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Identifying local thickness information of fibrous or highly porous structures is challenging.

The analysis of tomography data calls for computationally fast, robust, and accurate

algorithms. This work systematically investigates systematic errors in the thickness

computation and the impact of observed deviations on the predicted mechanical

properties using a set of 16 model structures with varying ligament shape and solid

fraction. Strongly concave, cylindrical, and convex shaped ligaments organized in a

diamond structure are analyzed. The predicted macroscopic mechanical properties

represent a highly sensitive measure for systematic errors in the computed geometry.

Therefore, the quality of proposed correction methods is assessed via FEM beammodels

that can be automatically generated from the measured data and allow an efficient

prediction of the mechanical properties. The results show that low voxel resolutions can

lead to an overprediction of up to 30% in the Young’s modulus. A model scanned with

a resolution of 200 voxels per unit cell edge (8M voxels) reaches an accuracy of a few

percent. Analyzing models of this resolution with the Euclidean distance transformation

showed an underprediction of up to 20% for highly concave shapes whereas cylindrical

and slightly convex shapes are determined at high accuracy. For the Thickness algorithm,

the Young’s modulus and yield strength are overpredicted by up to 100% for highly

concave ligament shapes. A proposed Smallest Ellipse approach corrects the Thickness

data and reduces this error to 20%. It can be used as input for a further robust

correction of the Thickness data using an artificial neural network. This approach is highly

accurate with remnant errors in the predictedmechanical properties of only a few percent.

Furthermore, the data from the FEM beam models are compared to results from FEM

solid models providing deeper insights toward further developments on nodal corrections

for FEM beam models. As expected, the FEM beam models show an increasing

overprediction of the compliance with increasing solid fraction. As an unexpected result,

the mechanical strength can however be underpredicted or overpredicted, depending

on the ligament shape. Therefore, a nodal correction is needed that solves contradicting

tasks in terms of stiffness and strength.

Keywords: tomography, skeletonization, thickness correction, artificial neural network, nanoporous gold,

trabecular bone, foams, FEM beam model
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INTRODUCTION

Lacking a detailed morphological and topological description
of the microstructure, the structure-property relationship of
open-pore materials, such as metal foams, elastomeric foams, or
Nanoporous gold (NPG) is commonly described by the Gibson-
Ashby scaling law, in which the solid fraction is the most
important parameter characterizing the materials morphology
(Gibson and Ashby, 1997; Ashby et al., 2000). During the last two
decades, the morphological characterization and prediction of
mechanical properties of open-pore materials gained increasing
attention, thanks to the improving resolution of X-ray, FIB,
and TEM micro-/nanotomography instruments, complemented
by advancing image processing algorithms and computational
modeling techniques. Tomography and FEM simulations on
metal and elastomeric foams date back to Nieh et al. (1998),
Nieh et al. (2000), and Kinney et al. (2001). A very detailed
analysis of cell volume and strut length distributions, number
of faces per cell, junctions coordination number and the shape
of the most representative cells was carried out by Dillard et al.
(2005) based on a 3D quantitative image analysis of open-cell
nickel foams under tension and compression loading using X-
ray microtomography.

First studies based on NPG were conducted by Rösner et al.
(2007) using TEM on dealloyed gold leafs. Hu et al. (2016),
Mangipudi et al. (2016), and (Ziehmer et al., 2016) analyzed
NPG samples of larger volumes, obtained from focused ion

beam (FIB) sectioning and scanning electron microscope (SEM)
imaging. By these thorough works, a systematic analysis of

the NPG morphology in terms of ligament size distribution
and connectivity density has become possible for the first
time. Because the ligaments are of nanoscale dimension, these
investigations are all based on high-resolution SEM images for
which techniques for an automated image processing are an asset.
Hu et al. (2016) and Mangipudi et al. (2016) use the 3D Biggest
Sphere Thickness algorithm byHildebrand and Rüegsegger (1997)
for the estimating the ligament size distribution of 3D volumes.

For the geometrical description of the ligaments in a NPG
network, Pia and Delogu (2015) proposed a parabolic shape with
a square cross-section connected in cubic nodes. The parameters

for the parabolic shape and their statistical distribution were

manually determined from 2D SEM images. Badwe et al.
(2017) analyzed 2D SEM images using digital image analysis
to obtain ligament size histograms that were fit to the Weibull
distribution. To obtain the ligament size distribution, they
apply the skeletonization and distance map transformation each
onto the original binary SEM image, using the open-source
software ImageJ. The multiplication of these two results yields
the skeleton ascribed with the according diameter at each
skeleton-point. Consistent with the results of Rösner et al. (2007)
and Hu et al. (2016), the mean ligament distributions were
reported to be nearly self-similar for the examined ligament
sizes. Stuckner et al. (2017) present a Python package AQUAMI,
which automatically analyzes microstructural features from
micrographs. The approach is similar to the approach by Badwe
et al. (2017), which was independently published, but has no
need for manual calculation in ImageJ. The average diameter

and diameter distribution of the morphologies in each phase
is calculated using a medial axis transform and a distance
transform. McCue et al. (2018) use AQUAMI to data-mine
NPG 2D images of 28 published manuscripts, regarding mean
ligament diameter, length, and solid phase fraction. They point
out the difficulty and resulting systematic discrepancies when
comparing results gained by different measuring approaches,
ranging from manually measuring the thinnest part of the
ligament, to computational estimations. Furthermore, as a
minimum criterion for meaningful image analysis, they propose
to use images with a minimum resolution of at least 10 pixels per
ligament diameter, due to the otherwise reported errors.

In summary, two algorithms are found to be dominantly
used in literature to estimate the ligament size distribution: The
Thickness algorithm, which is able to analyze 3D volumes and
the Euclidean distance transformation (EDT), which is applied
for analyzing 2D SEM images by Badwe et al. (2017), Stuckner
et al. (2017), and McCue et al. (2018). It calculates at each point
of the structure the distance to the nearest background point.
The Thickness algorithm by Hildebrand and Rüegsegger (1997)
is implemented in image analysis programs, such as the open-
software program Fiji by Schindelin et al. (2012). It calculates the
local thickness at a point as the dimeter of the largest sphere,
which is completely inside the structure and which contains
the evaluated point. The mean thickness is calculated as the
volume weighted average of the local thickness. The algorithm
is commonly used to estimate the mean trabecular thickness of
trabecular bone (Day et al., 2000; Almhdie-Imjabber et al., 2014),
or other bone structures (Witkowska et al., 2014), because it is
a powerful and fast volume-based algorithm. In the context of
NPG the Thickness algorithm has been applied for analyzing 3D
tomography data or voxel models by Hu et al. (2016), Mangipudi
et al. (2016), Richert and Huber (2018), and Soyarslan et al.
(2018a,b).

By the definition of Hildebrand and Rüegsegger (1997), the
biggest sphere at a skeleton point pskel does not need to be
centered at this point. Liu et al. (2014) show for an object formed
by two overlapping disks of different scales that the Thickness
algorithm shows a bias toward the larger disk. They furthermore
show that an equivalently working Smallest Sphere approach
results in the same artifact, but in the opposite direction. The
authors propose the definition of the thickness of a point p as the
diameter of the maximum inscribed sphere whose circumference
is farthest from p. Furthermore, for the skeleton, the property
must be satisfied that the thickness at a skeleton point pskel is the
diameter of the biggest sphere centered at pskel. They introduced
also a star-line-based algorithm, where the thickness at an axial
voxel is defined as the minimum-intercept of a straight line with
the boundary. The minimum-intercept length measure is highly
robust under small random shifts of axial voxels. One drawback
of this thickness computation method lies in the increased
computation time needed, because interpolated intensity values
at multiple sample points have to be computed on individual star-
lines for each axial voxel. For more details and other thickness
approaches see also the literature cited by Liu et al. (2014).
The tendency to overpredict the thickness of structures was
also reported by Maier et al. (2017) for cartilage thickness,
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in comparison to other thickness estimation approaches. Such
an overprediction is unproblematic when studying the self-
similarity of structures, or when comparing mean values
or distributions. However, for the prediction of mechanical
properties using FEM, the correct diameter distribution along
the ligament axis is crucial. Richert and Huber (2018) showed
that the Thickness algorithm reaches its limits when being applied
to typical shapes of NPG ligaments, due to the strongly varying
diameter along the ligament axis. The resulting overestimation in
ligament radius up to 30% has a strong impact on the predicted
mechanical stiffness, which can deviate by a factor of more than
two. In their conclusions, Richert and Huber (2018) mentioned
the need for a correction method for tracing back an identified
ligament shape to the corresponding true geometry, which could
be based on inverse methods, such as optimization or machine
learning. This important finding has been ignored by Soyarslan
et al. (2018b) who used the diameter information as determined
from the Thickness algorithm in their beam-FE model, without
any local validation of the detected diameters or discussion of
possible consequences for their mechanical prediction.

Further literature research revealed that there exists also a
plugin in the open-software program Fiji of the 3D Euclidean
distance transformation (EDT) by Ollion et al. (2013), among
others, which seems to be unnoticed by groups working on the
analysis of 3D data. As this algorithm computes the distance from
a given voxel of the structure to the nearest background voxel,
the extracted axis-to-surface distance will have the tendency
to underpredict the ligament diameter for highly convex or
concave ligament shapes. The reason for this is that the smallest
distance is determined by the normal from the surface contour
to an axis point, which is smaller compared to the diameter
measured normal to the ligament axis. It his however unclear,
how large the deviations are for the typical geometries found
in open pore materials and how big their impact is on the
mechanical properties in comparison to the results from the
Thickness algorithm.

Motivated by these findings, this paper aims to lay a solid
basis for error estimation and thickness correction for the
different algorithms. The availability of a method for an accurate
characterization represents a key element for producing data sets
of high quality, consisting of pairs of structure information and
related mechanical properties. As demonstrated by Huber (2018)
for the topology term of the structure-property relationship, a
larger number of such patterns is needed for deriving a fairly
general representation using data mining and machine learning
approaches. This is particularly an issue when pooling data from
different sources, which make use of different algorithms.

Following a detailed investigation of the sources of over- and
underestimation in the computed thickness data, approaches
for the correction of data from the Thickness algorithm are
proposed: A Smallest Ellipse algorithm, which resides in between
the Biggest Sphere approach and the Smallest Sphere approach,
and an artificial neural network approach. Similarly, an artificial
neural network approach is proposed for the correction of data
from the Euclidean distance transformation. The results clearly
show that the artificial neural network is able to correct the over-
and underpredicted thickness dependent on the position of the

ligament axis. The drawback is that it is limited to the range
of ligament shapes used during training. Recommendations
are given in terms of generalization to asymmetric ligaments
as a requirement for applications to larger structures of
higher complexity.

METHODOLOGY

Previous analysis by Richert and Huber (2018) on actual NPG
tomography data produced by Hu et al. (2016) revealed a
diameter overestimation of the NPG structure by the Biggest
Sphere Thickness algorithm by Hildebrand and Rüegsegger
(1997), implemented in the open-source program Fiji by
Schindelin et al. (2012), in theThickness Plugin by Dougherty and
Kunzelmann (2007). Richert and Huber (2018) mathematically
calculated the influence on the overestimated ligament diameters
on the mechanical stiffness for single parabolic ligaments,
showing an overestimation by up to a factor of 8. These
results clearly show the significance of the error to be expected
as function of the ligament geometry, but it is unclear how
strong this effect is reflected in the macroscopic properties of
a Representative Volume Element (RVE). It can be argued that
the macroscopic response of an interconnected structure could
be less sensitive to local deviations in the ligament geometries.
Furthermore, the amount and effect of possible underestimations
by the distance transformation need to be investigated. An
impression of the discrepancy between the two algorithms is
obtained by analyzing the tomography data of Hu et al. (2016),
shown in Figure 1. The Thickness (Th) and Euclidean distance
transformation (EDT) information are consistently evaluated
along the skeleton voxels. It can be seen that the determined
averages of 400 nm (Th) and 308 nm (EDT) deviate significantly.
It is therefore important to investigate each algorithm with

FIGURE 1 | Ligament diameter distribution of NPG tomography with

Thickness (Th) and Euclidean distance transformation (EDT) algorithm. The

histograms are normalized to an area of one and fitted with the Gaussian

distribution. Shifted distributions with average ligament diameter of 400 nm

(Th) and 308 nm (EDT ) are observed.
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respect to ligament shape and to propose correction methods,
where needed.

It should be noted that working with tomography data, several
crucial image-processing steps are necessary beforehand, such
as image noise filtering, brightness and contrast adjustment,
registration and segmentation. For the latter, it is necessary to
set a threshold value that decides if a voxel is attributed to
the solid or to the pore space and the proper choice of this
parameter is absolutely critical for all following steps. Commonly,
this parameter is calibrated via the relative density of thematerial,
which is independently measured. While this ensures that the
tomography reflects the relative density of thematerial in average,
this does not guarantee that local features are precisely detected.
In case of the NPG-epoxy composite tomography data produced
by Hu et al. (2016), specific settings in the FIB-SEM process made
the ligaments easily distinguishable without interfering with the
ligament network structure underneath the cross-section. In
this case, the segmentation in Fiji using a single value gray-
scale threshold for the image stack was thus applicable. An
image processing error of ±2% in volume fraction was found by
manually changing the image contrast, brightness and threshold
value for the segmentation process for that data set (Hu, 2017).

This study focuses on analyzing the influence of the Thickness
and EDT algorithm on NPG-like RVEs, which are based on
known geometries. Emphasis is placed on providing data of
sufficiently complex but well-defined 3D structures, for which
the exact diameter information is known in each position
along the ligament axis. To this end, ligaments with a smooth
parabolic-spherical ligament shape as suggested by Richert and
Huber (2018) are organized in a diamond structure. This
topology is frequently used for mechanical modeling of 3D
open pore materials (Nachtrab et al., 2011; Huber et al., 2014;
Roschning and Huber, 2016; Jiao and Huber, 2017a,b; Huber,
2018). In contrast to the conventional FEM approaches, which
are computational expensive, FEM beam models allow for
fast computation even for large plastic deformation, which
is a requirement for larger parameter studies of larger and
more realistic RVEs. The drawback of this method is the
underprediction of stiffness and strength, which needs to be
compensated via a correction of the nodal mass (Huber et al.,
2014; Roschning and Huber, 2016; Jiao and Huber, 2017b). An
attractive alternative for the numerical simulation of foam-like
materials is the Finite Cell Method (Parvizian et al., 2007; Düster
et al., 2008, 2017). Recently, Gnegel et al. (2019) applied this
approach for predicting the elastic-plastic deformation behavior
of pure and polymer coated NPG based on the tomography
data of Hu et al. (2016). In combination with experimental
macroscopic compression data, it was possible to determine the
elastic-plastic properties of the gold phase and of the polypyrrole
coating of a few nanometer thickness. This requires reducing the
explicitly modeled 3D structure to a sub-sample of the available
tomography dataset such that the model could be computed
in a reasonable time. Therefore, FEM beam models remain an
attractive candidate for computing larger models.

For the sake of a systematic in-depth comparison of all
methods under investigation, the geometries in this work are
limited to symmetric shapes. Altogether, 16 idealized model

geometries plus three additional validation geometries are
generated covering the relevant range of ligament shapes from
concave to convex. For each model geometry, a high-resolution
voxel representation serves as basis for testing various approaches
of thickness detection and correction. In addition to the
assessment of the error in the determined geometry, the effect
on the mechanical properties is computed for each structure
and correction method using the FEM beam modeling approach
developed in a series of previous works (Huber et al., 2014; Jiao
and Huber, 2017a; Huber, 2018; Richert and Huber, 2018).

Motivated by the reported differences between the skeleton
FEM beam model and the FEM solid model (Richert and Huber,
2018), FEM solid models are created via PCL scripting in MSC
Patran, complementing the reference FEM beam models. The
results will provide further insights into the differences between
FEM beam and FEM solid models for various ligament shapes
in terms of elastic and plastic deformation behavior. The results
are also relevant for the further development of nodal corrections
for more general ligament shapes as an extension to the simple
ball-and-stick geometries investigated by Jiao andHuber (2017b).

Figure 2 gives an overview of the workflow applied in the
following sections. Details on the individual approaches are
provided at the beginning of each section. To mimic the FEM
skeleton beam model building process from tomography data
by Richert and Huber (2018), the RVE geometry information
is scanned by a Python script with a defined voxel resolution.
The output is a voxelized tiff stack, which is needed as input
for the Skeletonize, AnalyzeSkeleton, Thickness and 3D Distance
Map Plugin evaluations in Fiji (Lee et al., 1994; Dougherty
and Kunzelmann, 2007; Arganda-Carreras et al., 2010; Ollion
et al., 2013). The whole procedure of building the FEM skeleton
beam model from tomography data is described in detail in the
Appendix of Richert and Huber (2018). The simulation of the
original FEM beam model vs. the FEM skeleton beam model
created with the Thickness information will reveal the impact of
the flawed diameter estimation on the mechanical behavior of the
ligament network. This allows us also to individually analyze the
errors originating from the voxel resolution, the skeletonization,
and the ligament discretization on the macroscopic
elastic-plastic response.

After the analysis of the influencing parameters with regard to
their effect on the geometry computation, the question arises, to
what extend the error of each algorithm could be reduced in the
aftermath. Concerning the Thickness algorithm we focus in this
work on two different correction approaches. Geometrically it is
clear why the Thickness algorithm overestimates the diameters of
strongly varying ligament shapes as found in NPG. This is why a
direct reconstruction approach is developed, opting for an ellipse
as the final scanning volume. This so-called Smallest Ellipse
(SE) algorithm resides in between the Biggest Sphere approach
and the Smallest Sphere approach and is therefore a promising
technique for efficiently balancing the thickness data between
over and underprediction. A second correction approach is based
on an artificial neural network (ANN), which efficiently allows
for a global mapping from the measured overpredicted to the
corrected ligament shapes. The ANN approach is also applied for
correcting data from the EDT algorithm.
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FIGURE 2 | Workflow of the geometry computation and FEM model creation.

1st step: Reference FEM solid model, voxelized image stack, and reference

FEM beam model are built. 2nd step: Skeletonization, Thickness estimation,

and Euclidean distance transformation are done in Fiji. 3rd step: FEM skeleton

beam models are built via python scripting with Thickness (Th), Euclidean

distance transformation (EDT), and corrected diameters using the Smallest

Ellipse (SE). 4th step: additional artificial neural network (ANN)

correction approach.

REFERENCE FEM MODELS AND THEIR
PROPERTIES

Reference Geometry of the Unit Cell
To study the effect of the overestimation in the thickness and
the quality of approaches for correction, 16 diamond unit cells
are generated. By shifting the diamond structure proposed by
Huber et al. (2014) by a quarter of a unit cell length in all three
coordinate directions (Soyarslan et al., 2017), four ligaments with
complete nodes at both ends are positioned in the center of the
RVE. These core ligaments are later analyzed with respect to their
thickness distribution by different algorithms, as they remain
unaffected by cuts at the boundary of the RVE.

In what follows, the investigation of the mechanical behavior
is limited to macroscopic compression, which is commonly used

in experiments (Jin et al., 2009; Huber et al., 2014; Hu et al.,
2016; Liu and Jin, 2017). The resulting macroscopic properties
are only valid for this loading direction. Due to the inherent
anisotropy in the diamond structure, the mechanical response
can be different for compression, tension, and shear. The
elastic properties though can be considered isotropic in tension
and compression, because elastic properties per definition
reflect small deformations. Furthermore, because of the perfect
symmetry of the unit cell in x, y, and z-direction, isotropy in these
directions is naturally given as long as the loading is consistently
either tension or compression. Thus, the stress-strain curve will
show perfect agreement for small strains, whereas with increasing
strain, the stress-strain curves for tensile loading tends to rise
faster compared to the curves for compression loading. Under
tensile loading, the ligaments tend to align in loading direction
(see Sun et al., 2013) and are able to bear higher loads compared
to compression loading, where the ligaments deform like an s-
shape due to bending (Huber et al., 2014). Therefore, the yield
strength is slightly larger in tension than in compression and
the difference is more pronounced for thin ligaments, because
they align more easily in tensile direction like fibers. These
mechanisms are demonstrated for two example structures G11

and G14 in Supplementary Section 2.3. For the scope of this
work it is sufficient to concentrate on compression, because
errors in the ligament geometry will be reflected similarly in all
mechanical properties and loading scenarios. In what follows,
we will investigate the errors in the thickness determination
depending on the algorithm that is used and their correction.
To this end, we use diamond structure consisting of identical
ligaments with well-known geometry. Because of this replication,
the macroscopic behavior of the structure gives an indication
about the response of a single ligament that is part of a more
complex network.

Variable ligament shapes are incorporated in form of a
continuous parabolic-spherical shape introduced by Richert
and Huber (2018), see Figure 10 therein. To incorporate also
asymmetric ligament shapes observed by Richert and Huber
(2018), the ends are defined by two different radii rend,l and
rend,r for the left and right junction, respectively. The resulting
gradient along the ligament with length l is included in Equation
(1) through the parameter b. The locations xQ,l and xQ,r
at which the parabolic shape transitions into the spherical
parts of the ligament, are determined iteratively such that a
smooth ligament with a tangential transition is achieved (see
Richert and Huber, 2018).

r (x) =















√

r2
end,l

− (l/2+ x)2 − l/2 ≤ x < xQ,l

ax2 + bx+ c xQ,l ≤ x ≤ xQ,r
√

r2
end,r

− (l/2− x)2 xQ,r < x ≤ l/2

(1)

The axial coordinate x has its origin in the mid of the ligament,
such that the ligament mid radius is given by rmid = c. For the in-
depth study of the thickness determination and correction as well
as their effect on the mechanical properties, the ligament shape is
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kept symmetric by setting b = 0. In this case, rend = rend,l = rend,r
and xQ,l = − xQ,r .

In what follows, the unit cell size aUC is set to 1, i.e., all
absolute lengths are given as fraction of the unit cell size. The
16 geometries are chosen to cover ratios of ligament mid to end
radius rmid/rend from 0.5 to 1.25 in increments of 0.25. This
is the relevant range of ligament shapes as identified from a
3D tomography of a NPG sample (Richert and Huber, 2018).
As the second geometry parameter, the end radius was varied
from rend = 0.1 to 0.175 in increments of 0.025. Through
the combination of these two parameters a large range of solid
fractions is covered that exceeds the typical range of NPG
samples from very low (ϕmin ≈ 0.1) to very large values
(ϕmax ≈ 0.5). Based on the two chosen parameters rmid and rend,
the parameter c in Equation (1) can be determined following
Richert and Huber (2018).

Reference FEM Solid and Beam Models
Reference FEM beam and solid models are generated for
all geometries defined in Table 1. A detailed description
of how the reference FEM beam is created is given in
Supplementary Section 1. The solid unit cells are built using
PCL scripting in MSC Patran 2017 and, after Boolean operation
on all ligament and junction volumes, are meshed in a single
meshing operation with C3D10 three dimensional 10-node
quadratic tetrahedron elements for (Abaqus, 2014). The number
of elements range from 9,445 to 38,279 for structures with lowest
(G11) and highest solid fraction (G44), respectively, with average
element sizes of 0.05. The solid fractions given in Table 1 are
obtained from the FEM solid model in Abaqus via the history
output VOL. Examples for themost filigree structures with rend =

0.1 are shown in Figure 3. Due to the small ligament diameter,
these structures will show the highest sensitivity with respect to
effects of voxel resolution, discretization, and the accuracy of the
algorithms applied to these data.

In addition to the solid models that serve as common
reference for all mechanical properties, FEM beam models with
20 beam elements per ligament of type B31 [two-node shear
flexible Timoshenko beams in space; (Abaqus, 2014)] are built
using the code developed by Huber (2018). The code is modified
for assigning a variable ligament shape to the beam elements in
dependence of their position relative to the mid of the ligaments.

For the mechanical properties, a Young’s modulus of Es = 80
GPa, a Poisson’s ratio of ν = 0.42, a yield strength of σy,s =

500 MPa, and a work-hardening rate of ET = 1,000 MPa are
chosen. These parameters represent the mechanical behavior of
the ligaments in NPG reasonably well (Huber et al., 2014; Hu
et al., 2016; Roschning and Huber, 2016; Huber, 2018).

The translation of the ligament shape given in Equation
(1) for a single ligament into a physical meaningful radius
distribution for the interconnected structure is described in detail
in Supplementary Section 2. Through the intersection of three
convex ligaments, the actual size of the nodal mass increases
to the value R, which is defined by the triple point—the point
where the surfaces of three ligaments intersect. This surface
point is closest to the center of the nodal mass. Therefore, all
reference FEM beam models are based on the radius for the
biggest sphere R, that fits in the nodal area. The corresponding
radii are computed as distance from the center of the junction
to the surface in direction of the triple point, which is found
at an angle of 70.53◦ relative to the ligament axis. The value
R is assigned to all elements positioned between the ligament
end, which is the center of the nodal mass, to the axial position
of the triple point T. This approach avoids case sensitivity
and allows to compare the results from different models. All
geometric parameters for the structures defined in Table 1 are
provided in Supplementary Section 4, Supplementary Table 1.
Supplementary Figure 6A shows that there is only a moderate
effect in the macroscopic Young’s modulus. For most ligaments,
the stiffening is below 10%.However, for the yield strength shown
in Supplementary Figure 6B, the incorporation of R becomes
relevant for cylindrical and convex shaped ligaments, for which a
strength increase by up to 20% and 40%, respectively, is achieved.

Boundary Conditions
For a finite model size, the choice of the boundary conditions
can significantly influence the material response significantly.
Miehe and Koch (2002) showed for shearing of a composite
microstructure modeled with 2D solid elements that prescribed
displacement boundary conditions lead to a stiffer response
compared to periodic boundary conditions. Diebels and Steeb
(2002) showed that boundary layers of rotations form under
simple shear of a foam leading to a size effect. In this study,
we investigate the effect of errors in ligament geometry on
macroscopic properties and effects of boundary conditions
should be avoided. Therefore, the chosen boundary conditions
emulate an infinite periodic microstructure. Due to the perfect
symmetry of the diamond structure, all simulations can be based

TABLE 1 | Geometry parameters rmid and rend , describing the ligament shape, coding of the shapes from possible combinations and resulting solid fractions ϕ.

rmid/rend= 0.5 rmid/rend= 0.75 rmid/rend= 1.0 rmid/rend= 1.25

rend Geometry ϕ Geometry ϕ Geometry ϕ Geometry ϕ

0.100 G11 0.0816 G12 0.1252 G13 0.1784 G14 0.2421

0.125 G21 0.1232 G22 0.1825 G23 0.2635 G24 0.3661

0.150 G31 0.1736 G32 0.2524 G33 0.3574 G34 0.4871

0.175 G41 0.2342 G42 0.3202 G43 0.4565 G44 0.6131

Two digits numbering the row and column in this table are used for coding the geometry.
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FIGURE 3 | Plots of Equation (1) together with images of unit cells generated for the most filigree structures with rend= 0.1: (A) Geometry G11, rmid/rend= 0.5; (B)

Geometry G14, rmid/rend= 1.25.

on one unit cell with prescribed displacement and rotation
boundary conditions, for details see Supplementary Section 1.2.
For the FEM beammodel, this approach is equivalent to periodic
boundary conditions, while it significantly simplifies the meshing
of a 3D FEM solid model.

The displacement boundary conditions impose the known

deformation behavior of the structure on all surface nodes using
∗EQUATION in Abaqus. To this end, nodes on planes x = 0,
y = 0, and z = 0 are set to zero displacement normal to the
corresponding plane. Nodes in the planes at coordinate x = 1,
y = 1, and z = 1 are set to remain in a plane that is controlled by
a dummy node. All nodes on the mid planes are forced to move
half the displacement of the corresponding nodes in the plane at
coordinate 1. Finally, in the beammodels, all rotational degrees of
freedom are set to zero for all surface nodes. As no displacement
boundary conditions are applied to the five internal junction
nodes within the RVE, these nodes are allowed tomove and rotate
without any constraint. Nevertheless, they behave identically
to the nodes at the boundaries, which have their rotational
degrees of freedom fixed, and accomplish a full periodicity
of the stress and deformation field results. This indicated the
correctness of the chosen boundary conditions being equivalent
to periodic boundary conditions. More details are given in
Supplementary Section 1.2 (see Supplementary Figures 2, 3).

For elastic computations, a compression strain of 1% is
applied on the dummy node of plane z = 1; for predicting elastic-
plastic stress-strain behavior, the structure is compressed by 20%
strain using large deformation theory (NLGEOM) with a start
increment of 0.001. The Young’s modulus is always determined
from the first loading increment.

For geometries G11 and G14 (rend = 0.1, rmid/rend = 0.5
and rmid/rend = 1.25, respectively), a size study with RVEs of

increasing model size confirmed that the chosen displacement
boundary conditions yield results identical to periodic boundary
conditions, both being independent of the model size. The
results are presented in Supplementary Section 1.2. As shown
in Supplementary Figure 3, the computations with simple
symmetry conditions, as used e.g., by Huber et al. (2014),
asymptotically approach this value with increasing model size
(see also the size study in the Appendix of Huber, 2018). For
applying the displacement boundary conditions in the solid
model, a search tolerance of 1% of the unit cell allows collecting
enough FE nodes, which are sufficiently close to the position of
the corresponding surface nodes of the FEM beam model.

Figure 4 shows contour plots for the corresponding FEM
solid and beam models at a deformation in the elastic-plastic
transition. Elements exceeding the yield stress of 500 MPa are
colored in gray. They represent the distribution of the plastic
zones, which are in good agreement for the solid model and the
corresponding beam model for the convex ligament shape G14,
as can be seen from Figures 4C,D. However, for structure G11

with concave ligaments shown in Figure 4A, the plastic zones
are organized in the FEM solid model along the tension and
compression side in the thin regions of the ligaments and cross
the junction volume in the middle into the neighboring ligament.
Due to the kinematics implemented in the FE beam elements,
the FEM beam model in Figure 4B cannot capture this complex
deformation and localizes the plastic strains in elements in the
transition region from the ligament to the nodal mass.

Reference Macroscopic Mechanical
Properties
In the following section, the results obtained from the FEM
beam model and the FEM solid model are presented for
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FIGURE 4 | Localization of plastic yield (elements in gray color) during loading after entering the plastic regime for (A) solid model of structure G11; (B) beam model

structure G11; (C) solid model of structure G14; (D) beam model of structure G14.

the reference geometries defined in Table 1. This serves
two goals. The first goal is to precisely determine the
differences between the macroscopic properties of the FEM
beam model relative to the FEM solid model of the very
same geometry for all ligament geometries. For all further
investigations, the FEM beam models serve as reference for
the FEM skeleton beam models derived from the voxel
models. This allows to clearly separate potential effects from
different sources, such as the different behavior of FEM
beam and solid models, the thickness algorithms (section
FEM Skeleton Beam Models), and the quality assessment
of the developed correction methods (section Methods for
Thickness Correction).

The macroscopic properties Young’s modulus E and the
yield strength σy are derived from engineering stress and
strain measures (see Supplementary Section 1.2, subsection
Macroscopic Evaluation). Complete sets of the resulting
mechanical properties for the structures defined in Table 1 are
provided in form of absolute values in Supplementary Section 4,
Supplementary Tables 2–4. An overview of the macroscopic
mechanical properties predicted by the reference FEM beam

model (E(ref ), σ
(ref )
y ) normalized to the corresponding values of

the reference FEM solid model (E, σy) is given in Figure 5. The
shaded regions indicate solid fractions that are out of the range
of NPG (Liu and Jin, 2017; Soyarslan et al., 2018a). It should
be noted that a direct comparison with NPG samples via the
solid fraction is not possible, because a significant percentage of
solid fraction can exist in form of dangling ligaments, whereas
our diamond structure is fully connected. Therefore, the larger
range of solid fractions in this theoretical work can be useful for
covering the relevant ligament shapes determined by Richert and
Huber (2018).

Figure 5A confirms that the FEM beam model generally
underpredicts the macroscopic Young’s modulus relative to the
solid model, which is due to the well-known effect from increased
lever length (Huber et al., 2014; Roschning and Huber, 2016).
The FEM beam model is more compliant compared to the solid
model, because the full distance from the mid of the element to
the ligament end, i.e., the half ligament length l/2, is available for
bending deformation, independent of the ligament thickness. In
contrast to this, the nodal mass in the solid model reduces the
lever length available for bending of the ligament depending on
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FIGURE 5 | Overview for predicted macroscopic properties from reference FEM beam models normalized to the results from the referenced FEM solid models:

(A) Macroscopic Young’s modulus; (B) Macroscopic yield strength at 1% plastic strain.

the size of the nodal mass relative to the ligament radius. The
node is stiffened-up and deformation is moved into the transition
zone from the ligament to the nodal mass. For more details, we
refer to Huber et al. (2014) and Roschning andHuber (2016). Jiao
and Huber (2017b) carried out a study on the effect of the nodal
mass for a ball-and-stick model and suggested a nodal corrected
beam model to compensate for the softening in the beam model
by adjusting the radii and the Young’s modulus of the elements
in the nodal region.

There is a clear trend toward the stiffness of the solid model
for decreasing ratio rmid/rend, which goes along with a decreasing
solid fraction. This means that the more concave the ligament
is, the closer the macroscopic mechanical stiffness is to that of
the FEM solid model. Therefore, concave ligaments require less
nodal correction to raise the stiffness by about 30% (rmid/rend =

0.5) or 80% (rmid/rend = 0.75), while cylindrical and convex
ligaments require an additional stiffening by more than a factor
of 2. This disproves an application of a single “stiffness intensity
factor” as proposed by Soyarslan et al. (2018b) independent of the
local ligament shape and solid fraction ϕ.

In contrast to the elastic behavior, the effect in themacroscopic

strength, computed at 1% plastic strain, depends strongly on
the specific ligament shape (see Figure 5B). In average, the yield
strength predicted by the FEM beammodel is comparable to that
of the FEM solid model. However, for specific ligament shapes
the ratio of the yield strength ranges from 0.6 to 1.6. An example
is shown in Figures 4A,B. From the contour plots for both types
of models it can be deduced that for concave ligament shapes, the
plastic zone in the FEM solid model, Figure 4A, is distributed
over a larger volume extending from one ligament via the nodal
mass into the neighbor ligament. In contrast to this, for the
FEM beam model shown in Figure 4B, the plastic deformation
localizes in elements located in the transition zone from the
ligament to the nodal mass. Therefore, the levers and resulting

bending moments causing plastic deformation are longer in the
solidmodel, effectively reducing itsmechanical strength. This can
explain the unexpected high strength of the FEM beammodel for
specific geometries.

Based on the good agreement of the yield strength averaged
over all geometries, one could argue that a structure that
contains a large range of ligament shapes does not require a
nodal correction for the mechanical strength. This surprising
result has important consequences for the interpretation of
stress-strain curves predicted from FEM beam models derived
from skeletonized structural data, because the elastic and plastic
properties need to be treated differently.

FEM SKELETON BEAM MODELS

The FEM skeleton beam model building approach of Richert
and Huber (2018) is based on tomography data sets of real
NPG provided by Hu et al. (2016). The common problem for
this and similar works (Mangipudi et al., 2016; Soyarslan et al.,
2018b) is that the desired thickness information normal to the
ligament axis is not easily available. The 16 model geometries,
defined in section Reference Geometry of the Unit Cell, enable
us to systematically study the different sources of over- and
underprediction and to qualify proposed correction methods.
Furthermore, the sensitivity with respect to the voxel resolution,
the skeletonization, and the discretization of the ligaments
is studied.

RVE Size and Voxelization
To mimic the procedure according to the analysis of tomography
data, a Python script is used to scan the reference RVEs for given
ligament geometries. This scan produces a black (pore) and white
(gold) tiff-stack in the chosen voxel resolution. Details on the
tomography of the FEM beam models via parallel processing
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are provided in Supplementary Section 3. The tiff files of the 16
model geometries are available for download as the Data Sheet
2.zip folder of the Supplementary Material. Details of the files
are provided in Supplementary Section 5. The code is validated
using the open visualization tool Ovito by Stukowski (2010)
confirming that the solid fraction of the voxelized model is below
1% error. To avoid boundary issues during the skeletonization
and thickness analysis, as discussed by Richert and Huber (2018),
a larger RVE of size 3 × 3 × 3 unit cells is used, similar to
Soyarslan et al. (2018b). However, for the voxelization, the scan-
box edge length around the mid-point is limited to 1.5 times of
the unit cell size aUC, so that on all sides exactly one additional
ligament (0.25 of one unit cell) is connected to the center unit cell.
The skeletonization is carried out on the resulting RVE of size 1.5
in the open-source software Fiji (Schindelin et al., 2012) with the
BoneJ Plugin (Doube et al., 2010) Skeletonize 3D based on the
thinning algorithm by Lee et al. (1994). The diameter estimation
is carried out with the BoneJ Plugin Thickness (Dougherty and
Kunzelmann, 2007) based on the Biggest Sphere algorithm by
Hildebrand and Rüegsegger (1997) and the 3D Mathematical
Morphology (TANGO) Plugin operation 3D Distance Transform
by Ollion et al. (2013). The skeleton forms the beam element axis
and the thickness data is used to calculate the section radii of the
beam elements. For the FEM skeleton beammodel building, only
the data within the volume of the center unit cell is used. For
further details about the procedure (see the Appendix of Richert
and Huber, 2018).

The geometry G11 with the smallest diameter was chosen to

determine the accuracy as function of the voxel resolution. This
most filigree structure with rend = 0.1 and rmid/rend = 0.5 is
shown in Figure 6A. Due to the small ligament diameter, it has
the highest sensitivity with respect to effects of voxel resolution
and beam discretization. The structure was scanned with 60,
100, 200, and 300 voxels per unit cell edge length Nv/aUC
(see Figure 6), yielding volume fractions of 9.2, 9.4, 8.0, 7.9%,
showing a dependence on the voxel resolution. With the unit
cell edge length aUC = 1, one voxel has an edge length of 1/60
(0.0167), 1/100 (0.01), 1/200 (0.005), and 1/300 (0.0033) for
the different resolutions, respectively. The smallest radius of
the structure is 0.05 in the middle of the ligament. With the

lowest resolution of 60 voxels per unit cell edge length, this
results in only three voxels making up the ligament radius.
With the resolution of 100 voxels shown in Figure 6B, the
proposed minimum quality of 10 voxels per ligament diameter
proposed by McCue et al. (2018) is met. The unsatisfying quality
of the 60 voxels resolution leads to steps in the beam diameters
and an uneven replication of the ligament profile, as visible in
Figure 6A. As a consequence, local narrow neckings are averaged
out, which leads to a stiffening of the mechanical response. In
contrast, the 200 and 300 voxels resolutions show a satisfying
quality of the surface (see Figures 6C,D).

Skeletonization and Beam Discretization
When analyzing the effect of the different voxel resolutions on
the mechanical behavior of the FEM skeleton beam models, the
skeletonization, and originating from that, the discretization of
the beam elements are further sources of errors. The skeleton
of the structure is the one-voxel-wide centerline. It is achieved
by surface thinning, as implemented in Fiji. Richert and Huber
(2018) discuss different discretization approaches, where the
most accurate approach appears to be to construct the beam axis
as the connection between the centers of neighboring voxels (1
V/E). However, due to the discrete cubic size of a voxel, this can
lead to harsh direction changes of up to 90◦ between two beam
elements (zigzag). Especially for curved ligaments, as found in
actual NPG tomography data, this has a great effect. This zigzag
skeleton path results in a more compliant mechanical behavior,
as shown by Richert and Huber (2018). The other approach is
to average over a certain number of voxels. An approach of on
average five voxels was tested by Richert and Huber (2018). This
solves the issue with the skeleton zigzag on the one hand, but
results in a lower number of beam elements per ligament on the
other hand and, due to this, the ligament shape may be badly
represented. Neckings are averaged out and the macroscopic
stiffness and strength is probably overestimated. This is a similar
effect as if using a low voxel resolution.

A new approach is introduced in this paper, were the skeleton
voxels are fit by a Bezier function. This results in a smooth
line, with the start- and end-node being fixed in their position.
The Bezier fit is not forced to go exactly through the individual

FIGURE 6 | Zoom into center-junction region of most slender geometry G11 scanned with four different voxel resolutions of (A) 60 voxels; (B) 100 voxels; (C) 200

voxels; (D) 300 voxels per unit cell edge length Nv/aUC.
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FIGURE 7 | FEM beam models of concave ligament geometry G11: (A) reference FEM beam model; FEM skeleton beam models based on Thickness data with voxel

resolution and discretization of (B) 60V and 1 V/E; (C) 200V and 1 V/E, (D) 200V and Bezier representation of the skeleton line.

FIGURE 8 | Macroscopic mechanical behavior of the FEM skeleton beam

models build from different voxel resolution scans using two different beam

element discretization approaches: one skeleton voxel per beam element (1

V/E); Bezier fit of the skeleton points and diameters with 20 elements per

ligament (Bez 20 E/L). The values are fit to a simple hyperbolic function

E (Th)=
k

(Nv/aUC )
+E

(Th)
∞ . The parameter E

(Th)
∞ approximates the values for an infinite

number of voxels Nv/aUC, being 590 and 580 MPa for Bezier and 1 V/E

discretization, respectively. The percentage deviation from those values

is inscribed.

skeleton points of the ligament, so no overshoots arise, as is would
be the case for a spline fit. The Bezier approach has the additional
advantage that the desired number of equidistant beam elements
per ligament can be chosen in dependent of the length and
skeleton voxel number of the current ligament. For assuring
comparability with the reference FEM beam model, 20 two-node
shear flexible Timoshenko beam elements in space (B31) are used
(see section Reference FEM Solid and Beam Models). For the
boundary conditions (see section Boundary Conditions).

The models for the different discretization approaches based
on the Thickness data are shown in Figure 7. The diamond
structures analyzed in this paper have initially a straight ligament

axis (Figure 7A). By using the discretization of one voxel per
beam element (1 V/E) on a 60 voxels scanned structure, kinks
are clearly visible in Figure 7B as tilted elements. Also for the
200 voxels scan resolution, the 1 V/E discretization shows kinks
(see Figure 7C). This phenomenon is not avoidable due to the
discrete voxel size, shape and orientation of the ligaments in
space, even for the ideal geometries used in this work. This
problem is solved via the newly introduced Bezier fit, which
shows nicely aligned beam elements (see Figure 7D). Besides the
discretization issues, the diameter overestimation through the
Thickness algorithm is clearly visible in all three FEM skeleton
beam models (Figures 7B–D), when compared to the reference
geometry presented in Figure 7A.

The FEM skeleton beam model was built from the four
different voxel resolutions of the geometry G11 based on the
Thickness diameter estimation algorithms. Furthermore, the two
different discretization approaches with either each voxel being
represented by one beam element (1 V/E), or a Bezier fit (Bez
20 E/L) are applied to the skeleton and diameter data. The results
for the Young’s modulus are displayed in Figure 8. The values are

fit to a simple hyperbolic function E(Th) = k/(Nv/aUC) + E
(Th)
∞ ,

where the parameter E
(Th)
∞ approximates the Young’s modulus for

a model with infinite number of voxelsNv/aUC = ∞, as 590MPa
and 580 MPa for Bezier and 1 V/E discretization, respectively.
The percentage deviation from those values is inscribed. The
focus is here solely set on the effect of the voxel resolution and the

two different beam element discretizations. The deviations to the

reference beam model stemming from the diameter estimations

are addressed in sections Thickness Analysis and Effect on

Mechanical Properties.
Overall, the 1 VEmodels show slightly lower Young’s modulus

values than the Bezier models, and also lower deviations to
its asymptotic value of 580 MPa at Nv/aUC = ∞. As the
skeleton is straight in the reference geometry, the effect of
the increased compliance caused by the kinks in the ligament
axis with the 1 VE discretization is small. For the lowest
voxel resolution (60V) the stiffness is overpredicted by up to
43% while for higher resolution, the accuracy increases. The
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Young’s modulus of the models with a resolution of 200 voxels
shows around 10% remaining difference to the predicted value
at Nv/aUC = ∞. Further refinement slowly increases the
accuracy, but rapidly increases the computational time. Thus,
all further computations will use the voxel resolution of 200
voxels per unit cell edge length Nv/aUC with the Bezier fit to
ensure comparability to the reference structures created with
20 elements per ligament. The remaining uncertainty in the
prediction of the mechanical properties is up to 12% due

to the voxel resolution and beam element discretization. The

resulting voxel edge length of 1/200 (0.005) defines the achievable
accuracy limit for the geometrical characterization in the
following sections.

Thickness Analysis
This section discusses the geometry derived with the Thickness
algorithm (Th) and the Euclidean distance transformation (EDT)

from the voxel scan of the underlying reference geometries,

given in Table 1. Figure 9A shows the mean-radii
〈

r(.)
〉

obtained

from averaging over all 20 elements of a ligament normalized

by the mean-radius of the reference geometry
〈

r(ref )
〉

. It can

be seen that the deviation of
〈

r(.)
〉

/

〈

r(ref )
〉

increases with

increasing concavity, independent of the end radius rend and
algorithm used. For the Thickness algorithm, the largest value
of 1.2 is comparable to the results of Richert and Huber

(2018), where values up to 1.3 have been reported using the

mathematically exact ligament geometry as reference. It could

be argued that the deviation of 20% in the geometry is still

acceptable. However, as showed by Richert and Huber (2018),

this causes serious overpredictions in the mechanical stiffness

of the ligament by a factor of two. As expected, the data from

the EDT show an underprediction for increasing concavity, but

A B

C D

FIGURE 9 | Ratio of computed ligament radii: (A) Ratio of average radius
〈

r(.)
〉

/
〈

r(ref )
〉

; (B) Ratio of local radius r
(.)
end/r

(ref )
end ; (C) Ratio of local radius r

(.)
1/4l/r

(ref )
1/4l ; (D) Ratio of

local radius r
(.)
mid/r

(ref )
mid . The superscript (.) corresponds to Thickness (Th) or Euclidean distance transform (EDT ).
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the relative deviations are significantly smaller compared to
Thickness algorithm.

The advantage of the object-oriented-programming is that it
enables to locally analyze parameters of individual ligaments at
specific positions. Figures 9B–D show selected results for the
effect on the local thickness determined in the end, quarter, and
middle position of the ligament, respectively. From this series, the
strength and weaknesses of each algorithm can discussed. In the
overall comparison, the EDT algorithm is of superior accuracy.
At the mid and end position, where the tangent of the ligament
shape is flat, the diameter is determined with high accuracy.
Only in the transition from end to mid position, represented by
the quarter positions in Figure 9C, the expected underprediction
can be seen in the EDT data. In the worst case that represents
the largest diameter change, i.e., structure G41, the deviation
is−30%.

For the Thickness algorithm, the local overestimation of the
rmid value increasingly depends also on the absolute radius of the
ligament end, the more concave the ligament is. This is a result
of the following mechanism: The Thickness algorithm propagates
the sizes of the nodal region into the ligament region. Firstly,
all skeleton points inside the nodal sphere are assigned with this
value Rnode ≥ rend, forming a nodal plateau of constant radius.
Secondly, from there the ligament shape assumes a smooth
transition from Rnode to rmid. However, in the extreme case of
a very thick ligament, the two nodal spheres can even overlap in
the mid position of the ligament. This would lead to an extension
of the plateau over the whole ligament length. Due to this, the

determined radius in the mid-point r
(Th)
mid

can take all possible

values from r
(ref )

mid
to Rnode.

In the following, we will investigate the impact
of the determined geometries on the macroscopic
mechanical properties. The question will be addressed

in how far the averaged data or the local effects in the
geometrical characterization are relevant in terms of the
mechanical behavior.

Effect on Mechanical Properties
In section Thickness Analysis, the deviations for the average
and local thicknesses are determined for the 16 reference RVEs.
Because the diameter enters the moment of inertia by a power
of four in the stiffness calculation, the overestimation of the
Young’s modulus and yield strength is expected to be even
higher. To quantify this effect, 16 FEM skeleton beammodels are
built from the 200 voxel resolution scans (section RVE Size and
Voxelization), with a Bezier curve fit to the skeleton axis (section
Skeletonization and Beam Discretization). In Figures 10A,B,
the macroscopic Young’s modulus E and the yield strength σy,
respectively, obtained from the FEM skeleton beam model are
compared to the values from the corresponding reference FEM
beam model.

The factor of overestimation of the Young’s modulus for
the Thickness algorithm, presented in Figure 10A, is similar
for structures with same ratio rmid/rend, independent of the
absolute rend value. Strongly concave structures show the highest
deviations by up to a factor of 2. Tending toward cylindrical and
convex structures, the deviation decreases to a factor of 1.2. The
trend in the yield strength data in Figure 10B is similar, showing
highest overestimations at strongly concave ligaments. With
decreasing concavity, the decay is however more emphasized.
Furthermore, stronger variations for different rend values are
observed, especially for the concave ligaments. There, smaller
rend values show higher overestimation, ranging from 1.68 to
2.15. The higher sensitivity of the yield strength is caused by the
circumstance that the onset of plastic deformation results from
the combination of weakest cross-section and applied bending

A B

FIGURE 10 | Results of the macroscopic mechanical properties for the FEM skeleton beam models based on the Thickness (Th) algorithm or Euclidean distance

transform (EDT), normalized to the results from the reference FEM beam models: (A) Young’s modulus E and (B) yield strength σy . The superscript (.) corresponds to

(Th) or (EDT ).
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moment, which again depends on the lever acting on this cross-
section. In contrast to this, the elastic deformations spread over
the whole ligaments and into the junction volumes and are
therefore less sensitive to the local geometry (Huber et al., 2014).

It should be noted that cylindrical and convex ligaments
show overall the lowest overestimation, which is still about 20%
for both macroscopic properties. This is astonishing, as one
might imagine that a cylindrical ligament should be perfectly
reproduced by the Thickness algorithm. However, this is only
true for a cylindrical ligament of infinite length. For the
interconnected structure, which contains junction volumes that
are larger than the cylindrical ligaments, the overestimation in
mechanical properties is due to the mechanism discussed in
section Thickness Analysis.

In line with the findings from the geometric analysis presented
in Figure 9, the predicted deviations in the macroscopic
mechanical properties for the EDT data are much smaller
compared those obtained for the Thickness algorithm. The results
can be considered accurate for cylindrical and convex shapes
while for concave shapes the stiffness and strength are reduced
up to 20%. If this is acceptable, the EDT can be used without
further correction. It should be noted that stronger concavities
or asymmetries as well as non-circular cross-sections can further
increase these deviations also for the EDT.

METHODS FOR THICKNESS CORRECTION

Due to the impact on the mechanical response, we present in
the following sections possible correction approaches for both
thickness algorithms. The high sensitivity of the mechanical
properties on the geometric characterization justifies to use the
predicted Young’s modulus and yield strength throughout these
sections as the relevant measure for the assessment of the quality
of each approach.

Smallest Ellipse Approach
Coming from the Biggest Sphere Thickness approach by
Hildebrand and Rüegsegger (1997), the idea is to compensate its
systematic trend of overestimation by the opposing equivalent,
which is the Smallest Sphere approach, discussed by Liu et al.
(2014). Between these two extremes, a Smallest Ellipse (SE)
approach can be considered, as schematically presented in
Figure 11. As input data, the coordinates of the medial axis
and the respective Thickness values are used. Each point x
along the axis located in a smallest ellipse inscribed into the

Thickness data r(Th), is assigned with the value of the ellipse
major axis as the radius r(SE). The ellipse allows to incorporate
some flexibility in the range of radius assignment near the point
under investigation. To this end, the linear eccentricity e of the
ellipse was determined independently of the geometries defined
in Table 1. Approximately 800 ligament geometries were created,
reproducing the range of ligament geometries detected by Richert
and Huber (2018), including asymmetric ligament shapes. A
linear eccentricity of e = 0.75 produced the lowest errors.

The obvious drawback of the proposed Smallest Ellipse
approach is that the minimum diameter of a ligament is bound
to the minimum Biggest Sphere Thickness value. This can be

FIGURE 11 | Schematic of the Thickness Biggest Sphere (Th, right half) and

Smallest Ellipse (SE, left half) approach sketched in an exemplary ligament

section with r(x). Each point x located in a Smallest Ellipse fitted to the

Thickness data r(Th), is assigned with the value of the major axis as the radius

r(SE). The linear eccentricity of the ellipse is fixed to e =0.75.

seen in Figure 11, where in the center of the ligament a gap
between the minimum radius of the original reference geometry
and the reconstructed radius remains. In the nodal areas, the
Biggest Sphere Thickness value represents the upper limit, which
is correctly reproduced. The algorithm is robust since it does
not require any assumption on a model function, parameter
bounds, and parameter start values and works for symmetric and
asymmetric ligament shapes.

The correction of the geometries via the Smallest Ellipse
approach lead to an overall improvement in the predicted
macroscopic mechanical properties (see Figure 12). The
previously observed overestimation from 1.2 to 2.0 based on the
Thickness data (see Figure 10A) is now reduced to an almost
constant value between 1.1 and 1.25, i.e., the concave ligaments
are most improved. As discussed before, the yield strength
shows some stronger sensitivity to the different ligament shape
parameters, while the overall improvement is comparable to
that of the Young’s modulus. In summary, the reconstruction
of the ligament shape with the simple Smallest Ellipse approach
represents a substantial improvement in comparison to the
Thickness data, although some geometrical inaccuracies remain
in the thinner region.

Artificial Neural Network Correction
Approach
In contrast to the Smallest Ellipse approach, which does not
require an assumption with regard to the ligament geometry,
computational methods, such as optimization strategies or
artificial neural networks can be applied for reconstruction of
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A B

FIGURE 12 | Results of Smallest Ellipse (SE) corrected FEM skeleton beam models normalized to the results from the reference FEM beam models: (A) Macroscopic

Young’s modulus; (B) Macroscopic yield strength at 1% plastic strain.

the original ligament shape. In our case, the ligament shape
is limited to symmetric-parabolic shapes, which in principle
allows applying both strategies in a straightforward manner.
Apart from the drawback of restricting the generality to a
certain class of ligament shapes included in the assumed model
function, this has the advantage of dealing with the ligament
as a whole dataset. Optimization strategies require parameter
bounds, parameter start values of the model function. They are
furthermore computationally demanding, because the parameter
identificationmust be carried out individually and independently
for each ligament. Therefore, we focus on the development of an
artificial neural network (ANN).

For details on the ANNs, we refer to Huber (2018)
and the literature cited there. For the training of the
ANN, the 16 symmetric ligament geometries are used,
defined in Table 1. Pattern files are written in the
following style: The input vector X consists according
to Equation (2) of the radii computed for all elements
along the ligament skeleton, normalized by their average,

in the form r(.)(xi)/
〈

r(.)
〉

, where (.) can be set to any

of the three algorithms, namely (Th), (SE), or (EDT).
This set of data represents the shape of the ligament
from one end to the other end as measured by the
corresponding algorithm.

As one further input value, the normalized position 2xi/l
is given, for which the correction factor shall be determined.
The output vector Y consists according to Equation (3)
of just one value, which is the correct radius divided by
the radius determined from the algorithm r(ref )(xi)/r

(.)(xi) at
the position xi. Because an ANN represents a continuous
approximation of the presented data, it is very difficult to
predict the steps contained in r(ref ) as shown in Figure 4.
Therefore, the prediction of the output is limited to the
positions within the triple points. Per ligament, 14 patterns

are created, which are related to the 14 element radii for
which the correct radius needs to be computed. Each ANN
consists of four layers with 21 neurons at the input layer,
15 and 10 neurons in the two hidden layers, and 1 neuron
for the output layer and is trained for 10,000 epochs. The
resulting mean squared training and validation errors are
MSET(Th) = 2.37 · 10−5 and MSEV (Th) = 1.87 · 10−4;
MSET(SE) = 8.82 · 10−6 and MSEV (SE) = 8.44 · 10−5;
MSET(EDT) = 1.73 · 10−5 and MSEV (EDT) = 1.89 ·

10−4; respectively.

X =

{

r(.) (x1)
〈

r(.)
〉 ,

r(.) (x2)
〈

r(.)
〉 , . . . ,

r(.) (x20)
〈

r(.)
〉 ,

2xi

l

}

(2)

Y =

{

r(ref ) (xi)

r(.) (xi)

}

(3)

Indicated by the very low training and validation error,
the reconstruction of the correct ligament shape seems to
be a simple task for the ANN. The ANNs are able to
determine the original ligament radius within one voxel
accuracy, independent by which algorithm the input data
are provided.

To validate the generalization capability of the trained ANNs,
three new validation geometries are generated within the range of
the existing 16 geometries. They are defined with rend = 0.1375
and rmid/rend = [0.625, 0.875, 1.125]. The geometries of the
three validation examples are shown in Figure 13. The degree
of the remaining deviations is illustrated by 1 voxel- (±0.5 v)
and 2 voxel-wide (±1 v) bands. The radii determined along the
ligaments is within or very close to the 2-voxel wide band range
for all three validation geometries and three ANN types. This
corresponds to plus-minus one voxel, which is the limit for the
accuracy defined by the voxel resolution. Only for the corrected
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FIGURE 13 | Validation cases including the correct geometry r(ref ), the Thickness result r(Th), the Smallest Ellipse result r(SE), the EDT result r(EDT ), and the

ANN-reconstructed geometries r(ANN(Th)), r(ANN(SE)), r(ANN(EDT )) for rend = 0.1375. The degree of the deviations is illustrated by 1 voxel- (±0.5 v) and 2 voxel-wide (±1 v)

bands: (A) rmid/rend = 0.625; (B) rmid/rend = 0.875; (C) rmid/rend = 1.125.

Thickness data of strongly concave ligament in Figure 13A, the
determined values are far outside the 2-voxel wide band.

If the Thickness data are pre-processed with the Smallest
Ellipse algorithm, the accuracy improves significantly also for
this difficult case. The ANN is now able to achieve accuracies,
which are within the theoretical resolution limit of the voxel
discretization and comparable to the results of the EDT
(Figures 13A–C). This results from the capability of the ANN
to memorize the relationship between ligament shapes and their
corrections as whole and smoothly interpolate this relationship
for untrained geometries. Due to this, the ANN approach has
superior performance compared to the local Smallest Ellipse
approach, discussed in the previous section, which cannot fully
recover the information in the thinnest part of the ligament.
The drawback is however that this method is so far limited
to symmetric ligaments. For further evaluations of actual
tomography data in the parameter space of r∗sym and r∗asym, as
found by Richert and Huber (2018), the incorporation of a
linear gradient according to Equation (1) is required. With this,
asymmetric ligaments can be represented, as they occur with
high probability in real NPG. Motivated by the promising results
presented in this section, such an extension will be scope of
future work.

As for the resultingmechanical behavior, very small deviations
of maximum 10% are observed for the 16 trained geometries
for both Young’s modulus and yield strength. Also the three
additional validation examples are well-predicted by the ANN
with the very same accuracy, supposed the Thickness data
are improved by the Smallest Ellipse approach before feeding
the data to the ANN. It is remarkable that, despite some
remaining error in the geometry reconstruction, resulting errors
in the mechanical properties are negligible. The reason for
this is that the ANN in average determines the ligament
shape correctly with perhaps some small over- and under-
predictions in different regions of the ligament. In contrast
to that, the Thickness algorithm and the reconstruction via
the Smallest Ellipse approach systematically overestimate the
geometry and therefore the mechanical properties are biased to
higher values.

APPLICATION TO EXPERIMENTAL
TOMOGRAPHY DATA

To test the methods presented in section Methods for Thickness
Correction beyond the 16 idealized diamond structures, the
NPG tomography data set of Hu et al. (2016) is used, which
stems from a nanoporous gold sample with nominally 400 nm
average ligament diameter. Three FEM skeleton beammodels are
generated based on the Thickness, EDT and furthermore Smallest
Ellipse corrected data of the NPG tomography, as described
in section FEM Skeleton Beam Models. The ANN approach is
not applicable in its present form, as it requires an extension
toward more general shapes. The mesh of the reference Solid
model consisting of 10-node tetrahedral elements (C3D10) was
provided by Hu et al. (2016). For both types of models, symmetry
boundary conditions are used and a compressive loading in z-
direction is applied. In this way, the results give an additional
insight about the effect for a more commonly used boundary
condition and a realistic, aperiodic microstructure. The resulting
macroscopic stress-strain behaviors are plotted in Figure 14; the
inserts clearly show the differences in the resulting beam models
relative to the solid model, where the black line shows the traced
outline of the solid model.

The macroscopic Young’s moduli and yield strengths at 1%
plastic strain are computed as 432 and 10.0 MPa (Thickness);
310 and 7.5 MPa (Smallest Ellipse); 160 and 3.7 MPa (EDT),
respectively. For comparison, the Young’s modulus and yield
strength of the FEM solid model was computed as 370
and 5.5 MPa. Consistent with the trend observed for the
idealized diamond structures, the model based on Thickness
and EDT diameter information show the highest and lowest
values, respectively. From the idealized diamond structures,
we computed ratios (Thickness/EDT) in the average diameter
ranging from 1.05 (highest convexity) to 1.4 (highest concavity).
The corresponding ratios in the predicted mechanical properties
are ranging from 1.2 to 2.5 (Young’s modulus) and 1.2 to 2.7
(yield strength). For the NPG tomography, the ligament diameter
distribution resulting from the Thickness and EDT algorithms
showed a ratio in the average ligament diameter of 1.3 (see
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section Methodology and Figure 1). As shown in Figure 14, the
(Thickness/EDT) ratio computed for the macroscopic mechanical
properties are 2.7 (Young’s modulus) and 2.7 (yield strength).
Therefore, geometry and property ratios for the real material
are close to or above the upper limits found for the idealized
diamond structures. This is reasonable, because the diamond
structure exhibits straight skeleton lines and symmetric ligament
profiles while the skeleton paths in the NPG sample are more
randomized and ligament profiles are strongly asymmetric, as
reported by Richert and Huber (2018). Therefore, the ligaments
show additional gradients along their axis—such gradients are
found to be the source of error in both algorithms, Thickness
and EDT.

Furthermore, the resulting Young’s modulus of the EDT
beam model is only 43% of the solid model. This confirms the
expectation by Richert and Huber (2018) that the FEM Solid
model should be stiffer and stronger than the FEM skeleton beam
model, as in the latter, the stiffening and strengthening effect of
the nodal mass (Jiao and Huber, 2017b) is not yet accounted for.

CONCLUSIONS AND OUTLOOK

While the accurate determination of the thickness of geometrical
features from 2D images is straight forward, the situation
changes dramatically for 3D structures. Various algorithms exist,
but each has its specific drawbacks regarding implementation,
computational cost, or accuracy. The Thickness algorithm by
Hildebrand and Rüegsegger (1997) is the most commonly used
algorithm. This is usually done without an assessment of the
error, because information about the correct thickness of the
structures under investigation is not available. A study by

Richert and Huber (2018) of typical ligament shapes identified
from 3D FIB tomography data of NPG revealed that the error
in the measured geometry can reach values up to 30%. The
overestimated thickness data lead to an overestimation of the
mechanical stiffness by a factor of two and more. Although
an implementation of the 3D Euclidean distance transformation
(EDT) is for example available in the Plugin TANGO, this
algorithm has so far not been used in 3D analysis. In contrast
to the Thickness algorithm, it tends to underpredict the diameter
for curved shapes. A first comparison of both algorithms
with tomography data of NPG revealed a difference in the
computed average ligament diameter of 30%. This and the
detailed results obtained on the local radii for the different
algorithms highlight how important it is to understand the
individual algorithm used and what the produced data represent
in relation to the measure of interest. This is particularly an
issue when pooling data from various sources making use of
different algorithms.

To provide RVEs with well-defined geometries, this work
is based on idealized model structures consisting of ligaments
with circular cross-sections and smooth parabolic-spherical
shape, organized in a diamond structure. Sixteen high-resolution
voxel models and finite element models are provided, covering
the relevant shapes from concave to convex ligaments. These
models serve as reference for the error assessment for both,
the determined geometry and the elastic-plastic mechanical
properties along the thickness determination and correction
chain. Furthermore, the provided test structures can be used
for validation of any newly developed algorithm for the
determination or correction of thickness information from
voxel data.

FIGURE 14 | Stress strain curves of NPG tomography of Hu et al. (2016) modeled as FEM solid model and predictions from FEM skeleton beam models based on

Thickness, Smallest Ellipse, and EDT diameter information. Inserts show regions of interest for comparison of the determined geometries.
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To decouple this study from the known effect that FEM beam
models show a more compliant and less strong macroscopic
stress-strain behavior compared to FEM solid models, the
differences in both properties are computed for each geometry.
As expected, the FEM beam model is more compliant compared
to the FEM solid model. The data show an increasing deviation
for increasing mid to end radius ratio while the ligament size
has only a marginal effect. In contrast to this, the yield strength
distributes below and above those of the FEM solid model.
This surprising result leads to the conclusion that the stress-
strain curve computed by Richert and Huber (2018) must not
necessarily fall below the curve predicted by the FEM solidmodel,
after the geometry is corrected, because a newly developed nodal
correction for these ligament shapes may not necessarily increase
the strength.

An investigation of the sensitivity with regard to the voxel
resolution revealed that the predicted mechanical stiffness is
significantly overestimated with decreasing voxel number. For
the most filigree structures and a resolution of 60 voxels per
unit cell length, the error reaches up to 30% in comparison to
a resolution of 300 voxels. Increasing the resolution to 200 voxels
reduces the error to 3%.

Applying the Thickness algorithm to the data with 200
voxels resolution yielded largest overestimations of 20% in
the average radius and 70% in the radius in the middle of
the ligament. The impact on the Young’s modulus and yield
strength is up to 100% overestimation for concave shapes.
This is not as high as predicted in the single ligament study
by Richert and Huber (2018), but is still inacceptable. The
Euclidean distance transformation resulted in an underprediction
in the macroscopic mechanical properties of up to 20% for
concave ligaments.

In view of these results, two approaches for correction of the
computed thickness are proposed. A Smallest Ellipse correction
approach, which could be interpreted as counterpart of the
Biggest Sphere Thickness algorithm, allows reducing the error in
Young’s modulus to 20% and in yield strength to 30% for all
ligament shapes. Secondly, using patterns consisting of estimated
thickness information from Thickness, Smallest Ellipse, Euclidean
distance transformation algorithm, and original ligament shapes,
artificial neural networks were trained. It could be shown
that the accuracies achieved for most cases are within a few
voxels. The resulting deviations in the mechanical properties
are within few percent, even for untrained validation patterns.
This demonstrates the big potential of ANNs to accurately
approximate complex non-linear relationships as whole. Even a
correct reconstruction is possible for data for which the input
information is incomplete in terms of the original ligament
shape. However, relative to the ANN corrected Thickness data,
the accuracy can be significantly increased by presenting the
data from the Smallest Ellipse algorithm. This shows that it is
advisable to reduce the complexity of the problem as far as
possible by using existing algorithms or estimates, even if they are
of limited accuracy. Such strategies have been successfully applied
before and the outcome of this work emphasizes once more
the importance of incorporation of a priori knowledge in the

preparation of the ANN definition and pattern generation when
high accuracy is a requirement. This is particularly important for
solving highly non-linear and complex inverse problems (Huber
and Tsakmakis, 1999, 2001; Tyulyukovskiy and Huber, 2006).

An obvious drawback of the ANN approach is that it must
be trained for the parameter space of possible shapes to be
identified. This means that for the evaluation of tomography
data in the parameter space of r∗sym and r∗asym, as found by
Richert and Huber (2018), requires an expansion by a linear
gradient along the ligament axis or the incorporation of even
more general shapes. In addition, the results of the Thickness
and EDT algorithms should be critically evaluated with respect
to effects from non-circular cross-sections that might occur in
real samples.

Thus, future research should be directed toward approaches
that provide sufficient geometrical accuracy for a large range of
possible ligament geometries, where the accuracy should always
be evaluated in view of the predicted mechanical properties.

Finally, the Thickness, Smallest Ellipse, and EDT algorithms
are applied to the experimental NPG tomography data set of
Hu et al. (2016). The average diameters and predicted stress-
strain curves consistently showed Thickness to EDT ratios
at the upper limit of the range computed for the idealized
diamond structures. This is consistent with the finding that
gradients in the ligament diameter along the axis are responsible
for systematic over- and underestimation by the algorithms.
Obviously, this effect is enhanced by the random nature and
strong asymmetry of real ligaments. Furthermore, the stress-
strain curve of the solid model lies in between the Thickness and
EDT prediction. While the overprediction based on Thickness
data confirms the result reported by Richert and Huber (2018),
the EDT curve being significantly below the result of the FEM
solid model now opens the perspective for an implementation
of a physically meaningful nodal correction in the FEM
beam model.

AUTHOR CONTRIBUTIONS

CR and NH conceptualized, designed the study, and
wrote and revised the manuscript. NH created the
geometries, FEM solid and FEM beam models, and coded
the Python scripts for voxel scanning. CR analyzed the
voxel scans, carried out the FEM skeleton beam models.
AO developed the Smallest Ellipse approach and carried
out the thickness correction using this method. CR
developed the ANN for thickness correction, analyzed
the errors of all methods in terms of geometry and
mechanical properties.

FUNDING

This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation)—Projektnummer
192346071—SFB 986.

Frontiers in Materials | www.frontiersin.org 18 December 2019 | Volume 6 | Article 327

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Richert et al. Computation of Interconnected Structures

ACKNOWLEDGMENTS

Kaixiong Hu and Erica T. Lilleodden are acknowledged for
making the FIB tomography data set and the FEM solid model
of NPG available.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmats.
2019.00327/full#supplementary-material

REFERENCES

Abaqus (2014). Theory Manual. Providence, RI: Dassault Systèmes.

Almhdie-Imjabber, A., Hambli, R., Touvier, J., Rozenbaum, O., Lespessailles, E.,

and Jennane, R. (2014). Mechanical assessment of trabecular bone stiffness

using hybrid skeleton and finite element analysis. Comput. Methods Biomech.

Biomed. Eng. 4, 352–359. doi: 10.1080/21681163.2014.944355

Arganda-Carreras, I., Fernández-González, R., Muñoz-Barrutia, A., and Ortiz-

De-Solorzano, C. (2010). 3D reconstruction of histological sections:

application to mammary gland tissue. Microsc. Res. Tech. 73, 1019–1029.

doi: 10.1002/jemt.20829

Ashby, M., Evans, T., Fleck, N. A., Hutchinson, J., Wadley, H., and Gibson, L. J.

(2000).Metal Foams: A Design Guide. Oxford: Butterworth-Heinemann.

Badwe, N., Chen, X., and Sieradzki, K. (2017). Mechanical properties

of nanoporous gold in tension. Acta. Mater. 129, 251–258.

doi: 10.1016/j.actamat.2017.02.040

Day, J. S., Ding, M., Odgaard, A., Sumner, D. R., Hvid, I., and Weinans, H. (2000).

Parallel plate model for trabecular bone exhibits volume fraction-dependent

bias. Bone 27, 715–720. doi: 10.1016/S8756-3282(00)00371-9

Diebels, S., and Steeb, H. (2002). The size effect in foams and its theoretical

and numerical investigation. Proc. R. Soc. Lond. A 458, 2869–2883.

doi: 10.1098/rspa.2002.0991

Dillard, T., N’guyen, F., Maire, E., Salvo, L., Forest, S., Bienvenu, Y., et al.

(2005). 3D quantitative image analysis of open-cell nickel foams under tension

and compression loading using X-ray microtomography. Philos. Mag. 85,

2147–2175. doi: 10.1080/14786430412331331916

Doube, M., Klosowski, M. M., Arganda-Carreras, I., Cordelières, F. P., Dougherty,

R. P., Jackson, J. S., et al. (2010). BoneJ: free and extensible bone image analysis

in ImageJ. Bone 47, 1076–1079. doi: 10.1016/j.bone.2010.08.023

Dougherty, R., and Kunzelmann, K.-H. (2007). Computing local thickness of

3D structures with ImageJ. MAM 13, 1678–1679. doi: 10.1017/S14319276070

74430

Düster, A., Parvizian, J., Yang, Z., and Rank, E. (2008). The finite cell method for

three-dimensional problems of solid mechanics. Comput. Methods Appl. Mech.

Eng. 197, 3768–3782. doi: 10.1016/j.cma.2008.02.036

Düster, A., Rank, E., and Szabó, B. A. (2017). “The p-version of the finite

element and finite cell methods,” in Encyclopedia of Computational Mechanics

Second Edition, eds E. Stein, R. de Borst, and T. J. R. Hughes (Chichester;

Hoboken, NJ: John Wiley and Sons, Ltd.), 1–35. doi: 10.1002/9781119176817.

ecm2003g

Gibson, L. J., and Ashby, M. F. (1997). Cellular Solids. Cambridge: Cambridge

University Press.

Gnegel, S., Li, J., Mameka, N., Huber, N., and Düster, A. (2019). Numerical

investigation of polymer coated nanoporous gold. Materials 12:2178.

doi: 10.3390/ma12132178

Hildebrand, T., and Rüegsegger, P. (1997). A new method for the model-

independent assessment of thickness in three-dimensional images. J. Microsc.

185, 67–75. doi: 10.1046/j.1365-2818.1997.1340694.x

Hu, K. (2017). Micromechanical and three-dimensional microstructural

characterization of nanoporous gold-epoxy composites (dissertation). Hamburg:

Hamburg University of Technology, Germany.

Hu, K., Ziehmer, M., Wang, K., and Lilleodden, E. T. (2016). Nanoporous

gold: 3D structural analyses of representative volumes and their implications

on scaling relations of mechanical behaviour. Philos. Mag. 96, 3322–3335.

doi: 10.1080/14786435.2016.1222087

Huber, N. (2018). Connections between topology and macroscopic mechanical

properties of three-dimensional open-pore materials. Front. Mater. 5:5801.

doi: 10.3389/fmats.2018.00069

Huber, N., and Tsakmakis, C. (1999). Determination of constitutive properties

from spherical indentation data using neural networks. Part I: the case of pure

kinematic hardening in plasticity laws. J. Mech. Phys. Solids 47, 1569–1588.

doi: 10.1016/S0022-5096(98)00109-4

Huber, N., and Tsakmakis, C. (2001). A neural network tool for identifying

the material parameters of a finite deformation viscoplasticity model

with static recovery. Comput. Methods Appl. Mech. Eng. 191, 353–384.

doi: 10.1016/S0045-7825(01)00278-X

Huber, N., Viswanath, R. N., Mameka, N., Markmann, J., and Weißmüller,

J. (2014). Scaling laws of nanoporous metals under uniaxial

compression. Acta. Mater. 67, 252–265. doi: 10.1016/j.actamat.2013.

12.003

Jiao, J., and Huber, N. (2017a). Deformation mechanisms in nanoporous metals:

effect of ligament shape and disorder. Comput. Mater. Sci. 127, 194–203.

doi: 10.1016/j.commatsci.2016.10.035

Jiao, J., and Huber, N. (2017b). Effect of nodal mass on macroscopic

mechanical properties of nanoporous metals. Int. J. Mech. Sci. 134, 234–243.

doi: 10.1016/j.ijmecsci.2017.10.011

Jin, H.-J., Kurmanaeva, L., Schmauch, J., Rösner, H., Ivanisenko, Y., and

Weissmüller, J. (2009). Deforming nanoporous metal: role of lattice coherency.

Acta. Mater. 57, 2665–2672. doi: 10.1016/j.actamat.2009.02.017

Kinney, J. H., Marshall, G. W., Marshall, S. J., and Haupt, D. L. (2001). Three-

dimensional imaging of large compressive deformations in elastomeric foams.

J. Appl. Polym. Sci. 80, 1746–1755. doi: 10.1002/app.1269

Lee, T. C., Kashyap, R. L., and Chu, C. N. (1994). Building skeleton models via

3-D medial surface axis thinning algorithms. CVGIP Models Image Proc. 56,

462–478. doi: 10.1006/cgip.1994.1042

Liu, L.-Z., and Jin, H.-J. (2017). Scaling equation for the elastic modulus

of nanoporous gold with “fixed” network connectivity. Appl. Phys. Lett.

110:211902. doi: 10.1063/1.4984108

Liu, Y., Jin, D., Li, C., Janz, K. F., Burns, T. L., Torner, J. C., et al. (2014). A robust

algorithm for thickness computation at low resolution and its application to in

vivo trabecular bone CT imaging. IEEE Trans. Bio-med. Eng. 61, 2057–2069.

doi: 10.1109/TBME.2014.2313564

Maier, J., Black, M., Bonaretti, S., Bier, B., Eskofier, B., Choi, J.-H., et al. (2017).

Comparison of different approaches for measuring tibial cartilage thickness. J.

Integr. Bioinform. 14, 1–10. doi: 10.1515/jib-2017-0015

Mangipudi, K. R., Epler, E., and Volkert, C. A. (2016). Topology-dependent

scaling laws for the stiffness and strength of nanoporous gold. Acta Mater. 119,

115–122. doi: 10.1016/j.actamat.2016.08.012

McCue, I., Stuckner, J., Murayama, M., and Demkowicz, M. J. (2018). Gaining new

insights into nanoporous gold by mining and analysis of published images. Sci.

Rep. 8:6761. doi: 10.1038/s41598-018-25122-3

Miehe, C., and Koch, A. (2002). Computational micro-to-macro transitions of

discretized microstructures undergoing small strains. Arch. Appl. Mech. 72,

300–317. doi: 10.1007/s00419-002-0212-2

Nachtrab, S., Kapfer, S., Arns, C. H., Madadi, M., Mecke, K., and Schröder-Turk, G.

(2011). Morphology and linear-elastic moduli of random network solids. Adv.

Mater. 23:2633. doi: 10.1002/adma.201004094

Nieh, T., Kinney, J., Wadsworth, J., and Ladd, A. (1998). Morphology and elastic

properties of aluminum foams produced by a casting technique. Script. Mater.

38, 1487–1494. doi: 10.1016/S1359-6462(98)00090-6

Nieh, T. G., Higashi, K., and Wadsworth, J. (2000). Effect of cell morphology on

the compressive properties of open-cell aluminum foams. Mater. Sci. Eng. A

283, 105–110. doi: 10.1016/S0921-5093(00)00623-7

Ollion, J., Cochennec, J., Loll, F., Escudé, C., and Boudier, T. (2013). TANGO:

a generic tool for high-throughput 3D image analysis for studying nuclear

organization. Bioinformatics 29, 1840–1841. doi: 10.1093/bioinformatics/btt276

Frontiers in Materials | www.frontiersin.org 19 December 2019 | Volume 6 | Article 327

https://www.frontiersin.org/articles/10.3389/fmats.2019.00327/full#supplementary-material
https://doi.org/10.1080/21681163.2014.944355
https://doi.org/10.1002/jemt.20829
https://doi.org/10.1016/j.actamat.2017.02.040
https://doi.org/10.1016/S8756-3282(00)00371-9
https://doi.org/10.1098/rspa.2002.0991
https://doi.org/10.1080/14786430412331331916
https://doi.org/10.1016/j.bone.2010.08.023
https://doi.org/10.1017/S1431927607074430
https://doi.org/10.1016/j.cma.2008.02.036
https://doi.org/10.1002/9781119176817.ecm2003g
https://doi.org/10.3390/ma12132178
https://doi.org/10.1046/j.1365-2818.1997.1340694.x
https://doi.org/10.1080/14786435.2016.1222087
https://doi.org/10.3389/fmats.2018.00069
https://doi.org/10.1016/S0022-5096(98)00109-4
https://doi.org/10.1016/S0045-7825(01)00278-X
https://doi.org/10.1016/j.actamat.2013.12.003
https://doi.org/10.1016/j.commatsci.2016.10.035
https://doi.org/10.1016/j.ijmecsci.2017.10.011
https://doi.org/10.1016/j.actamat.2009.02.017
https://doi.org/10.1002/app.1269
https://doi.org/10.1006/cgip.1994.1042
https://doi.org/10.1063/1.4984108
https://doi.org/10.1109/TBME.2014.2313564
https://doi.org/10.1515/jib-2017-0015
https://doi.org/10.1016/j.actamat.2016.08.012
https://doi.org/10.1038/s41598-018-25122-3
https://doi.org/10.1007/s00419-002-0212-2
https://doi.org/10.1002/adma.201004094
https://doi.org/10.1016/S1359-6462(98)00090-6
https://doi.org/10.1016/S0921-5093(00)00623-7
https://doi.org/10.1093/bioinformatics/btt276
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Richert et al. Computation of Interconnected Structures

Parvizian, J., Düster, A., and Rank, E. (2007). Finite cell method. Comput. Mech.

41, 121–133. doi: 10.1007/s00466-007-0173-y

Pia, G., and Delogu, F. (2015). Nanoporous au: statistical analysis of

morphological features and evaluation of their influence on the elastic

deformation behavior by phenomenological modeling. Acta Mater. 85,

250–260. doi: 10.1016/j.actamat.2014.11.040

Richert, C., and Huber, N. (2018). Skeletonization, geometrical analysis, and finite

element modeling of nanoporous gold based on 3d tomography data. Metals

8:282. doi: 10.3390/met8040282

Roschning, B., and Huber, N. (2016). Scaling laws of nanoporous gold under

uniaxial compression: effects of structural disorder on the solid fraction, elastic

poisson’s ratio, young’s modulus and yield strength. J. Mech. Phys. Solids 92,

55–71. doi: 10.1016/j.jmps.2016.02.018

Rösner, H., Parida, S., Kramer, D., Volkert, C. A., and Weissmüller, J.

(2007). Reconstructing a nanoporous metal in three dimensions: an electron

tomography study of dealloyed gold leaf. Adv. Eng. Mater. 9, 535–541.

doi: 10.1002/adem.200700063

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,

et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat.

Methods 9, 676–682. doi: 10.1038/nmeth.2019

Soyarslan, C., Argeso, H., and Bargmann, S. (2018b). Skeletonization-

based beam finite element models for stochastic bicontinuous materials:

application to simulations of nanoporous gold. J. Mater. Res. 33, 3371–3382.

doi: 10.1557/jmr.2018.244

Soyarslan, C., Bargmann, S., Pradas, M., andWeissmüller, J. (2018a). 3D stochastic

bicontinuous microstructures: generation, topology and elasticity. Acta Mater.

149, 326–340. doi: 10.1016/j.actamat.2018.01.005

Soyarslan, C., Husser, E., and Bargmann, S. (2017). Effect of surface elasticity on

the elastic response of nanoporous gold. J. Nanomech. Micromech. 7:4017013.

doi: 10.1061/(ASCE)NM.2153-5477.0000126

Stuckner, J., Frei, K., McCue, I., Demkowicz, M. J., and Murayama, M. (2017).

AQUAMI: an open source python package and GUI for theautomatic

quantitative analysis of morphologically complex multiphase materials.

Comput. Mater. Sci. 139, 320–329. doi: 10.1016/j.commatsci.2017.

08.012

Stukowski, A. (2010). Visualization and analysis of atomistic simulation data with

OVITO - the open visualization tool.Model. Simul. Mater. Sci. Eng. 18:015012.

doi: 10.1088/0965-0393/18/1/015012

Sun, X.-Y., Xu, G.-K., Li, X., Feng, X.-Q., and Gao, H. (2013). Mechanical

properties and scaling laws of nanoporous gold. J. Appl. Phys. 113:023505.

doi: 10.1063/1.4774246

Tyulyukovskiy, E., and Huber, N. (2006). Identification of viscoplastic material

parameters from spherical indentation data: part I. Neural Netw. J. Mater. Res.

21, 664–676. doi: 10.1557/jmr.2006.0076

Witkowska, A., Alibhai, A., Hughes, C., Price, J., Klisch, K., Sturrock, C. J.,

et al. (2014). Computed tomography analysis of guinea pig bone: architecture,

bone thickness and dimensions throughout development. PeerJ 2:e615.

doi: 10.7717/peerj.615

Ziehmer, M., Hu, K., Wang, K., and Lilleodden, E. T. (2016). A principle

curvatures analysis of the isothermal evolution of nanoporous gold:

quantifying the characteristic length-scales. Acta Mater. 120, 24–31.

doi: 10.1016/j.actamat.2016.08.028

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2019 Richert, Odermatt and Huber. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Materials | www.frontiersin.org 20 December 2019 | Volume 6 | Article 327

https://doi.org/10.1007/s00466-007-0173-y
https://doi.org/10.1016/j.actamat.2014.11.040
https://doi.org/10.3390/met8040282
https://doi.org/10.1016/j.jmps.2016.02.018
https://doi.org/10.1002/adem.200700063
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1557/jmr.2018.244
https://doi.org/10.1016/j.actamat.2018.01.005
https://doi.org/10.1061/(ASCE)NM.2153-5477.0000126
https://doi.org/10.1016/j.commatsci.2017.08.012
https://doi.org/10.1088/0965-0393/18/1/015012
https://doi.org/10.1063/1.4774246
https://doi.org/10.1557/jmr.2006.0076
https://doi.org/10.7717/peerj.615
https://doi.org/10.1016/j.actamat.2016.08.028
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles

	Computation of Thickness and Mechanical Properties of Interconnected Structures: Accuracy, Deviations, and Approaches for Correction
	Introduction
	Methodology
	Reference FEM Models and Their Properties
	Reference Geometry of the Unit Cell
	Reference FEM Solid and Beam Models
	Boundary Conditions
	Reference Macroscopic Mechanical Properties

	FEM Skeleton Beam Models
	RVE Size and Voxelization
	Skeletonization and Beam Discretization
	Thickness Analysis
	Effect on Mechanical Properties

	Methods for Thickness correction
	Smallest Ellipse Approach
	Artificial Neural Network Correction Approach

	Application To Experimental Tomography Data
	Conclusions and Outlook
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


