical composition and compressive strength
were determined as well. Four different curing procedures were
evaluated including heat-treatment and no-heat-treatment in
combination with sealed and unsealed conditions. The obtained
results confirmed that all measured parameters were affected by
the applied curing procedure. The non-heat treated sealed-cured
samples produced higher 28-day compressive strengths when
activated with sodium carbonate. The application of the heat
treatment combined with the sealed-curing for those concretes
resulted in lower strengths. All non-heat-treated and unsealed
samples showed higher shrinkage, while the application of the
combined heat-treatment and sealed-curing reduced these values
by 30–50%. The reduction was related to the development of
more intensive hydration/geopolymerization reaction leading
to a denser binder matrix having a higher tensional strength.
Consequently, the drying and carbonation shrinkage were
reduced by sealing. The heat-treated samples showed less micro-
cracked and coarser microstructure additionally indicating
higher tensional strength of the binder matrix.

All presented results are based only one high MgO BFS which
limits to formulate generalized concussions. Therefore, the future
research should focus on testing slags with variable amounts
of MgO.
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