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Spiders are able to produce different types of silk with different mechanical and biological

properties. Piriform silk is produced to secure spiders and their webs to surfaces by using

a nano-fibril network embedded in a cement-like matrix. Despite their fundamental role,

the mechanical properties and function of these anchorages are still poorly understood

due to the practical difficulties in nano-fibril sample preparation, the complexity of the

system, and the high variation of attachment disc structures. Here we estimated the

mechanical properties of this nano-fibril silk and those of the whole silk membrane in

the large wandering spider Cupiennius salei through a combination of nanoindentation

and nanotensile techniques and with the support of a simple analytical model. The

results highlight the mechanical properties of the piriform silk, facilitating the modeling

of silk composite mechanics. This could inspire the design of more efficient bio-inspired

adhesives and fabrics.

Keywords: spider silk, piriform silk, attachment disc, mechanical properties, nanoindentation

INTRODUCTION

Silk is produced by spiders to fulfill various functions such as for hunting, for locomotion,
and to build robust cocoons and webs (Foelix, 2011). In 400 million years of evolution, the
optimization of the properties of the spider silk has been achieved through the diversification of this
protein-based material (Brunetta and Craig, 2010). Each of the different silk types is equipped with
a unique combination of physical, chemical, and biological properties (Brunetta and Craig, 2010).
In particular, the outstandingmechanical and biological properties of the dragline (Agnarsson et al.,
2010; Lepore et al., 2017) (mainly produced by the ampullate glands) have been intensely studied in
the last two decades, inspiring and developing novel technologies (Eisoldt et al., 2011; Wolff et al.,
2017a; Dellaquila et al., 2019).

Although the dragline silk is in the main focus of the applied silk science, it is only one
representative of the silk family among the huge variety of silk types that exist. If the number
of species of spiders on Earth (more than 48,000, Foelix, 2011) and the fact that each one of
them is able to spin from two to seven types of silk (Vollrath and Knight, 2001) are considered,
there might be more than 150,000 different types of spider silk, each one with different properties
tailored for a specific need (Basu, 2015). Among them, the silk produced by the piriform gland
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has been one of the least studied, although it is one of the most
common types of spider silk with a fundamental function: the
attachment of silk threads to substrates.

The first studies that reported a histological analysis of the
piriform glands were conducted by Kovoor and Zylberberg
(1980) and Kovoor and Zylberberg (1982). They informed about
the shapes and the dimensions of these glands and highlighted
their position close to the spinnerets that also host the duct of the
major ampullate gland. In comparison to the latter, the piriform
glands are much smaller and numerous.

Blasingame et al. (2009) associated the protein of the piriform
gland to the silk family due to the revealed conservation of the C-
terminal region. The predicted aminoacidic composition of the
piriform silk (the fibrous component) revealed a high amount of
alanine in comparison to the other types of silk produced by the
same spider (Blasingame et al., 2009; Geurts et al., 2010). Alanine
can be associated with crystal-forming polyalanine chains, which
contribute to a high Young’s modulus and strength of the silk
material (Yarger et al., 2018). Moreover, a recent study (Chaw
et al., 2017) predicted the molecular weight of the PySp1 (the
main protein of the piriform fibers) to be 578 kDa, which is larger
than that of the dragline (between 200 and 300 kDa Vollrath and
Knight, 2001). The molecular weight has been demonstrated to
be directly correlated with the strength of fibers both in native
and artificial silks (Xia et al., 2010; Bowen et al., 2018).

FIGURE 1 | (A) Schematic of a spider that spins its dragline, anchored to the substrate by means of an attachment disc. (B) The initial part of the dragline is

composed of more threads than the (C) distal part of the dragline. (D) Scanning electron microscopy (SEM) picture of the median part of the attachment disc, (E) the

lateral part, and (F) an enlargement of the lateral part, which shows fibrils attached to the surface.

Piriform silk is used by spiders to create robust and efficient
anchorages and adhesive systems that have been optimized
during the evolution of spiders (Wolff et al., 2019). These affix
the dragline to a surface, securing the arachnid in the event of
a fall (Foelix, 2011; Asakura and Miller, 2014) (Figures 1A–C).
Moreover, they are used to anchor the supporting threads of a
cobweb to a surface or to join ampullate silk threads inside a
web (Foelix, 2011; Asakura and Miller, 2014; Basu, 2015; Greco
et al., 2019). The attachment discs are spun very fast and create a
durable, efficient adhesive anchorage (Wolff and Gorb, 2016).

The adhesive membrane (“attachment disc”) is composed
of a multi-fibril system embedded in a cement-like matrix
(Figures 1D–F) that creates a structure able to bear high loads
(Blasingame et al., 2009; Cranford et al., 2012). Spiders can
adjust the morphology of the attachment disc and thus its overall
mechanical behavior. For example, the attachment discs used to
secure the supporting lines of cobwebs are different from the ones
used in pre-stressed trapping lines (Sahni et al., 2012). Moreover,
it has been demonstrated that spiders spin larger attachment discs
if their weight is experimentally increased (Wolff et al., 2018).

The sectioning of attachment discs revealed that the relative
proportion of the cement-like glue and the fiber content of the
attachment discs differs between spiders of different ecology and
evolutionary history; and that the piriform fibers and the dragline
are not in contact with the substrate (Denny, 1976; Wirth
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et al., 2019). Accordingly, the fibers are not directly involved
in the attachment disc’s adhesion, yet they may modulate the
mechanical properties of the surrounding glue layer. Whereas
the ultrastructure of the piriform fibers is rather constant
across species, the ultrastructure of the glue is very different
(Wirth et al., 2019).

In order to understand the mechanical behavior of attachment
discs under load, several approaches have been used. The
multiple peeling theory (Pugno, 2011) has been used as
a key model in order to explain the relationship between
structure, material properties, and adhesive performance of
the attachment discs and anchorages by means of multiple
contacts points (Pugno et al., 2013; Brely et al., 2015; Liprandi
et al., 2019; Greco et al., 2020). From the experimental
point of view, the load to detach these membranes from
surfaces has been measured by varying the surface’s conditions,
demonstrating a strong dependence on the type of used substrate
(Grawe et al., 2014).

All these aspects, together with the structural hierarchical
analysis that has been done on the piriform attachment
discs (Wolff et al., 2015; Wirth et al., 2019), could
be used for the development and the design of bio-
inspired adhesives with superior mechanical performances
(Jain et al., 2014).

However, several knowledge gaps have to be filled in
the modeling and characterization of the piriform silk and
the attachment discs before achieving possible bio-inspired
solutions. Among these, there is the need for an understanding
of the effects of attachment disc geometry on its load-bearing
capabilities (Wolff et al., 2017b). Moreover, the understanding
of the mechanical properties of the piriform silk is crucial in
order to model the mechanical behavior of attachment discs.
The first tensile tests of piriform silk have been performed on
isolated piriform silk fibers (including their glue layer) of a
hunting spider (Drassodex sp.) that were carefully peeled off
an anti-adhesive polymer substrate (Wolff et al., 2017c). In this
work, an extensibility of 0.5 mm/mm, a strength of 511 MPa,
a toughness modulus of 141 MPa, and a Young’s modulus of
5.6 GPa were measured. However, in attachment discs, single
piriform fibers are not used in isolation, but it is their assembly
into a multi-fiber compound material that makes up its full-scale
properties. It is therefore indispensable to generate a model to
understand the mechanical properties of attachment discs on
multiple hierarchical levels.

In this work, we empirically determined the mechanical
properties of the single piriform silk fiber and of the whole
attachment disc of the species Cupiennius salei through
nanoindentation and nanotensile techniques. We developed a
simple model in order to explain the overall mechanical behavior
of the membrane under traction composed of piriform silk and
the dragline. With this work, we aim to create a comprehensive
understanding of the mechanical properties of piriform silk and
its spinning product (the attachment disc), with the potential
to inspire the design of novel bio-inspired adhesives and fabrics
with superior properties.

ANALYTICAL MODEL

Evaluation of the Spacing Among Fibrils
Determining the mechanical properties of piriform silk from
attachment disc membranes creates difficulties due to the
chaotic distribution of the fibers in the membrane-like silk film
(Figure 2). Based on the observation that piriform fibers form
a layered network in the attachment disc (Figures 1, 2), we
model the silk membrane as a lattice of a glue–fiber material
(Figure 3).

As modeling the complexity of natural attachment discs
is analytically unfeasible, for the purpose to calculate the
tensile properties of piriform silk, we simplify the structure as
a parallelepiped lattice. The spacing between the fibers (i.e.,
the porosity of the membrane) was estimated by determining
the mean mass and dimension of the membranes through
precise measurements.

Based on the observation of Wirth et al. (2019) that in C.
salei the glue fraction of piriform silk is much smaller (i.e., mean
thickness of ∼20 nm) than the fiber fraction (thickness of ∼0.5–
1.5µm), we neglected the presence of the glue (third phase) in
the calculation of the volume. We assume that the density of
the piriform silk is similar to that of major ampullate silk (ρp ∼

ρsilk ∼ 1.3
g

cm3 = ρ). The nominal volume of the membrane Vn

(= w · l · t) multiplied by the mean density of the membrane (ρm)
is equal to the massm of the membrane:

ρmVn = m

from which we can obtain the mean density of the membrane.
The membrane mass is also given by the real density of the
silk multiplied by the real volume of the silk fibrils in the
membrane. By following the schematic in Figure 3, we can
thus write:

ρmVn = ρV ⇒
ρm

ρ
=

Adl+
2Apwtl

s2

wtl
⇒

⇒ s =

√

√

√

√

√

2Apwtl
ρm

ρ
wtl− Adl

(1)

where Ad is the cross-sectional area of the dragline fiber
of length l, and Ap is the cross-sectional area of the
piriform fibril network with fibrils of length l and spacing s
(Figure 3).

Equation (1) can then be used to compute the mean spacing
between the fibers in the piriform membrane.

Evaluation of the Stress in the Fibrils in
Tensile Tests
In order to evaluate the mechanical properties of the whole
membranes through tensile tests, the engineering stress needs
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FIGURE 2 | Scanning electron microscopy (SEM) images of an attachment disc of Cupiennius salei. (A) The structure is composed of a dragline thread that is

suspended in a network of glue-coated fibrils. (B–F) Different details of the piriform silk network in the attachment disc.

FIGURE 3 | (A) Scanning electron microscopy (SEM) picture of an attachment disc. (B–D) Schematic model in the three directions used to compute the mechanical

properties of the membrane and composing fibrils.
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to be determined. By referring to Figure 3, we can estimate
it through the measurement of the applied load and section
involved. In this approach, we homogenize the layered structure
of piriform silk integrating across its glue and fiber fraction.

Along the y direction (Figure 3B), we have:

σy =
Fy

Ay
=

Fy

Ad +
Apwt

s2

(2)

On the other hand, along the x direction (Figure 3D), we have:

σx =
Fx

Ax
=

Fx
Aptl

s2

(3)

It is thus possible to compute the engineering stress on
the anisotropic membrane according to Equations (2)
and (3).

Interestingly, if we consider the force applied to themembrane
in one of the two directions, we find in the y direction that:

Fy = Fd + Fp ⇒ σy =
σdAd

Ad +
twAp

s2

+

σpApwt

s2

Ad +
twAp

s2

(4)

whereas in the x direction that:

Fx = Fp ⇒ σx = σp (5)

This means that according with our scheme the stress computed
along the x direction gives exactly the stress on the piriform silk
(since the perpendicular dragline silk does not support any load).

Equation (4) represents also a relation between the strength of
the dragline (σd), the strength of the piriform silk (σp), and the
strength of the whole membrane (in this case σy). Thus, knowing
the strength of the piriform silk measured along x via Equation
(5), there is the possibility to check the strength value of the
dragline measuring the strength along y with Equation (4) as
a control.

Evaluation of the Young’s Modulus of the
Fibrils in Tensile Tests
In order to estimate the effective Young’s modulus of the whole
membrane under traction, the topology expressed in Figure 3 can
be applied again.

The membrane is composed of piriform fibrils with the
Young’s modulus Ep.

The relation between the Young’s modulus (E) and the spring
constant (k) of a fiber under tensile longitudinal load is in general
given by:

k =
EA

L
(6)

where A is the section of the fiber and L its length.

During loading parallel to the orientation of the dragline
thread (y direction), we have n fibrils in series, N and N′ in
parallel (x and z direction) that can be obtained by:

n =
l

lp

N =
t

s

N′ =
w

s

where lp is the mean length of the fibril.
Thus, the stiffness of the piriform fibrils along y is predicted

to be:

keql′ =
kp

n
NN′

where kp = EpAp/lp is the spring constant of the piriform
fibril. Moreover, in the y direction, we also have to consider the
contribution of the dragline, which is longitudinally attached to
the membrane. The total membrane stiffness is thus predicted
to be:

keqy =
kp

n
NN′ +

EdAd

ld

where Ed is the Young’s modulus of the dragline and ld its length.
We then can estimate the Young’s modulus of the whole

membrane through Equation (6) and by assuming l≈ ld as:

Eeqy =
π

4

(

Epd
2
p

s2
+

Edd
2
d

tw

)

(7)

where dp is the diameter of the piriform fibers, and dd is the
diameter of the dragline.

On the other hand, if we consider the membrane pulled along
the x direction, we have n′ fibrils in series along the x direction,N
and N′′ in parallel (y and z direction), namely:

n′ =
w

lp

N′′ =
l

s

The equivalent membrane stiffness along the x direction is thus:

keqx =
kp

n′
NN′′

and from this, we can estimate the Young’s modulus of the whole
membrane along the x direction by using Equation (6), i.e.,:

Eeqx = Ep
πd2p

s24
(8)

It is possible to notice that Equations (7) and (8) differ only for
the contribution of the dragline, which increases the equivalent
Young’s modulus of the membrane along y with respect to x.
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Finally, Equations (7) and (8) are used to estimate the
Young’s modulus of the single piriform fibers from the
mechanical properties of the whole membrane obtained through
experimental tensile testing.

MATERIALS AND METHODS

Spiders
The spiders under study were adult females of C. salei
(Keyserling, 1877) from a captive bred lab stock. They were
kept in different plastic boxes and fed with a weekly diet of
Blaptica dubia or Acheta domestica (feed with carrots and fish
food). All the plastic boxes were set in a room with controlled
environmental parameters. Windows provided natural light, and
temperature was about 22◦C in the night and 25◦C during the
day; the humidity rate was controlled in each terrarium to be
around 80% with the support of a hygrometer. Each terrarium
was provided with a refuge considering the needs of the spider
to feel protected and live without stress, according to the Italian
regulation on animal protection and EU Directive 2010/63/EU
for animal experiments.

Scanning Electron Microscopy
Samples of attachment discs were air-dried and sputter coated
with 80:20 Pt/Pd for 5min in a Q150T.

Scanning electron microscopy (SEM) imaging was performed
using a Zeiss−40 Supra.

Measurement of Attachment Disc Mass
The mass of the membranes was measured with a TGA
ANALYSIS TA Q5000. We measured the mass of 13 membranes
and then the mass of 14 membranes for 3min (to get stable
values). The difference between obtained values represents the
average mass of a membrane, of about 5 µg.

Measurement of Attachment Disc Length
We used microphotographs obtained with an optical microscope
(Zeiss Axiotech and Axiovert) and analyzed in the ImageJ
(Schneider et al., 2012) software. We measured the mean
length and the width of the membranes. The thickness was
measured through a caliper by sandwiching five membranes
between its jaws, this procedure was repeated 100 times. An
optical microscope was used to confirm that this procedure
was reflecting the native profile of the samples. In particular,
by looking laterally at the attachment discs that were produced
directly on a quartz substrate, it was possible to get the idea of the
profile. For each measurement, 100 samples were measured.

Nanoindentation
The tested samples were prepared by letting the spider walk on
a quartz substrate and letting it spin the attachment discs. This
quartz substrate was thenmounted into an iNano R©Nanoindenter
(Nanomechanics Inc.). The declared sensitivity of the machine is
3 nN for the load and 0.001 nm for the displacement.

The used mapping method (Nanoblitz 3d, Nanomechanics
Inc.) involved a 200µm × 200µm square with 400 indentation
points inside (each for a maximum of 0.05 mN loads for the

piriform and 5 mN for the dragline, which resulted in a below
10% indentation depth).We used a Berkovich tip with a tip radius
of about 20 nm for the experiments.

Tensile Testing
Dragline samples were prepared by cutting pieces of the dragline
from the attachment disc and sticking them on a paper holder
with a window of 1 × 1 cm using double-sided tape. The
diameters of the fibers that compose the dragline were measured
with an optical microscope (Zeiss Axiotech and Axiovert).

Membrane samples were obtained by detaching attachment
discs from the substrate (commercial braplast plastic box, www.
braplast.com). The test samples of piriform silk were prepared by
fixing the attachment discs (per intended pulling direction, e.g.,
x or y) on a paper frame provided with a rectangular window
with 1mm height. The sample was fixed to the paper frame with
a double-sided tape and by using Loctite super glue (Blackledge
et al., 2005). For the y direction, the dragline was included in
the membrane.

The tests were performed with the support of the nanotensile
machine Agilent UTM T150 (Keysight technology) with a cell
load of 500 mN. The displacement speed was 1% of the gauge
length per second. The declared sensitivity of the machine is
10 nN for the load and 1 Ȧ for the displacement in the dynamic
configuration. The tests were recorded with a Sony Camera.

The anchorage samples for peeling tests were produced by
letting the spider walk on a black paper surface. Once the spider
spun the anchorages, we cut the dragline at a length of about
5mm and stuck the piece of paper (containing the dragline) on a
wood block of about 2 cm3 × 0.5 cm3 × 0.5 cm3. This was fixed
on the paper frame (1 cm square window) and then fixed on the
machine. The testing speed was 6 mm/min.

ANOVA Analysis
Analysis of variance was performed to compare the mean values
of the strain at break, strength, Young’s modulus, and toughness
modulus from x- and y-stress tests (i.e., attachment discs pulled
along or perpendicular the dragline direction).

The parameters used to verify the null hypothesis, i.e., all the
data sets come from the same distribution and have the same
mean value, were:

SSQa =

G
∑

g = 1

ng
(

mg −mu

)2

SSQe =

G
∑

g = 1

ng
∑

j = 1

(

xgj −mg

)2

where G is the number of different samples under consideration,
ng is the number of tests of the same sample, mu is the mean
value of all the data, mg is the mean value within the group (i.e.,
sample), and x is the single force value. These sums of squares
were used to compute the T value:

T =

SSQa

G− 1
SSQe

n− G
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that has been compared with the ideal value of the Fisher function
F with a significance level of 5%. If T > F, we reject the null
hypothesis, and thus, we can consider the difference among the
data set as significant (i.e., the difference is due to intrinsic
differences among the samples and not a consequence of internal
variance). The p-value was computed in MatLab R©.

Weibull Statistics
In order to analyze the fracture strength distribution, we used
Weibull statistics (by following Yang et al., 2020). Weibull
cumulative density function is defined by the following relation
(we omit the scaling effects here):

F (x,m, x0) = 1− e
−

(

x

x0

)c

(9)

where x is the fracture strength, c is the shape parameter, and x0 is
the scale parameter. F represents the probability that the sample
breaks at the strength lower than x.

In order to obtain the relative probability density distributions

of the different samples (i.e., f (x, c, xo) = c
xm0

xc−1e
−
(

x
x0

)c

), we

obtained the Weibull shape and scale parameters by using the
linear regression method. By applying the double logarithm to
Equation (9), we obtain the following equation:

ln(ln

(

1

1− F (x)

)

= cln (x) − cln (x0)

where F could be estimated through the median rank estimator

F̂ (xi) =
i− 0.3

n+ 0.4

where n is the number of the tested specimens, and i is the order
of the considered one (after the organization of the samples from
the weakest until the strongest). Kolmogorov–Smirnov and R
square tests were performed to each set of data to verify (under
the 95% of acceptance, MatLab R©) that Weibull statistics could be
applied to the data set.

RESULTS

When a spider walks, it produces attachment discs where it
secures the dragline (Figure 1A). Close to the attachment disc,
the dragline is composed of more fibers (Figure 1B) than in
its distal portion (i.e., close to the spinnerets; Figure 1C). The
attachment discs are complex structures composed of multiple
fibers with a mean diameter of 1.2 ± 0.5µm and coated with
a glue (Figures 1, 2). The thickness, the width, and the length
of the membranes are, respectively, 5 ± 1µm, 1.8 ± 0.4mm,
and 3.3 ± 0.6mm (Figure S1). The mass of the membranes
(Figure S2) has been measured as about 5 µg, which gives
us by Equation (1) the mean fibril spacing of about 4.6µm
(Table S1).

Nanoindentation Tests
In order to measure the mechanical properties of the piriform
silk, we used nanoindentation and nanotensile tests.

We performed a series of experiments to compare the Young’s
modulus obtained by both nanoindentation and tensile tests
(Denny, 1976; Das et al., 2017).

The tests on the dragline attached to the membranes
revealed consistent values between the two techniques. With
nanoindentation (Figure S3, Table S2), we measured a Young’s
modulus of 4.2 ± 0.8 GPa, which was also found with the
mapping method (Figure S4). In the tensile tests (Table S3),
we measured a Young modulus of 5.2 ± 4.8 GPa (computed
by taking the slope of the fitting regression line in the initial
and steepest part of the stress–strain curve), a strain at break
of 0.27 ± 0.09 mm/mm, a mean strength of 365 ± 290 MPa,
and a mean toughness modulus of 61 ± 47 MJ/m3. From
nanoindentation, we obtained a hardness of 0.33 ± 0.10 GPa for
the dragline.

The investigation of the piriform silk through
nanoindentation was performed by using both the single
indentation method and the mapping method. The single
indentation method was performed on different positions along
the membrane (Figure S5). The obtained Young’s modulus of
the single fiber was 3.9 ± 1.4 GPa (Table S4), and the hardness
was 0.09 ± 0.05 GPa. These observations were confirmed by

FIGURE 4 | (A) Optical microscopy image of the sample, (B,C) Nanoindentation mapping of the mechanical properties of the piriform silk on the border of the

attachment disc. Note that high values result from measurements of the quartz substrate exposed between the (softer) silk fibrils.
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the mapping method (Figure 4, Figures S6, S7). The results
were consistent with the indentation depth (Figure S8), which
was kept >10% of the thickness of the fibers (Hay et al., 1998;
Fischer-Cripps, 2011).

Tensile Tests
In order to measure the overall mechanical properties of the
different silk composites, we performed the following nanotensile
tests: test of the dragline, the whole membrane pulled along

the y direction (Figure 3B, Supplementary Video SV1), and
the whole membrane pulled along the x direction (Figure 3D,
Supplementary Video SV2). The obtained stress–strain and load
displacement (for the last type of test) curves are depicted in
Figure 5. The stress on the membrane was computed by using
Equations (2) and (3), and related extracted values are reported
in Table S1.

There was no significant difference in mechanical properties
between the x- and y-mounting of attachment disc samples

FIGURE 5 | (A) Schematics of test sample and stress–strain curves of dragline samples. (B) Schematics of test sample and stress–strain curves of the attachment

disc pulled in the dragline direction (y direction). (C) Schematics of test sample and stress–strain curves of the attachment disc pulled in the pure fibrils direction

(x direction).
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TABLE 1 | Values of the mechanical properties of tested silk products obtained in the experimental (tensile tests of the whole membrane and dragline threads and

nanoindentation on single fibers) and analytical model compared with literature values (from other species).

Sample The value is

obtained with:

Strain at break

(mm/mm)

Strength (MPa) Young’s modulus

(GPa)

Toughness

(MJ/m3)

Dragline (near the disc) Tensile exp 0.26 ± 0.09 365 ± 290 5.2 ± 4.8 60.9 ± 46.6

Nanoindentation 4.2 ± 0.8

Equation 425 equation4 6.1 equation7

Piriform silk fiber Tensile exp 0.51 ± 0.26 (Wolff

et al., 2017c)

511 ± 124 (Wolff

et al., 2017c)

5.59 ± 1.75 (Wolff

et al., 2017c)

141 ± 74 (Wolff

et al., 2017c)

Nanoindentation 3.9 ± 1.4

Equation 128 equation4 3.45 equation8

Membrane pulled by x direction Tensile exp 1.18 ± 0.53 106 ± 42 0.19 ± 0.10 87 ± 53

Equation 128 equation4 0.21 equation8

Membrane pulled by y direction Tensile exp 0.93 ± 0.85 190 ± 180 0.33 ± 0.18 97 ± 90

Equation 174 equation4 1.19 equation7

(Tables S5, S6). For the x and y direction, respectively, we found
a strain at break of 1.18± 0.53 and 0.93± 0.85, a strength of 106
± 42 MPa and 190± 180 MPa, a Young’s modulus of 0.19± 0.10
MPa and 0.33 ± 0.18 MPa, and a toughness modulus of 87 ± 53
MJ/m3 and 97± 90 MJ/m3.

In order to evaluate the difference of the mechanical
properties between attachment discs and the dragline, we

FIGURE 6 | (A) Linear regression plots of the different sets of samples to

compute the Weibull parameters used to plot (B) the Weibull probability

density distributions of the strength of the tested samples.

performed a one-way ANOVA test (Table S7). Only the strength
of the dragline and the membrane pulled along the x direction
resulted to be statistically different (p = 0.00487, all post hoc
pairwise comparisons p < 0.05). This suggests that the dragline
is stronger than the piriform silk membrane.

A better understanding of the difference between the strength
of the analyzed samples can be given by looking at Weibull
statistics. In this case, the linear regression method was used
to compute the Weibull parameters (Figure 6A, Table S8),
and these were used to plot the strength’s probability density
distributions of the tested samples (Figure 6B). The narrower
shape of the strength probability distribution of the membranes
relative to the dragline indicated their more homogeneous
fracture behavior.

Comparison With the Model
Table 1 reports mechanical properties of silk fibers and
membranes determined in this work and their comparison
with values reported in the literature. The Young’s modulus
estimated with Equations (7) and (8) (i.e., Young’s modulus
of the whole membrane under traction relative to the Young’s
modulus of the single fibers) is similar to the one measured by
nanoindentation. The values we obtained for single piriform silk
fibers are comparable to those previously measured in isolated
piriform silk fibers (Wolff et al., 2017c). Equation (7) was also
used as a control for estimating the Young’s modulus of the
dragline, which was found to be comparable to the one directly
measured by the dragline tensile test.

Equation (4) gives us the possibility to estimate the strength of
the dragline by knowing the measured strength of the membrane
along the x and y directions and the strength of the piriform silk.
The obtained value is very similar to the one measured in tensile
tests, confirming the validity of our simple model.

It is important to understand how the spacing distance s can
affect the results. We thus plotted the theoretical values obtained
with Equations (4), (7), and (8) as functions of the spacing
distance s in themeasured range (Figure S7). This confirmed that
our results fit well with respect to the obtained s values.
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Peeling Experiments
In order to quantify the attachment of the whole membrane
to the substrate, we performed pull-off tests (Figure S10). We
found that detachment occurred at displacements of 2.9 ±

1.2mm, with peak force of 18 ± 10 mN and a membrane
stiffness of 6.8 ± 5.8 N/m (Table S9). These numbers are
comparable to the ones reported in literature (Grawe et al., 2014;
Wolff et al., 2015, 2017b,c; Wolff and Gorb, 2016; Wolff and
Herberstein, 2017). We found that the failure of the attachment
discs occurs mainly at the level of the piriform silk (Figure S10C)
in our setup, instead of at the dragline’s level [see Grawe et al.
(2014) for a detailed discussion of the different failure modes
resulting from the hierarchical structure of attachment discs].
This was indicated by the observation that detached attachment
discs remained almost intact (Figure S10D). This supports
that the adhesion was measured and not the fracture of the
attachment disc.

DISCUSSION

Due to the adhesive nature of piriform silk, it is difficult
to obtain native fiber samples for tensile tests. Here, we
used a whole-membrane approach, in combination with an
analytical model to determine the mechanical properties of
piriform silk. When collecting samples, the detachment of the
attachment discs from the carrier substrate may create damage
or induce a pre-stress that could affect the measurements
(Garrido et al., 2002; Perez-Rigueiro, 2005). We therefore
backed up our test results by a nanoindentation approach
that has been proven a good solution in order to measure
the mechanical properties of native attachment discs in loco
without the requirement of sample manipulation (Das et al.,
2017). The combined results from these different approaches
are consistent.

The nanoindentation tests revealed that the piriform silk
of C. salei has a Young’s modulus comparable to its dragline.
The fact that, in this species, the amount of glue is low
if compared to other species (Wirth et al., 2019) partially
justifies our approach that neglects the presence of the
third phase.

The theoretical model was developed to justify the
mechanical properties of the single fibers, obtained by means
of nanoindentation, to the mechanical properties of the whole
membrane (under tensile tests). Overall, we found consistency
in the values obtained from our nanoidentation and tensile test
approaches and those reported in the literature (Wolff et al.,
2017c). This highlights that anisotropy plays a negligible role
in the mechanics of piriform silk. The effect of variation in the
spacing parameter s was investigated (Figure S9). We note that
obtained values for the spacing parameter represent an average
of the naturally variable spacing across the lattice.

Another important aspect to consider about the strength of
materials is their dimensions. Increasing the size of a material (or
in general its dimension) usually leads to a decrease of strength
(Carpinteri and Pugno, 2005). This is also valid for spider silk

(Greco et al., submitted). Piriform silk is composed of numerous
small fibers. This could increase the strength of each fiber and
then the strength of the whole membrane.

Regarding the overall mechanical behavior of the membrane,
the complexity of the structure and its random shape could be
an important cause for the remarkable mechanical properties of
attachment discs, as randomization in a system could improve its
toughness and ductility (Cranford, 2013).

The parameters determined in this work enable the
improvement of numerical models that describe the peeling
mechanics and adhesion of composite membranes, which is
an important goal in the study of the mechanical function and
biomimetics of biological adhesive systems (Liprandi et al., 2019;
Wolff et al., 2019).

CONCLUSION

Hundreds of million years have selected attachment systems of
spiders to bear high loads (Wolff et al., 2019). Despite their
fundamental role, these anchorages are still poorly understood
due to the practical difficulties in sample preparation, the
complexity of the system, and the high variation of attachment
disc structures.

In order to understand the overall mechanical behavior
of the whole membrane, knowledge of the mechanical
properties of the attachment disc material (piriform silk)
is essential.

With this work we delivered some useful information
regarding piriform silk mechanical properties. This in our
opinion will facilitate the enhancement of numerical models of
peeling dynamics for a better understanding of the adhesion
function of attachment discs and stimulate the design of new
bio-inspired strong adhesives and micro-composite materials.
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