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Environmental pollution and energy shortage make the development of clean energy
more and more urgent. As a kind of clean renewable energy, hydrogen has attracted
more attention recently. WO3-based materials have emerged as one of the most
promising candidates for electrocatalytic hydrogen evolution reaction (HER) due to
their attractive electrocatalytic activity, low cost, as well as electrochemical durability.
In this minireview, we systematically provide an overview of WO3-based materials
applied for HER, including pure WO3, doped WO3, and WO3-based composite
materials. Furthermore, the strategies to enhance their electrocatalytic performance
are summarized and discussed, such as morphological engineering, doping, as well
as compositing with other materials. Finally, the limitation and challenges of WO3-
based materials for HER and their prospects for future research are proposed. We
believe that this minireview will be favorable for scientists to seek more promising
HER electrocatalysts.

Keywords: tungsten oxide, doping, composites, electrocatalyst, hydrogen evolution reaction

INTRODUCTION

Nowadays, the discovery and use of fossil fuels (such as coal and petroleum) have made great
contributions to the development of human society (Wang Y. et al., 2018; Hao et al., 2019; Liu
G. L. et al., 2020; Ma et al., 2020; Yu et al., 2020). However, the fast development of human
society brought excessive emission of carbon dioxides and overuse of non-renewable resources,
resulting in many serious problems, such as global warming, climate change, sharp decline in energy
reserves, and so on (Liu G. et al., 2019; Zhao et al., 2019; Wang W. et al., 2020; Zou et al., 2020).
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Recently, a series of renewable energy resources such as wind
energy, solar energy, tidal energy, and hydropower have been
intensively studied and emerged as alternatives for fossil fuels
(Peng et al., 2017; Liu G. et al., 2018). Meanwhile, electrochemical
energy store (Guo et al., 2019; Wang F. et al., 2018; Wang et al.,
2019e; Wang R. et al., 2020; Liu Y. et al., 2019; Yuan et al.,
2019; Li M. et al., 2020; Song et al., 2020; Sui et al., 2020),
electrocatalysis (Chen et al., 2019a; Li Y. et al., 2019; Wang et al.,
2019c, Wang et al., 2019d; Xiao et al., 2019), and other new
energy technologies have also developed rapidly in recent years
(Ma et al., 2013, 2017; Zhang et al., 2014, 2018; Cheng et al.,
2019; Li Y. et al., 2019; Zheng et al., 2020). It is worth noting
that hydrogen fuel is of great concern because of its high energy
density and abundant natural resources. Moreover, the product
of hydrogen combustion is water, which is pollution-free and
can effectively reduce the emission of greenhouse gases and toxic
gases (Yu et al., 2019).

At present, the production of hydrogen by electrochemical
water splitting has caught extensive attention because of its
simple and flexible operation (Zou and Zhang, 2015). However,
hydrogen production is hindered by the high overpotential of
the hydrogen evolution reaction (HER) and the low hydrogen
production rate (Lei et al., 2020). Therefore, in order to overcome
these defects and promote the production of H2, it is urgent to
introduce efficient electrocatalysts. Platinum is acknowledgedly
regarded as one of the best electrocatalysts for HER (Ma et al.,
2019); nevertheless, further application is limited by its high
price. Therefore, it is necessary to explore proper non-noble
metals for electrocatalytic hydrogen evolution.

As a transition metal oxide, tungsten oxide (WO3) is expected
to be a hopeful candidate to substitute Pt as an electrocatalyst
for efficient HER due to its outstanding redox capability, low
cost, and high stability (Chandrasekaran et al., 2019; Wang
et al., 2019b). Hence, more and more attention has been
paid to investigating WO3-based materials for electrocatalytic
HER. For example, Chen Y. et al. (2018) reported an article
about crumpled graphene/tungsten disulfide/tungsten trioxide
with high electrocatalytic HER performance. And recently,
Tian et al. (2019) reported unique highly dispersed Pt
atom clusters on WO3@CFC (carbon fiber cloth) as superior
electrocatalysts for HER. Furthermore, Huang et al. (2019)
gave a comprehensive review on recent progress in WO3-based
materials as photoanodes for water oxidation. However, to the
best of our knowledge, a critical review that exclusively puts a
spotlight on WO3-based materials for electrocatalytic HER has
not been reported.

In this minireview, we will give a comprehensive description
of WO3-based materials, mainly including stoichiometric WO3,
non-stoichiometric WO3−x, doped WO3, and WO3-based
composite materials with their application in the field of
electrocatalytic HER in recent years. Their micro/nanostructures
and electrocatalytic performances for HER are systematically
summarized, as shown in Supplementary Table S1. Furthermore,
we also present some rational proposals to facilitate
breakthroughs in the future. We hope that this minireview
could draw more attention to WO3-based electrocatalysts and
boost their practical applications.

NANOSTRUCTURED TUNGSTEN OXIDE

Stoichiometric WO3
In recent years, the electrocatalytic performances of WO3 have
been greatly enhanced by utilizing nano/micrometer-sized WO3,
mainly due to their high surface area to volume ratio. The
nanostructured stoichiometric WO3 with different morphologies
as electrocatalysts for HER includes nanorods (Ham et al., 2010),
nanowires (NWs) (Phuruangrat et al., 2010), nanoplates (Hu
et al., 2015; Nayak et al., 2017), nanoparticles (Ganesan and
Gedanken, 2008), and so on.

For example, Ham et al. (2010) developed a facile
hydrothermal method to prepare monoclinic WO3 (m-WO3)
nanoplates and nanorods (Supplementary Figures S1A,B).
The cyclic voltammetry results show the decent stability of
m-WO3 nanoplates and nanorods for HER (Supplementary
Figures S1C,D). When they are tested at −0.2 V in 1 M
H2SO4, m-WO3 nanoplates and nanorods shows cathodic
current densities of 17.58 and 23.86 mA cm−2, respectively
(Supplementary Figure S1E), and the Tafel slopes of m-WO3
nanoplates (122 mV dec−1) or nanorods (113 mV dec−1) are
lower than those of commercial bulk m-WO3 (135 mV dec−1),
indicating superior performances for HER (Supplementary
Figure S1F). Phuruangrat et al. (2010) employed a novel
microwave-assisted hydrothermal (MH) method to fabricate
1D hexagonal WO3 NWs (hex-WO3). The as-synthesized
hex-WO3 samples display different morphology and sizes when
the MH time was adjusted from 3 to 12 h (Supplementary
Figures S2A–D). The specific activity for HER of hex-WO3 NWs
fabricated by MH at −0.1 V is far higher than that of hex-WO3
NWs fabricated by conventional hydrothermal method (CH) and
commercial WO3 (Supplementary Figure S2E). Furthermore,
the Tafel slope and the exchange current density of hex-WO3
NWs by MH are 116 mV dec−1 and 6.61 mA cm−2, respectively,
elucidating better electrocatalytic kinetics of hex-WO3 than
those of commercial WO3 (157 mV dec−1 and 0.27 mA cm−2)
(Supplementary Figure S2F). The performance enhancement
of hex-WO3 NW samples can be attributed to their high aspect
ratio and crystallinity.

Non-stoichiometric WOx<3
The performances of tungsten oxide can also be adjusted and
controlled by defects in its architecture (Royer et al., 2014; Zheng
et al., 2017). Several oxygen-deficient WOx<3 nanomaterials have
been reported to promote the electrocatalytic HER efficiencies,
such as mesoporous WO2.83 (Cheng et al., 2018), WO3−x/Ni
foam (NF) (Yi et al., 2018), and monoclinic WO3−x (Sharma
et al., 2019). For instance, Zheng et al. (2017) synthesized two-
dimensional WO3 nanosheets with rich O vacancies via a liquid
exfoliation method. The structure of the O vacancies model was
built based on WO3 (010) (

√
2 ×
√

2) R45◦ slab with the surface
of all terminal oxygen atoms as well as one bridging oxygen
atom removed (Figure 1A). At 10 mA cm−2, the overpotential
of as-synthesized sample is 38 mV and the Tafel slope is also
38 mV dec−1, which is close to the optimal performances of
benchmarking electrochemical catalyst Pt/C (Figure 1B). Unique
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O vacancies were verified by density-functional-theory (DFT)
calculation on WO3 to bring in gap states around the Fermi level,
which obviously increased hydrogen absorption and reduced H2
adsorption free energy (1GH∗) (Figure 1C).

Hetero-atom Doped WO3
Besides the method of introducing O vacancies in WO3, hetero-
atom doping with a metallic element is also an efficient way to
promote electron transfer and shorten proton diffusion paths.

In 2014, Xie et al. (2014) reported nanostructured Ta-
doped WO3 as an efficient electrocatalyst for HER. The as-
prepared Ta-doped WO3 NWs show excellent performance.
Later, metallic element doping in WO3 for electrocatalytic HER
was further developed, and the mechanism was demonstrated by
Chandrasekaran et al. (2019). They prepared Mn-doped WO3
and V-doped WO3 via the hydrothermal route, and the particle
sizes are 50–70 and 20–30 nm, respectively (Figure 1D). The
electrochemical results indicate that the V-doped WO3 (3 wt.%
denoted as VW-S2) exhibits the optimal performance for HER.
The overpotential of VW-S2 at 10 mA cm−2 is 38 mV versus
the reversible hydrogen electrode (RHE) (Figure 1E). Moreover,
the Tafel slope is 41 mV per decade, which is lower than that of
Mn-doped WO3 (MW-S2) (68 mV dec−1) and undoped WO3
(121 mV dec−1), close to the benchmarking Pt/C (32 mV dec−1)
(Figure 1G). Additionally, the value of free energy 1GH∗ under
the circumstances shown in Figure 1F is ideal (0.08 eV at
Ob sites), which gains significant reduction (Figure 1H). DFT
calculation indicates that band gap reduction in WO3 is on
account of V doping, resulting in great conductivity, and the high
HER activity could be ascribed to the V element bonding with
terminal oxygen in the lattice of WO3.

WO3-BASED BINARY COMPOSITES

To further enhance electrocatalytic properties for HER, WO3 has
been composited with other materials, such as carbon (Wondimu
et al., 2018a,b), metals (Li W. et al., 2019; Tian et al., 2019), and
metal-based compounds (Yang et al., 2016; Shang et al., 2017).

WO3/Carbon Composites
Carbon materials are often utilized as conductive materials
due to their superior electronic conductivity and outstanding
chemical durability (Wu et al., 2019). Hence, compositing WO3
with carbon materials is an efficient way to improve the HER
performances (Wondimu et al., 2018a,b; Hu et al., 2019). For
example, Wondimu et al. (2018a) developed novel electrocatalyst
tungsten oxide NWs with rich O vacancies supported by
nitrogen doped-reduced graphene oxide (N-rGO) (denoted as
WOxNWs/N-rGO), which exhibits better HER performance
than Fe-WOxP/rGO approaching to Pt/C. The overpotential as
well as the Tafel slope are only 40 mV at 10 mA cm−2 and
38.2 mV dec−1, respectively, which are close to the state-of-the-
art Pt/C. The superior performance could be mainly put down to
O vacancies and the network between the WOxNWs and N-rGO.

Not only could the rGO assist the WO3-based materials
to be more excellent and efficient, but also other carbon

materials could increase the conductivity and further enhance
the electrocatalytic properties for HER, such as WO3/C (Zheng
and Mathe, 2011), WO3/Carbon nanotube (CNT) (Chekin et al.,
2013), and WO3−x@nitrogen-doped carbon (NC) (Chen J. et al.,
2018). More details on the electrocatalytic performances could be
found in Supplementary Table S1.

WO3/Metal-Based Material Composites
Besides carbon materials, construction of WO3 with metal and
metal-based materials is regarded as another effective way to
enhance the charge transfer and promote the synergistic effect
between them (Wang et al., 2019a,b). Up to now, many metal-
based materials have been composited with WO3, such as Pt (Li
W. et al., 2019; Tian et al., 2019), Ag (Ma et al., 2019), WX2
(X = S) (Yang et al., 2016; Shang et al., 2017), Se (Fominski et al.,
2016), and Al2O3 (Zou et al., 2019). For instance, Yang et al.
(2016) in situ synthesized WO3·2H2O/WS2 hybrid electrocatalyst
for HER with superior electrocatalytic properties through a
facile anodizing treatment. Furthermore, to minimize the use
of precious metals, Tian et al. (2019) fabricated an effective
low-Pt electrocatalyst with high oxygen vacancies in WO3@CFC
(carbon fiber cloth) denoted as Pt/def-WO3@CFC. Firstly, the
WO3 nanoplates were grown on carbon fiber cloth through a
hydrothermal method, followed by heat treatment under the
atmosphere of 5 vol.% H2 and 95 vol.% Ar to produce O
vacancies on WO3. And the Pt/def-WO3@CFC was obtained
after Pt nanoclusters dispersed on the defect of WO3 via thermal
reduction (Figure 2A). The lattice fringe spacing are 0.374 and
0.365 nm, corresponding to the (002) and (020) planes of WO3,
respectively (Figure 2B). And the spherical aberration-corrected
high-angle annular dark-field scanning transmission electron
microscopy (HAADF-STEM) image shows that the number of O
vacancies is relatively low (Figure 2C). But after the loading of
Pt, an obvious decrease in intensity is seen with a reduction in the
electron spin resonance (ESR) peak, indicating the substitution
of O vacancies by Pt clusters. The HER performance shows a
Tafel slope of 61 mV dec−1 and an overpotential of 42 mV at
10 mA cm−2 in 0.5 M H2SO4 (Figure 2D), which are comparable
to those of the state-of-the-art commercial Pt/C catalyst (η10 = 34
mV, Tafel slope = 46 mV dec−1). And it is worthy to mention that
the activity of low-Pt catalyst Pt/def-WO3@CFC is 3.3 times that
of commercial Pt/C, which could be attributed to the synergistic
effect between the Pt and defective WO3 (Figure 2D). Pt atoms
are tightly tied in the position of O vacancies, hindering their
aggregation or growing during the period of hydrogen evolution,
which definitely reveals the significant functions of defect-rich
nanostructures (Chen et al., 2019b; Zhu et al., 2019).

Others
Besides the above mentioned, there are still some WO3-based
composite electrocatalysts with enhanced HER performance. The
electrocatalyst SiO2/WO3−x nanofacets calcined in situ at 500◦C
for 5 h (denote as 500-5) by Ketpang et al. (2013) exhibits an
overpotential of 170 mV owing to the interaction between them.
And nano-zeolite with 3 wt.% WO3 prepared via the work of
Anis and Hashaikeh (2018) is also a promising candidate for
HER with a lower Tafel slope of 31.9 mV dec−1 due to the high
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FIGURE 1 | (A) Crystal structure of WO3 (010) (
√

2 ×
√

2) R45◦ slab with all terminal O atoms as well as one bridging O atom removed (denoted as W24O67).
(B) Polarization curves measured in H2 saturated 0.5 M H2SO4 solution for WO3-r NSs. (C) Free energy illustration for H2 adsorption at the W site on the WO3 (010)
slab with different O vacancies. Reprinted with permission from Zheng et al. (2017). Copyright 2017, American Chemical Society. (D) Transmission electron
microscope (TEM) image of VW-S2 sample. (E) Polarization curves of different samples. (F) Top (upper) and side (lower) view of Mn/V-doped WO3 (001) surfaces
with a dopant in the surface and subsurface layer, including typical adsorption sites on systems (gray—W, blue—Mn/V, and red—O atoms). (G) Tafel slope of
VW-S2. (H) Free energy illustration of H adsorption at a series of sites on V-doped WO3 surfaces. Reprinted with permission from Chandrasekaran et al. (2019).
Copyright 2019, The Royal Society of Chemistry.

surface areas and decent durability brought by zeolites. However,
their specific mechanisms need deep insight on the assistance of
DFT calculation.

WO3-BASED TERNARY COMPOSITES

Recently, WO3-based ternary composite electrocatalysts
for HER receive more and more attention due to the
great synergy effect between the components (Choudhary
et al., 2017; Chen Y. et al., 2018). For instance, Lv et al.
(2018a) synthesized WO3/C@CoO on NF observed as
octopus tentacles via facile hydrothermal treatment as well
as following thermal treatment. As shown in Figure 2E, a CoO
NWs precursor grows on NF after hydrothermal treatment.
The SEM and TEM images (Figures 2F–H) showed the

morphology of the WO3/C@CoO nanostructure. When it is
measured as an electrocatalyst for HER, the overpotential at
10 mA cm−2 is tested as 55 mV (Figure 2I). The Tafel slope
is 115 mV−dec−1 (Figure 2J), which is smaller than that of
argon-treated WO3/C@CoO/NF (122 mV dec−1) and CoO
NWs (132 mV dec−1). And the outstanding HER stability is
still maintained after 2,000 cycles (Figure 2K). The excellent
electrocatalytic performance is mainly due to the distinctive
structure and robust synergistic effect among WO3, CoO,
and NF. Another ternary CoSe2/WSe2/WO3 hybrid NWs on
carbon cloth (CC) were synthesized by Lv et al. (2018b). The
high performance indicates the significant functions of unique
nanostructure and strong synergistic effects, which prompts
Ar/H2-treated WO3/C@CoO/NF and CoSe2/WSe2/WO3
NWs/CC to become remarkable electrocatalysts for HER
(Du et al., 2018).
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FIGURE 2 | (A) Scheme diagram for the synthetic process of Pt/def-WO3@CFC. (B) High-resolution transmission electron microscope (HRTEM) of WO3 NPs.
(C) Spherical aberration-corrected image of Pt/def-WO3@CFC at atomic scale. (D) Linear sweep voltammetry (LSV) curves in 0.5 M H2SO4 at a scan rate of 1 mV/s
and the schematic model for Pt/WO3 nanostructure with O vacancies. Reprinted with permission from Tian et al. (2019). Copyright 2019, The Royal Society of
Chemistry. (E) Scheme diagram of the formation of WO3/C@CoO/NF. (F) Scanning electron microscope (SEM), (G) TEM, and (H) HRTEM images of Ar/H2-treated
WO3/C@CoO/NF. (I) The LSV curves and (J) the Tafel slopes of different samples. (K) The LSV curves of Ar/H2-treated WO3/C@CoO/NF before and after 2,000
cycles. Reprinted with permission from Lv et al. (2018a). Copyright 2018, Elsevier.

CONCLUSION AND OUTLOOKS

In summary, we briefly review the recent developments of
WO3-based materials for electrocatalytic HER. The essential
synthetic methods and processes, various nanostructures,
and robust performances are generally discussed. From
these studies, it is clear that the strategies mentioned
above are useful and meaningful for optimizing the
electrocatalytic performance of WO3. However, we should

recognize that the practical application of WO3-based
electrocatalysts for HER is still in early stage and is facing
many challenges. First, the majority of works are focusing
on the nanostructure morphology and electrocatalytic
performances, but the understanding of mechanism is not
seriously taken. Second, the latest modern characterization
techniques, such as in situ X-ray technique, in situ electron
microscopy, and in situ scanning probe technology, should
be well used to explore the working mechanisms. Third,

Frontiers in Materials | www.frontiersin.org 5 May 2020 | Volume 7 | Article 105

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/
https://www.frontiersin.org/journals/materials#articles


fmats-07-00105 May 14, 2020 Time: 19:59 # 6

Li et al. WO3-Based Electrocatalysts for HER

DFT calculation is also an efficient way for us to gain insight
into the nanostructure–composition–performance relationships,
which may be important in the development of catalysts in
the future. In addition, among these recent advances, the
electrocatalysts introduced O vacancies that almost exhibit
outstanding performances close to those of the benchmarking
Pt/C. Decent electrical conductivity, appropriate Gibbs free
energy 1GH∗, and large active surface areas will possibly render
the introduction of O vacancies as a promising strategy and
the orientation for better HER process. Last, the electrocatalytic
stability should also be seriously considered. We hope this
minireview will be helpful and will inspire more innovative
ideas for WO3-based or even transition metal oxide materials as
electrocatalysts for HER.
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