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Recent progress in nanotechnology enables us to utilize elastic strain engineering, the

emerging technology capable of controlling the physio-chemical properties of materials

via externally-imposed elastic strains, for hard materials. Because the range of properties

accessible with elastic strains are set bymaterials’ elasticity limits, it is of great importance

to suppress the occurrence of any inelastic deformations and failure, and thus the

fundamental knowledge on fracture behavior at nanoscale is highly required. The

conventional Weibull theory, which has been widely used for last the few decades

to explain the failure statistics of brittle bulk materials, has a limitation to be directly

applied to samples of nanometer dimensions because the baseline assumption on

statistical equivalence becomes intractable for small samples. In this study, we suggest

an integrated equation presenting the sample size effect on fracture strength for brittle

nanomaterials by further considering the confinement of the flaw size distribution. This

new approach is applicable to any homogeneous brittle nanomaterial whose failure

is governed by linear elastic fracture mechanics and shows good agreement with

experimental data collected from the literature. We expect that this theoretical study

offers a new guideline to employ brittle nanomaterials in designing and fabricating the

advanced strain engineering system.

Keywords: brittle, confinement effect, fracture strength, nanoscale fracture, nanoscale Weibull distribution, size

effect

INTRODUCTION

Thermodynamic potentials and free energies of elastically-deformed solid bodies explicitly depend
on the strains or stresses (Kittel and McEuen, 1996; Gilman, 2003). This fact, in principle, offers
a unique opportunity for materials engineers to tune and optimize many physical and chemical
properties of functional materials by externally imposing elastic strains (Zhu and Li, 2010; Li
et al., 2014). One necessary condition to take the utmost benefit from this strategy is large elastic
deformability while suppressing failure by inelastic deformation or fracture so as to maximize the
accessible domains in materials’ design parameter space. This condition is only marginally fulfilled
for conventional hard materials, for their strain values at yield or fracture are typically<1% (Pelleg,
2014; Anderson, 2017). On the other hand, recent studies on nanomechanics revealed that both
yield (Jang and Greer, 2010; Wang et al., 2013) and fracture (Suresh and Li, 2008; Jang et al., 2013)
strengths of many hard nanomaterials drastically increase, up to a significant fraction of their ideal
strengths, and accordingly the elasticity limits increase as well, when the sample sizes decrease down
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to below a few 100 nanometers. This strengthening effect is the
purely size-induced one without involving any microstructural
modification and therefore gives us the additional possibility to
broadly adopt the method of strain engineering as long as we can
manage to keep their dimensions at the nanoscale.

In most practical cases, fabrication of a specimen entirely free
from defects and flaws is almost unachievable, and its strength
and elastic limit decrease substantially due to those imperfections
(Anderson, 2017). In this regard, it is of great importance to
properly understand and reliably predict the occurrence of an
inelastic failure in the presence of pre-existing flaws in order
to fully utilize elastic strain engineering for hard materials. In
general, under the scheme of linear elastic fracture mechanics
(LEFM), Weibull analysis based on the weakest link theory well-
describes the strength and failure of brittle materials (Weibull,
1951; Quinn and Quinn, 2010). In this approach, the fracture
strength depends on the sample volume following the inverse
power-law relationship whose exponent is usually called Weibull
modulus (Quinn and Quinn, 2010). Its linkage to the weakest
link theory is easily understandable once we consider the fact that
larger specimens likely contain more imperfections than smaller
ones and hence have a higher probability of including more
fatal flaws, which is the largest according to LEFM (Anderson,
2017). However, without restricting the upper bound for the
flaw sizes to be, this theory, in its original form, has some
limitations to be directly used for tiny samples in which the
method of strain engineering is likely to work most efficiently.
Conventional Weibull theory assumes sufficiently small flaws in
comparison with the size of specimen to ensure the statistical
equivalence of a randomly-chosen sub-sample, i.e., an arbitrarily
small volume defined as a part of the entire sample, but this
condition becomes intractable for nanomaterials as their external
dimensions decrease approaching the typical flaw sizes existing
in the material. Alternatively, there have been several attempts to
establish theoretical foundations for the statistical determination
of fracture strength of nanomaterials. For example, taking the
effects from the temperature and strain rate into account, Sun
et al. and Taloni et al. modified the conventional Weibull
model to incorporate with plasticity in some nanomaterials (Sun
et al., 2012; Taloni et al., 2018). Pugno and Ruoff recognized
the discreteness of flaw characteristics at the atomic scale and
developed a theory explaining the size-independent fracture
strength in nearly defect-free nanomaterials containing only a
few atomic vacancies (Pugno and Ruoff, 2006). Treating the
contributions from the surface (2D) and the interior (3D)
of the samples separately, several researchers regarded some
nanomaterials as effectively having the non-integer dimensions
and proposed the fractal dimensional dependency (Carpinteri
and Pugno, 2004, 2005; Pugno and Ruoff, 2006) for the quantized
crack propagation (Pugno and Ruoff, 2004) and fractal size
effects (Carpinteri, 1994). On the other hand, there are other
studies focused on the quasi-brittle nature of nano-sized samples
because their comparable fracture process zone size becomes
non-negligible even for macroscopically brittle (Pang et al., 2008;
Le and BaŽant, 2012). However, none of the aforementioned
theories have integrated the variation of the fundamental
statistical characteristics affected by the volumetric confinement

FIGURE 1 | Schematic illustration of a cracked plate under uniaxial tensile

load.

in the tiny nano-scaled specimens. In this study, we derived
an integrated equation describing the influence of size on the
fracture strength of brittle nanomaterials, based on conventional
Weibull statistics but further considering confinement effects
on the flaw size distribution set up by the external dimensions.
We confirmed the validity of this approach by comparing
our predictions with the experimental data collected from the
literature (Hoffmann et al., 2007; Richter et al., 2009; Xu et al.,
2010; He and Zhu, 2011). We expect that this theoretical study
offers a new guideline to design the enhanced strain engineered
system composed of brittle nanomaterials.

EXTREME VALUE DISTRIBUTIONS FOR
FLAW SIZES AND FRACTURE STRENGTHS
OF BRITTLE MATERIALS

According to LEFM, the fracture strength of brittle materials σ f,
inversely scales with the square root of the existing flaw size a
(Anderson, 2017):

σf =
KIC√
πa

F (ϕ) (1)

where KIC is the fracture toughness, and F(φ) is a correction
factor taking finite sample size effects into account and given as a
function of relative flaw size with respect to the sample dimension
(φ = a/t, see the schematics in Figure 1). This LEFM formalism
clearly indicates the explicit dependence of the fracture strength
on the flaw size for a given KIC, following an inverse square-root

Frontiers in Materials | www.frontiersin.org 2 November 2019 | Volume 6 | Article 289

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Shin and Jang Weibull Analysis for Brittle Nanomaterials

relationship, i.e., the larger the flaw is, the weaker the material
becomes. In reality, a number of flaws with different sizes exist
within the material, out of which the largest one determines the
actual strength of the sample in a constant stress field because
fracture initiates there at the lowest far-field load. In this sense,
the strength of a brittle material is not an intrinsic property but
rather stochastically determined by the statistical nature of flaw
sizes. Because it is the largest flaw that matters for the fracture
strength, but the smaller ones are of little interest, a statistical
model expressed in terms of extreme values (Coles et al., 2001;
Quinn and Quinn, 2010) is required.

One of such formalism, called Weibull statistics, is well-
recognized as an appropriate model for the fracture strength
of brittle materials due to its functional simplicity, the physical
requirement to be able to predict zero strength, and most
importantly excellent agreement with experimental data (Quinn
and Quinn, 2010). In his seminal work (Weibull, 1951), Weibull
established the extreme value formulation of fracture strength,
in which the statistical random variable is parameterized by
flaw strength σa, the conceptual value associated with individual
flaw by Equation (1). Then, considering a brittle solid as
being divided into many statistically-equivalent sub-samples of
uniform volume V0 (see Figure 2A), the probability PV0, for this
volume element containing n discrete flaws not to fail under a
given far-field stress of σ is (Chawla and Meyers, 1999):

PV0 (σ ; σ0,m) = Pr {σmin > σ } = 1− Pr {σmin ≤ σ }

= exp

[

−
(

σ

σ0

)m]

(2)

where Pr stands for the probability for the condition in the curly
bracket to be true, σmin is the minimum value out of all n flaw
strengths σa, each of which is affiliated with the individual flaw
present in the sub-sample ofV0,m is a positive-valued parameter
called shape parameter or Weibull modulus and σ 0 is a constant
called scale parameter. Due to the one-to-one correspondence
between the strength and flaw size given in Equation (1), the
cumulative distribution function (CDF) in Equation (2) can now
be reformulated into a form having the maximum flaw size amax

as the independent variable:

FV0 (a; a0,m) = Pr {amax ≤ a} = exp

[

−
(

a

a0

)−m
2

]

(3)

where a0 is the scale parameter for the flaw size distribution.
Equation (3) gives the probability of the largest flaw in V−0 to
be smaller than a certain value a. As illustrated in Figure 2A,
the entire specimen with the finite volume V can now be
thought of as the juxtaposition of N (=V/V0) such sub-samples,
all statistically equivalent, and its statistical characteristics can
easily be built from that of the sub-sample using the max-stable
nature of the extreme value distribution (Coles et al., 2001).
Namely, in order for the whole specimen to survive under a
given far-field stress, all of the sub-samples should remain intact
simultaneously, and therefore the probability for it to occur

becomes (Chawla and Meyers, 1999):

PV (σ ; σ0,m) = PV0 (σ ; σ0,m)N =
{

exp

[

−
(

σ

σ0

)m]}
V
V0

= exp

[

−
V

V0

(

σ

σ0

)m]

(4)

The condition for two different specimens to have the same
survival probability leads to the well-knownWeibull scaling law:

σ1

σ2
=

(

V2

V1

)
1
m

(5)

where σ 1 and σ 2 are the strengths of each sample with volumes
V1 and V2, respectively.

CONFINEMENT EFFECTS ON EXTREME
VALUE DISTRIBUTIONS IN BRITTLE
NANO-SAMPLES

From the perspective of weakest link theory, the conventional
Weibull scaling law given in Equation (5) emerges as a
consequence of the fact that a larger specimen contains more
flaws than a smaller one and therefore has a higher probability
for its weakest flaw, i.e., the largest due to LEFM, to be weaker
than the one in the smaller. Here, one important condition to
obtain such scaling relationship is the existence of the common
reference sub-sample of V0 ensuring the statistical equivalence
across different specimens in a variety of external dimensions,
becauseWeibull equation is built upon the statistical distribution
formulated as the N-power of the CDF of a single sub-sample
as in Equation (4). Some requirements to keep such condition
satisfactory may include (i) materials synthesis in a mutually
comparable way between the different specimens so as for the
fabrication processes not to affect the fundamental statistics
and (ii) more importantly, sufficiently small flaws compared
with the whole specimen sizes so as to warrant the presence
of the statistically-uniform sub-samples not influenced by the
external dimensions of materials. However, the latter condition
gets gradually intractable if the size of a specimen decreases
close to typical flaw sizes, as is the case for nanomaterials. In
that case, the universal reference sub-sample applicable to all
specimens regardless of their external dimensions becomes hard
to define. Instead, the coupling of fundamental statistics and
the characteristic length, e.g., the thickness of nano-plates or
diameter of nano-wires as in Figures 2B,C, needs to be taken
into account, further requiring themodification of parameters for
flaw size distributions, such as the one presented in Equation (3).

The correlation between the flaw size distribution and
characteristic length could be inferred by looking into two
different statistical representations formulated with different
random variables, i.e., one with the actual and the other with
maximum flaw size in a sample. When sufficiently many flaws
exist in a material, the probability for a flaw in a sub-sample ofV0
to have a certain size is usually given by a continuous probability
density function (PDF), e.g., the Gaussian distribution. On the
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FIGURE 2 | Schematic illustration for sub-sample division of (A) conventional bulk sample, (B) nano-plate, and (C) nano-wire into V0.

FIGURE 3 | (A) Probability density distribution as a function of the maximum flaw size and its association with that of individual flaw size. (B) Schematic illustration

showing the sample size confinement effects on the parent and maximum flaw size distributions.

other hand, when expressed in terms of the size of the largest
flaw determined in the sub-sample of V0 i.e., by the extreme
value formulation, the statistical distribution follows the large-
end tail of the parent distribution as shown in Figure 3A (Kotz
and Nadarajah, 2000). As long as the specimen is much larger
than the width of the parent distribution, the statistical nature
of the flaw size remains independent of the external dimensions
of the material and the conventional Weibull scaling law still
works satisfactorily. However, provided that any flaw can never
be larger than the whole body itself, the characteristic length of
the sample must bound the width of the parent distribution as
it becomes comparable to the flaw sizes (Figure 3B), resulting in
a mutual correlation of the former with the latter. Consequently,
the extreme value distribution for themaximum flaw sizes should
also be coupled with the characteristic length of the specimen,
as schematically illustrated in Figure 3B. In this study, in order
to incorporate this coupling effect into a statistical formulation,
we assume that the scale factor a0 in Equation (3) is linearly
proportional to the characteristic length t, i.e., a0 = αt, where α

is the proportionality constant. Replacing the scale parameter a0
by the length-dependent term αt in Equation (3) and taking the
derivative, the probability density function prescribing the largest
flaw in the whole sample f v(a, t;m) becomes:

fV (a, t;m) =
d

da

{

exp

[

−
V

V0

( a

αt

)−m
2

]}

=
m

2αt

(

V

V0

)

( a

αt

)−(m
2 +1)

exp

[

−
V

V0

( a

αt

)−m
2

]

(6)

The expectation value for the largest flaw size in V, a, can be
derived as follows:

a =
∫ ∞

0
a fV (a, t;m) da = αt

(

V

V0

)
2
m

Ŵ

(

1−
2

m

)

(7)

where Ŵ is the gamma function. Furthermore, plugging the
maximum flaw size obtained in Equation (7) into the LEFM
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FIGURE 4 | Fracture strength vs. diameter plots from tensile experiments on

the brittle ZnO (Hoffmann et al., 2007; Xu et al., 2010; He and Zhu, 2011) and

Cu (Richter et al., 2009) nanowires.

strength equation given in Equation (1), the expected value for
the strength σ of a brittle nanomaterial with volume V is:

σ =
KIC√
πa

F (ϕ) =
G (β , v) F (ϕ)
√

αŴ
(

1− 2
m

)

KIC√
π t

(

V0

V

)
1
m

(8)

where ϕ = a
t = α (V/V0)

2
m Ŵ (1− 2/m), and G(β,ν) is the

geometric factor expressed as a function of the Poisson’s ratio ν,
and the inclination angle of the flaw with respect to the loading
axis β which varies between 0 and π /2. When an isotropically-
distributed flaw orientation is assumed, G(β,ν) becomes 2/π
with ν ∼ 0.25 (Jayatilaka and Trustrum, 1977; Trustrum and
Jayatilaka, 1983). Here, it is noteworthy that the inverse-square-
root dependence of the fracture strength on the characteristic
length of the specimen, t, newly appears as the result of
confinement effect on the flaw size distribution in addition to
the conventional Weibull scaling term (V0/V)1/m. The approach
presented in this study is applicable to any homogeneous brittle
nanomaterial whose failure is governed by the LEFM-based
Griffith fracture criterion (Griffith, 1921). The exact length scale
below which the confinement effect on the Weibull distribution
becomes non-negligible will vary, depending on the type of
material and quality of the synthesis process. In the following
section, we will confirm the good agreement of our model
with experimental data collected from samples under a few 100
nanometers (Hoffmann et al., 2007; Richter et al., 2009; Xu et al.,
2010; He and Zhu, 2011).

CASE OF 1D AND 2D NANOMATERIALS

The equation for the fracture strength shown in Equation (8) can
be further developed for the 1D and 2D nanomaterials having
simple geometry, such as nano-wires or nano-plates. With the
help of illustrations given in Figures 2B,C the V0/V term that
appears in Equation (8) can be simplified into L0/L and A0/A for
nano-wires and nano-plates, respectively, where L and L0 are the
lengths of the whole and a sub-sample of the nano-wires, A and
A0 are the areas of the whole and a sub-sample of the nano-plates,
respectively. Then, according to Equation (8) the mean strengths
for each type of material under uniaxial tensile loading becomes:



















σ 1D (t, L;m) = G(β ,ν)F(ϕ(L;m))
√

αŴ
(

1− 2
m

)

KIC√
πt

(

L0
L

)
1
m
,

σ 2D (t,A;m) = G(β ,ν)F(ϕ(A;m))
√

αŴ
(

1− 2
m

)

KIC√
πt

(

A0
A

)
1
m
.

(9)

Furthermore, if we restrict our interest to the set of samples
whose axial lengths (L for nano-wires) or areas (A for nano-
plates) remain constant, but only the characteristic lengths (t),
i.e., the diameter (nano-wires) or the thickness (nano-plates),
vary, the mean strength depends on t, following the reciprocal
square-root relation, i.e., σ ∞ t−1/2. This result is, in principle,
equivalent with the scaling law offered by Gao et al. for brittle
nano-plates (Gao et al., 2003). The equations derived in this
work are applicable only to the nanomaterials satisfying the
following conditions: (i) failure of materials in different sizes
should predominantly be governed by the same type of flaw.
This condition may require the specimens to be prepared by the
same fabrication procedure. (ii) The volume of the specimens
should be large enough to include sufficiently many sub-samples
to ensure the statistical consistency. Simultaneously, the critical
dimension of the sample should be small enough, approximately
a few tens to a few 100 nanometers, so as for the volumetric
confinement effect to emerge. The uniaxial fracture strengths
from a set of brittle nanowires or nanoplates differing in their
sizes but with identical microstructural features would be an ideal
example with which to verify the model presented in this work.
To the best of our knowledge, there exist only a limited number of
experimental data available until now. Nonetheless, in Figure 4,
we present some examples of actual experimental data collected
from the literature that reports the uniaxial tensile strengths of
brittle nano-whiskers made of ZnO (Hoffmann et al., 2007; Xu
et al., 2010; He and Zhu, 2011) and single crystalline Cu (Richter
et al., 2009).Two important features are noteworthy here: (i) clear
demonstration of the reciprocal square-root relation between
the diameter t and fracture strength and (ii) large scatter in
the data. The former serves as the strong evidence for our
work, and the latter indicates that the statistical fluctuation
originated from the large Weibull modulus is still dominant in
this regime.

CONCLUSIONS

In conclusion, we suggest a new theoretical framework
for fracture strength of brittle nanomaterials combining
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the confinement effect on maximum flaw size distribution
into the conventional Weibull statistics. By modifying
the scale factor of the maximum crack size distribution
function to be proportional to the characteristic length
of the specimen, we successfully derive the integrated
formula of fracture strength for nanomaterials which
contains both the conventional Weibull and newly-added
confinement terms in its scaling relationship. We further
verified the validity of our equation in the range where
the characteristic length is smaller than 300 nm by fitting
it to actual experimental data collected for brittle nano-
whiskers. This theoretical approach offers a foundation
for the design of strain engineering and enables brittle
nanomaterials to be more reliable and stable for their
practical applications.
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