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A novel dilute Mg-Sn-Mn-Ca (TMX) alloy system was developed and subjected to

extrusion with a relatively high extrusion ratio of 36. The grain structure, nanoscale

precipitates, texture, and tensile properties of the extruded dilute alloy were investigated.

The results indicated that complete dynamic recrystallization (DRX) together with some

nanoscale and/or sub-microscale Mg2Sn and Mg2Ca precipitates could be obtained

after extrusion. The tensile yield strength, ultimate tensile strength and elongation of the

extruded dilute alloy were 213 and 266 MPa, and 21%, respectively. The correlation

between microstructural characteristics and properties was also discussed.

Keywords: Mg-Sn-based alloy, dynamic recrystallization, extrusion, texture, tensile properties

INTRODUCTION

It is generally accepted that Mg-Sn-based alloys have better strength and ductility than commercial
Mg-Al-based alloys after extrusion under identical conditions (Park et al., 2016; She et al., 2016;
Cheng et al., 2017b; Lu et al., 2018b). Recently, a system ofMg-Sn-based alloys with high Sn content,
containing thermally stable Mg2Sn phase has exhibited an excellent extrudability (Sasaki et al.,
2008; Cheng et al., 2010). However, a high Sn content would cause a significant increase in the cost
of the final products. Moreover, the extruded Mg-Sn-based alloys with high Sn content commonly
have sub-microscale and microscale Mg2Sn particles co-existing at the grain boundary in the form
of network, which prevents further performance improvement (Cheng et al., 2010). Many previous
reports have verified that decreasing the alloying element contents of Mg alloys could efficiently
reduce the thermally stable phase contents and modify the morphologies of the strengthening
precipitates (Hofstetter et al., 2015; Pan et al., 2018; Wang et al., 2018; Hu et al., 2019), thus
improving the extrudability and ductility. Accordingly, studies have recently been concentrated on
micro-alloyed systems with low content of Sn in order to reduce the cost of products (Chai et al.,
2019a). She et al. (2016) proposed that the addition of 1 wt.% Sn content in Mg alloys is expected
to exhibit a great balance between strength and ductility.

With the aim of promoting further application ofMg-1Sn alloy system,micro-alloying by adding
other elements is required. In recent years, Ca element has attracted increasing attention because
of their low cost and universal existence. The addition of low content of Ca was reported to modify
the extrusion texture, leading to improved ductility in dilute Mg-1.0Zn-0.5Ca alloy (Zhang et al.,
2012). Furthermore, relevant studies (Wei et al., 2013; Lu et al., 2018a) have shown that the grain
size and grain boundary compound of such alloys could be refined significantly via the trace
addition of Ca, thus improving the formability. Besides, Mn is an appropriate alloy element to
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improve the mechanical properties and to optimize the
microstructure of Mg alloys (Liao et al., 2019). It was reported
that the growth of DRX grains during hot extrusion could be
inhibited by the addition of low Mn content, and thus excellent
tensile properties was obtained (Tong et al., 2011; Chen et al.,
2016; Lu et al., 2018a). Liao et al. (2019) fabricated a system
of Mg-1Sn-Mn based alloys with high mechanical properties
through extrusion. Chai et al. (2019b) reported that Mg-1Sn-
0.5Zn based alloys exhibited improved tensile ductility via the
addition of low amount of Ca (≤1 wt.%). While, there have been
rarely few reports on the combined addition of low content ofMn
and Ca to the Mg-1Sn based alloys thus far.

Besides alloying, extrusion is one of the most effective plastic
deformation methods to improve the ductility and stretch
formability of Mg-based alloys via refining grain structure (Lu
et al., 2018b). It was also reported that increasing the extrusion
ratio contributes to the formation of uniform structure with
complete DRX (Yu et al., 2019). Therefore, a novel dilute Mg-
1.0Sn-0.5Mn-0.5Ca alloy system with a good balance between
extrudability and ductility was developed and subjected to
extrusion with a relatively high extrusion ratio of 36. The grain
structure, orientations, nanoscale precipitates, and resultant
mechanical properties of the dilute extruded alloy were discussed
in detail.

EXPERIMENTAL PROCEDURE

The ingot with a nominal composition of Mg-1.0Sn-0.5Mn-
0.5Ca (wt.%) (TMX-1.0) was prepared by melting commercially
pure Mg (99.9 wt.%), Sn (99.99 wt.%), Mg-30%Ca and Mg-
10%Mn master alloys in an electrical resistance furnace under a
(SF6 + CO2) fluxing protection to avoid oxidation. After casting,
solution treatment of the as-cast ingot with a diameter and length
of 75 and 65mm, respectively, was conducted at 320◦C for 3 h
and then 500◦C for 1 h, followed by water-quenching. After
preheating at 300◦C for 30min, the alloy ingot was extruded at
300 ◦Cwith a ram speed of 0.1 mm/s and an extrusion ratio of 36.

The as-extruded specimen was sectioned parallel to the
extrusion direction (ED) for microstructural examinations. The
average size of grains was measured using Image-Pro Plus 6.0
software based on five optical microscopic (OM; Leica 2700M)
micrographs after a conventional metallographic procedure
(including grinding, polishing, and etching in a solution of 1.5 g
picric acid, 5ml acetic acid, 5ml H2O, and 25ml ethanol). The
morphologies of precipitates were observed using transmission
electron microscopy (TEM; JEM-2100F operated at 200 kV).
Thin foil samples for the TEM observations were prepared
by ion milling using a Precision Ion Polishing System. Phase
identification was performed by X-ray diffraction (XRD; Cu-
Kα, Y-2000) and selected-area diffraction patterns (SADP). The
microscopic texture of the as-extruded sample was measured at
a step size of 1.4µm using a field-emission scanning electron
microscope (Carl Zeiss CrossBeam 1540EsB) equipped with an
electron backscatter diffraction (EBSD) detector operating at 20
Kv and HKL Channel 5 acquisition software. Microhardness tests
were performed using a microhardness tester with indentation

loads from 0.490 to 4.903N for 15 s. Tensile specimens (dog-
bone-shaped) with a gauge dimension of 18mm in length, 4mm
in width and 2mm in thickness were prepared from the extruded
rod along the ED. Tensile tests were then performed at room
temperature using a DNS100 electric testing machine with an
initial strain rate of 1 × 10−3 s−1. Tensile tests were performed
three times to obtain the average values reported in this work.

RESULTS AND DISCUSSION

Microstructural Characteristics
Grain Structure
The microstructure of the extruded TMX-1.0 alloy is shown in
Figure 1. The studied alloy exhibits fully recrystallized structure
after extrusion. The distribution of grain size is uniform
and the average grain size is 12.25 ± 0.15µm. In addition,
some low angle grain boundaries indicated by laurel-green
line could also be observed, which indicated that the dynamic
recrystallization (DRX) mechanism for the studied alloy is
continuous DRX dominated. Furthermore, the presence of nano-
scaled precipitates and solutioned Sn in the matrix are beneficial
to refine the size of DRX grains through Zener-drag effect
(Robson et al., 2009; Fang et al., 2017; Zhao et al., 2018).

Dynamic Precipitates
Figure 2 illustrates the XRD results of the extruded dilute TMX-
1.0 alloy. The results indicate that the studied alloy mainly
comprises α-Mg, Mg2Sn, and Mg2Ca phases. It was reported
that Mg2Ca rather than CaMgSn phase was formed in Mg-
Sn-Ca-based alloys when the Sn/Ca mass ratios were lower
than ∼2.5:1 (Chai et al., 2019a). The intensities of the peaks
corresponding to the Mg2Sn and Mg2Ca phases in the extruded
dilute alloy are relatively weak because of the low concentrations
of alloying elements.

The TEM images of the studied alloy are shown in Figure 3.
Some fine nanoscale and sub-microscale precipitates can be
observed in certain micro-domains. Many previous studies
have reported the formation of nanoscale precipitates through
dynamic precipitation in the extruded Mg alloys (Fang et al.,
2017). Analyses of the SADP results indicate that the precipitates
are Mg2Ca, which has a hexagonal structure, and Mg2Sn,
respectively. The Mg2Sn borders on Mg2Ca, indicating that the
Mg2Ca phase is the nucleation site of Mg2Sn. The formation
of Mg2Ca consumes Ca, providing Sn-enriched regions between
the Mg2Ca phase and matrix herein. A similar phenomenon was
found in previous report (Xu and Han, 2012).

Texture Evolution
The EBSD results of the studied alloy are presented in Figure 4.
Most of the grains are tilted by ∼30◦ from the center of the
(0002) pole figure to the ED with the texture intensity being
9.23 (Figure 4b). The relatively strong basal texture may be
ascribed to the addition of Mn (Liao et al., 2019). Additionally,
the correlations between grain size and texture of the extruded
dilute alloy are shown in Figure 4c, in which the total grains
are classified into two categories using the grain size of 12µm
as a benchmark. It turns out that these two halves of the grains
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FIGURE 1 | (a) Grain boundary orientation image and (b) grain size distribution of extruded dilute TMX-1.0 alloy. Low angle GBs were highlighted in laurel-green in (a).

FIGURE 2 | The XRD pattern of the extruded dilute TMX-1.0 alloy.

each reveal the ED-titled basal texture, but the maximum texture
intensity varies. It can be concluded that the texture intensity
of the grains of >12µm is much stronger than that of the
smaller ones, indicating that the textural strengthening in the
extruded dilute TMX-1.0 alloy is associated with the higher
fraction (89.7%) of the relatively coarse grains (> 12µm), which
exhibit strong texture. Similar results could be also found in
Cheng et al. (2010).

Indentation Size Effect
As an economical and effective method to evaluate the nanoscale
mechanical behavior of materials, indentation test has been
widely used. Moreover, previous report validated that strain-
hardening behavior is closely related to the indentation size
effect (ISE) (Yang, 2000). In order to study the indentation size
effect (ISE), which shows an increase in hardness with decreasing

applied load, different indentation loads ranging from 0.490 to
4.903N are applied to the extruded dilute TMX-1.0 alloy and
the related results are shown in Figure 5A. The microhardness
values of TMX-1.0 alloy decreased from 47.7 to 40.8 HV with
increasing the loads. Based on Meyer’s expression, the load P and
the indentation size d of the TMX-1.0 alloy can be calculated by
the equation (Yang, 2000; Manika andManiks, 2006; Valdez et al.,
2012):

P = kdn (1)

where k and n are the Meyer prefactor and Meyer exponent,
respectively. The corresponding n value could be obtained from
Equation (1). By taking the natural logarithms of both sides of
Equations (1) and (2) could be obtained:

ln P = n ln d + ln k (2)

Using Equation (2), linear fitting between ln P and ln d could be
applied and the slope of the resulting line, namely the n value,
could be deduced from the fitting results (Figure 5B). The ISE
behavior can be assessed using the n value: in general, n < 2
implies that the microhardness is load-dependent in a material.
The value of n in the extruded dilute alloy is 1.83 ± 0.063,
indicating an ISE phenomenon. As shown in Figure 5A, the
microhardness of the studied alloy decreases continuously with
the increase of applied load, which may be due to the fact that
basal slip systems can be activated easily under small strain, but
blocked with increasing the strain within the load applied in this
study (Yang, 2000).

Tensile Properties
The engineering tensile stress-strain curve and the corresponding
work-hardening response of the extruded dilute TMX-1.0 alloy
are shown in Figure 6. The tensile yield strength, ultimate tensile
strength and elongation of the extruded dilute alloy are 213 and
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FIGURE 3 | (a) Bright field TEM image of the extruded dilute TMX-1.0 alloy; (b) Selected area electron diffraction (SAED) of Mg2Ca; and (c) SAED of Mg2Sn.

FIGURE 4 | EBSD results of the extruded TMX-1.0 alloy. (a) Inverse pole figure (IPF) map; (b) (0002) pole figure with respect to the extrusion direction (ED) and

transverse direction (TD); (c) IPF maps and (0002) pole figures corresponding to grains with sizes <12µm and >12µm, respectively.

266 MPa, and 21%, respectively. Figure 7 gives the comparison
of tensile properties among the extruded dilute TMX-1.0 alloy in
the present study with other Mg-based extruded alloys. It should
be noted that TYS of the studied alloy is higher than that of
Mg-Al and/or Mg-Zn based alloys studied in Refs. Tang et al.
(2011), Nakata et al. (2015), Kim and Park (2016), Bae et al.
(2018), Xiao et al. (2019), and Chai et al. (2019b). Some reported
Mg-Al-Zn alloys exhibit higher TYS (Park et al., 2015; Kim
et al., 2017), while these alloys present relatively poor elongation
when compared with the studied TMX-1.0 alloy. Overall, the
combined tensile properties of the studied alloy are at an
acceptable level.

Figure 6B represents the work-hardening rate curve based

on θ =
dσ
dε
, where σ and ε are the true stress and

strain, respectively, for the extruded dilute TMX-1.0 alloy. By
taking the natural logarithms of both sides of the Hollomon
equation, the work-hardening exponent can be obtained. The
calculated result is 0.13 for the studied alloy. Generally, a higher
work-hardening exponent corresponds to lower sensitivity
to strain localization, i.e., a greater EL (Tang et al., 2011;
Zhao et al., 2018).

In general, the TYS of wrought Mg alloys is associated
with grain size and orientation, as well as precipitates.
The relationship between the grain size (d) and the yield
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FIGURE 5 | Variations of micro-hardness with applied load for extruded dilute TMX-1.0 alloy (A) and the linear fit of lnP (B).

FIGURE 6 | The tensile properties of the extruded dilute TMX-1.0 alloy: (A) typical ambient-temperature tensile stress-strain curve, and (B) the working hardening

response.

FIGURE 7 | The comparison of tensile properties among the extruded dilute TMX-1.0 alloy with other Mg-based extruded alloys.
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TABLE 1 | Summary of average grain size (davg), basal texture intensity and tensile

properties in different Mg alloy systems in literature and this study.

Alloy [Reference] Basal

texture

intensity

davg (µm) TYS

(MPa)

UTS

(MPa)

EL (%)

TMX-1.0 [this study] 9.23 12.25 213 266 21

Mg-1.0Sn-0.5Zn-0.5Ca

(Chai et al., 2019b)

7.59 5.8 158.7 302 21.3

AZT624 (Bae et al., 2018) 2.9 5.3 188 330 23.7

AZT622 (Bae et al., 2018) 2.8 7.9 179 320 25.3

AZ62 (Bae et al., 2018) 3.2 8.3 172 313 26.9

AZ31 (Nakata et al., 2015) − 48 177 − 20

Mg-0.27Al-0.13Ca-0.21Mn

(Nakata et al., 2015)

− 27 170 − 15.5

TZ51 (Tang et al., 2011) 2.5 7.4 170 250 20.1

TZ54 (Tang et al., 2011) 2.8 6.9 173 287 24.8

AZT826 (Park et al., 2015) 1.9 1.2 287 354 7.8

AZ82 (Park et al., 2015) 2.4 2.2 233 347 13.4

strength is described using the Hall–Petch equation as follows
(Cheng et al., 2014, 2017a,c):

σgb = σ0 + Kd−1/2 (3)

where σgb represents the contribution of grain boundary
strengthening to the TYS, σ0 is the material constant (21 MPa),
and K is the Hall–Petch slope (280 MPa µm−1/2). The calculated
result shows that the increment in YS by reason of grain boundary
is ∼101 MPa. From this respect, it is easily deduced that the
improvement of TYS of the extruded dilute TMX-1.0 alloy is
greatly dominated by grain boundary strengthening.

The effect of texture on the strength for Mg-Sn based alloys
could be expressed as:

σtex = mτ0 (4)

where m and τ0 are orientation factor related to the (0002)
basal texture, and critical resolved shear stress for basal slip
system. In this study, m and τ0 can be evaluated as 60 and
0.66, respectively (detailed information is presented in Cheng
et al., 2018). Consequently, the relative contributions from
texture strengthening is ∼39.6 MPa. Therefore, relativity
high texture intensity of 9.23 for the studied alloy is
advantageous to the improvement of tensile strength in a
certain degree.

Many previous studies have reported that the nanoscale
particles dynamically precipitated during extrusion can obstruct
dislocation slip based on the Orowan mechanism (Stanford and
Barnett, 2008; Tang et al., 2011; Cheng et al., 2014; Qi et al., 2014;
Wang et al., 2016). However, the total fraction of the precipitates

in the studied alloy is relatively low, and it was not clear whether
this effect should be considered.

In order to further reveal the reasons for the improvement
of tensile properties of TMX-1.0 alloy in this study, summary
of average grain size (davg), basal texture intensity and tensile
properties in different Mg alloy systems are shown in Table 1. As
shown inTable 1, TMX-1.0 alloy exhibits larger average grain size
and higher texture intensity than most of other Mg-based alloys.
It is therefore deduced that texture strengthening is the main
reason for the improved properties of the studied alloy although
grain boundary strengthening makes great contribution to TYS
in this study.

CONCLUSIONS

A novel dilute TMX-1.0 alloy is developed and successful
extruded with extrusion ration of 36. The extruded alloy
exhibits fully recrystallized microstructure and ED-tilted basal
texture. The average grain size and the texture intensity are
12.25 ± 0.15µm and 9.23, respectively. In addition, some
Mg2Sn andMg2Ca nanoscale and/or sub-microscale precipitates
are detected in certain micro-domains, with the morphology
showing Mg2Sn phase bordering Mg2Ca. Moreover, the Meyer
exponents n of the extruded dilute alloy is calculated to be 1.83±
0.063, indicating that an ISE behavior is observed in the present
alloy system. The excellent combination of strength and ductility
of the present alloy system are mainly ascribed to the relatively
strong ED-tilted basal texture, and fine-grained structure as well
as reasonable work-hardening exponent.
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