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We investigate some mathematical and numerical methods based on asymptotic

expansions for the modeling of bonding interfaces in the presence of linear coupled

multiphysic phenomena. After reviewing new recently proposed imperfect contact

conditions (Serpilli et al., 2019), we present some numerical examples designed to

show the efficiency of the proposed methodology. The examples are framed within

two different multiphysic theories, piezoelectricity and thermo-mechanical coupling.

The numerical investigations are based on a finite element approach generalizing to

multiphysic problems the procedure developed in Dumont et al. (2018).
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1. INTRODUCTION

The design of composite materials and structures is nowadays characterized by an increasing
level of complexity regarding their heterogeneous morphology and constitution in order to attain
more reliable and multi-functional performances in extreme environments. Even though advances
have been made in the understanding of the mechanical behavior of composite materials, their
synergistic response in a multi-physical environment is not yet fully understood. Composites as
well as bonded structures are obtained by joining different parts with highly contrasted mechanical
properties to compose a unique assembly. The bonded joint may generally be imperfect and
discontinuities in the involved physical fields can arise, drastically changing the overall mechanical
response (see, e.g., Gu and He, 2011; Gu et al., 2014; Javili et al., 2014). Therefore, a rigorous
modeling of the imperfect bonding plays an important role in engineering design.

In the present paper, we analyze a particular composite constituted by a three bodies: namely,
two adherents separated by a thin adhesive interphase. The composite assembly domain depends on
a small parameter ε, corresponding to the constant thickness of the intermediate layer, called the
adhesive. In order to take into account general multiphysic interactions among various physical
behaviors, such as elasticity, magneto-electricity, thermal conduction, the constituents are made of
general linear multiphysic materials.

Classically, the thin adhesive can be replaced by an interface law, as its thickness ε tends to
zero. In the limit, the two adherents are joined by a limit surface, across which non-classical
contact conditions are given to reproduce the behavior of the thin adhesive. Because the numerical
treatment of a thin adhesive layers needs a very fine discretization, a 3D-2D model based on the
introduction of the interface law is advantageous, requiring a much lower computation cost.

In the last years, various interface models have been proposed based on phenomenological or
micromechanical approaches. On one hand, phenomenological models can be deduced directly
from experiments. For example, effective non-linear interface phenomenological models have been
proposed, among the others, in Fouchal et al. (2009), Lotfi and Shing (1994), and Lourenço and
Rots (1997) for the analysis of masonry walls. On the other hand, interface models obtained
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through the asymptotic methods (see Ciarlet, 1997 for an
extensive discussion) can be regarded as micromechanical
models linking the interface response to the behavior of the
material layer constituting the bonding, cf. Klarbring, 1991;
Benveniste and Miloh, 2001; Hashin, 2002. The asymptotic
analysis is a powerful mathematical technique, employed to
justify classical thin structures and layered composites model
(Ciarlet, 1997; Geymonat et al., 1999, 2014; Serpilli and Lenci,
2012, 2016; Serpilli, 2017). According to these techniques, the
thickness of the glue is considered as a small parameter ε and,
possibly, its stiffness depends on εp, where p is a critical exponent.
Letting ε tend to zero, the adhesive layer geometrically vanishes,
reducing itself to a 2D surface, but it is accounted for by a relation
linking the jumps of the traction and the displacement vectors at
the interface. Another benefit of a simplified 3D-2D model based
on an interface law is the possibility of incorporating multiphysic
materials behavior, spanning from uncoupled phenomena, such
as thermal conduction and elasticity (Lebon and Rizzoni, 2010,
2011; Bessoud et al., 2011; Rizzoni et al., 2014; Raffa et al., 2018),
to multifield and multiphysic theories, such as piezoelectricity
and continua with microstructure, cf. Serpilli, 2015, 2017, 2018,
2019; Serpilli et al., 2019 and the references herein.

The aim of this paper is to numerically validate the
general imperfect contact conditions derived in Serpilli et al.
(2019), simulating the behavior of a thin interphase undergoing
linear coupled multiphysic phenomena. As already stressed in
Serpilli et al. (2019), the proposed multiphysic interface law,
obtained through the asymptoticmethods, provides a generalized
transmission condition which contains in itself the soft (also
called Kapitza’s or lowly-conducting), hard (perfect), and rigid
(Gurtin-Murdoch’s or highly-conducting) interface models. Our
analysis is limited to the case of linear elastic response of the
adhesive and adherents and the modeling is framed in the contest
of small strains and small displacements theory. Then, some
examples are given in order to show the efficiency of the proposed
methodology in the case of piezoelectric and thermo-mechanical
couplings. The numerical investigations are performed in the
framework of the finite element method, generalizing the
approach developed in Dumont et al. (2018) to multiphysic
problems. In particular, finite elements are introduced to solve
the fully 3D initial problem, considering a three-phase composite,
and the limit 3D-2D problem with two layers with imperfect
interface transmission conditions.

Finally, the current model is limited to the case of a
multiphysics linear elastic response of the adhesive and the
adherents. However, using the techniques proposed in Bonetti
et al. (2017), Raffa et al. (2018), and Rizzoni et al. (2017), it could
be extended to more general frameworks, like the non-linear
regime or damaging adhesives with behavior governed by the
evolution of the crack length at the micro-scale. These extensions
will be the topics of further study.

2. THE GENERAL THEORY

In this section, some results previously obtained are recalled.
We consider the assembly constituted of two solids �ε± ⊂ R

3,

called the adherents, bonded together by an intermediate thin
layer Bε : = S × (− ε

2 ,
ε
2 ) of thickness ε, 0 < ε < 1, called the

adhesive, with cross-section S ⊂ R
2. In the following Bε and S

will be called interphase and interface, respectively. Let Sε± be the
plane interfaces between the interphase and the adherents and let
�ε : = �ε+ ∪ Bε ∪ �ε− denote the composite system comprising
the interphase and the adherents.

We suppose that the composite is constituted of a material
which presents a linear coupled multiphysic behavior. The state
at the equilibrium of the multiphysic material is characterized
by a collection of order parameters, using the multifield theory
jargon (see, e.g., Mariano, 2002): N vector state variables, namely
uε1, . . . , u

ε
N , and M scalar state variables, namely ϕε1 , . . . ,ϕ

ε
M .

Let us collect all the unknowns into a generalized vector field
sε : = (uε1, . . . , u

ε
N ,ϕ

ε
1 , . . . ,ϕ

ε
M), the so-called multiphysic state.

With themultiphysic state sε , we associate its conjugated physical
quantity tε = tε(∇εsε), depending on the gradient of sε , defined
by (∇εsε)i : = sε,i = (uε1,i, . . . , u

ε
N,i,ϕ

ε
1,i, . . . ,ϕ

ε
M,i). The vector

field tε : = (σ ε1, . . . , σ
ε
N ,D

ε
1, . . . ,D

ε
M) represents a generalized

stress field.
We consider the following homogeneous and linear

constitutive law:

tε = K
ε
∇
εsε ,

where Kε is a generalized linear constitutive matrix, that we can
write, component-wise,

{

σ
ε
J = CεJK∇

εuεK + PεJI∇
εϕεI ,

D
ε
L = RεLK∇

εuεK +HεLI∇
εϕεI ,

with J,K = 1, . . . ,N and I, L = 1, . . . ,M and using Einstein’s
notations. The constitutive tensor K

ε satisfies the classical
symmetry and positivity properties.

A straight-forward example of such behavior is represented
by piezoelectricity, in which an electric field is generated by a
mechanical strain (direct effect) and, viceversa, a mechanical
strain is produced as a result of an electric field (converse effect).
The piezoeletric state consists of a pair s = (u,ϕ), namely the
displacement field u = (ui) and the electric potential ϕ. The
constitutive law takes the form takes the form:

{

σ = Ce(u)− PE,

D = PTe(u)+HE,
(1)

where e(u) : = 1
2 (∇u + ∇uT) is the linearized strain tensor,

D = (Di) represent the electric displacement field, E : = −∇ϕ

represent the electric field, while C = (Cijkℓ), P = (Pijk) andH =

(Hij) denote, respectively, the elasticity tensor, the piezoelectric
coupling tensor and the dielectric tensor. In this case, tensor K
reduces to

K =

[

C P

PT −H

]

.

Any other multiphysic behavior can be generalized by adding
other possible couplings within the constitutive law, coming from
different physical interactions, as in magneto-electro-thermo-
elastic materials (see, e.g., Serpilli, 2017, 2018).
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It is assumed that the adherents are subject to a generalized
system of body forces Fε :�ε± → R

3N×M and surface forces
Gε :Ŵεg → R

3N×M , where Ŵεg ⊂ (∂�ε+ \ Sε+) ∪ (∂�ε− \

Sε−). Body and surface forces are neglected in adhesive layer.
On Ŵεu : = (∂�ε+ \ Sε+) ∪ (∂�ε− \ Sε−) \ Ŵεg homogeneous
boundary conditions are prescribed, so that sε = 0 on Ŵεu. We
assume that everywhere, near the interphase boundary Ŵlat : =
∂S × (− ε

2 ,
ε
2 ), homogeneous Neumann boundary conditions

are applied. It is assumed that the adhesive and the adherents
are perfectly bonded in order to ensure the continuity of the
multiphysic state and generalized stress vector fields across Sε±.
The differential (strong) formulation of the governing equations
has the following structure:







−div tε = Fε in�ε ,
tεnε = Gε on Ŵεg ,

sε = 0 on Ŵεu,

(2)

where tεnε : = (σ ε1n
ε , . . . , σ εNn

ε ,Dε1 ·n
ε , . . . ,DεM ·nε) represents

the generalized traction vector on the boundary Ŵεg and nε the
outer normal unit vector to Ŵεg . We take V(�ε) to denote the
space of state variables admissible fields. The weak formulation
of problem (2) defined on the variable domain�ε is:

{

Find sε ∈ V(�ε) such that

Āε−(s
ε , rε)+ Āε+(s

ε , rε)+ Âε(sε , rε) = Lε(rε),
(3)

for all rε : = (vε1, . . . , v
ε
N ,ψ

ε
1 , . . . ,ψ

ε
M) ∈ V(�ε), where the

bilinear forms Āε±(·, ·), and Âε(·, ·) and the linear form Lε(·) are
defined by

Āε±(s
ε , rε) : =

∫

�ε±

K̄
ε
∇
εsε · ∇εrεdxε ,

Âε(sε , rε) : =

∫

Bε
K̂
ε
∇
εsε · ∇εrεdxε ,

Lε(rε) : =

∫

�ε±

Fε · rεdxε +

∫

Ŵεg

Gε · rεdŴε .

In the sequel, the following notations are used:

〈f 〉(x̃) : = 1
2 (f (x̃, (1/2)

+)+ f (x̃,−(1/2)−), x̃ : = (xα) ∈ S,
[

f
]

(x̃) : = f (x̃, (1/2)+)− f (x̃,−(1/2)−),

〈〈f 〉〉(x̃) : = 1
2 (f (x̃, 0

+)+ f (x̃, 0−)),
[

[f
]

](x̃) : = f (x̃, 0+)− f (x̃, 0−).

The asymptotic behavior of problem (3), i.e., when ε → 0 is
studied. The first step of the approach given by Ciarlet (1997) is
to introduce a rescaling given by

πε :

{

π̄ε(x1, x2, x3) = (x1, x2, x3 ∓
1
2 (1− ε)), for all x ∈ �±,

π̂ε(x1, x2, x3) = (x1, x2, εx3), for all x ∈ B,

where, after the change of variables, the adherents occupy�± : =

�ε± ± 1
2 (1 − ε)e3 and the interphase B = {x ∈ R

3
: (x1, x2) ∈

S, |x3| <
1
2 }. The sets S± = {x ∈ R

3
: (x1, x2) ∈ S, x3 = ± 1

2 }

denote the interfaces between B and �± and � = �+ ∪�− ∪ B

is the rescaled configuration of the composite. Lastly, Ŵg and
Ŵu indicate the images through πε of Ŵεg and Ŵεu. Consequently,
∂
∂xεα

= ∂
∂xα

and ∂
∂xε3

= ∂
∂x3

in �±, and
∂
∂xεα

= ∂
∂xα

and ∂
∂xε3

=

1
ε
∂
∂x3

in B. It is assumed that the constitutive coefficients of �ε±

are independent of ε, so that K̄ε = K̄, while the constitutive
coefficients of Bε present the following dependences on ε, so that

K̂
ε = εpK̂, with p ∈ {−1, 0, 1}. Three different limit behaviors

will be characterized according to the choice of the exponent p:
in the case of p = −1, we derive a model for a rigid interface;
when p = 0, we derive a model for a hard interface; by choosing
p = 1, we deduce a model for a soft interface. By virtue of
classical hypothesis, the rescaled problem can be written in the
following form:

{

Find sε ∈ V(�), such that

Ā−(s
ε , r)+ Ā+(s

ε , r)+ εp−1â(sε , r)+ εpb̂(sε , r)+ εp+1 ĉ(sε , r) = L(r),

(4)

for all r ∈ V(�), the set of rescaled admissible fields, where the
bilinear forms Ā±(·, ·), â(·, ·), b̂(·, ·) and ĉ(·, ·) are defined by

Ā±(s
ε , r) : =

∫

�±

K̄∇sε · ∇rdx,

â(sε , r) : =

∫

B
K̂33s

ε
,3 · r,3dx,

b̂(sε , r) : =

∫

B

{

K̂3αs
ε
,3 · r,α + K̂α3s

ε
,α · r,3

}

dx,

ĉ(sε , r) : =

∫

B
K̂αβs

ε
,β · r,αdx,

and K̂ij denote the sub-matrices of K̂, defined by

K̂ =

[

K̂αβ K̂α3

K̂3α K̂33

]

, (K̂ij)
T = K̂ji.

At this level, one can perform an asymptotic analysis of the
rescaled problem (4), introducing the asymptotic expansions of
the solution as a series of powers of ε:

sε = s0 + εs1 + ε2s2 + . . . ,
s̄ε = s̄0 + εs̄1 + ε2s̄2 + . . . ,
ŝε = ŝ0 + εŝ1 + ε2ŝ2 + . . . .

(5)

where s̄ε = sε ◦ π̄ε and ŝε = sε ◦ π̂ε , by substituting (5) into the
rescaled problem (4), and by identifying the terms with identical
power of ε, we can recover the limit problems at order 0 and
order 1. Finally, matching conditions are introduced based on
the continuity of the generalized traction tεe3 and multiphysic
state sε at the interfaces Sε± in the initial configuration and on
the continuity of the traction and state t̄εe3, s̄

ε , t̂εe3, ŝ
ε at the

interfaces S± in the rescaled configuration (see Rizzoni et al.,
2014; Dumont et al., 2018).

2.1. The Soft Multiphysic Interface Model
In the limit case p = 1, the adhesive is weaker than the adherents
and the transmission problems at order 0 and order 1 can be
summarized as follows (Serpilli et al., 2019):
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• Order 0

Governing equations










−div t̄0 = F in�±,

t̄0n = G on Ŵg ,

s̄0 = 0 on Ŵu,

Transmission conditions on S±
{

[s̄0] = (K̂33)
−1〈t̄0e3〉,

[t̄0e3] = 0.

• Order 1

Governing equations










−div t̄1 = 0 in�±,

t̄1n = 0 on Ŵg ,

s̄1 = 0 on Ŵu,

Transmission conditions on S±

{

[s̄1] = (K̂33)
−1

(

〈t̄1e3〉 − K̂α3〈s̄
0〉,α

)

,

[t̄1e3] = −K̂3α[s̄
0],α .

2.2. The Hard Multiphysic Interface Model
When p = 0, the limit model corresponds to a hard multiphysic
interface,. The order 0 and order 1 interface transmission
problems are presented in the sequel (Serpilli et al., 2019):

• Order 0

Governing equations










−div t̄0 = F in�±,

t̄0n = G on Ŵg ,

s̄0 = 0 on Ŵu,

Transmission conditions on S±
{

[s̄0] = 0,

[t̄0e3] = 0.

• Order 1

Governing equations










−div t̄1 = 0 in�±,

t̄1n = 0 on Ŵg ,

s̄1 = 0 on Ŵu,

Transmission conditions on S±






[s̄1] = (K̂33)
−1

(

〈t̄0e3〉 − K̂α3〈s̄
0〉,α

)

,

[t̄1e3] = −
(

K̂3α[s̄
1],α + K̂αβ 〈s̄

0〉,αβ

)

.

2.3. The Rigid Multiphysic Interface Model
A rigid multiphysic interface can be obtained for p = −1. The
order 0 and order 1 limit interface models are the following ones
(Serpilli et al., 2019):

• Order 0

Governing equations










−div t̄0 = F in�±,

t̄0n = G on Ŵg ,

s̄0 = 0 on Ŵu,

Transmission conditions on S±
{

[s̄0] = 0,

[t̄0e3] = −L̂αβ〈s̄
0〉,αβ .

• Order 1

Governing equations










−div t̄1 = 0 in�±,

t̄1n = 0 on Ŵg ,

s̄1 = 0 on Ŵu,

Transmission conditions on S±

{

[s̄1] = −(K̂33)
−1

K̂α3〈s̄
0〉,α

[t̄1e3] = −K̂3α(K̂33)
−1〈t̄0e3〉,α − L̂αβ 〈s̄

1〉,αβ .

Note that it is possible to obtain a condensed form of
transmission conditions, summarizing both the orders 0 and 1 of
the soft and hard cases in only one couple of equations, in terms
of the jump of the displacement field and tractions at the interface
(Rizzoni et al., 2014). To this end, we denote by s̃ε : = s̄0 + εs̄1 +

ε2s̄2 and t̃ε : = t̄0 + εt̄1, two suitable approximations for s̄ε and
t̄ε . The rigid multiphysic interface conditions are considered. Let

K̂ = εK̂ε in Bε , we can write [s̃ε] and [t̃εe3], as

[s̃ε] = −ε(K̂ε33)
−1

(

K̂
ε
α3〈s̃

ε〉,α − 〈t̃εe3〉
)

+ o(ε2),
[

t̃εe3
]

= −εK̂ε3α(K̂
ε
33)

−1〈t̃εe3〉,α − εL̂
ε
αβ〈s̃

ε〉,αβ + o(ε2).

An alternative expression of the above transmission conditions
can be given in terms of 〈t̃εe3〉 and

[

t̃εe3
]

, which will be
useful to write the variational formulation of the interface
multiphysic problem:

〈t̃εe3〉 =
1
ε
K̂
ε
33[s̃

ε]+ K̂
ε
α3〈s̃

ε〉,α + o(ε2),
[

t̃εe3
]

= −K̂
ε
3α[s̃

ε],α − εK̂
ε
αβ〈s̃

ε〉,αβ + o(ε2).

The variational formulation of the general multiphysic interface
problem is given by Serpilli et al. (2019):

{

Find s ∈ W(�̃), such that

Ā−(s, r)+ Ā+(s, r)+A(s, r) = L(r),
(6)

for all r ∈ W(�̃), whereW(�̃) is the set of admissible fields, with
�̃ : = �+ ∪ S ∪�− and

A(s, r) : =

∫

S

(

1

ε
K̂33[[s]] · [[r]]+ K̂α3〈〈s〉〉,α · [[r]]

+ K̂3α[[s]] · 〈〈r〉〉,α + εK̂αβ〈〈s〉〉,α · 〈〈r〉〉,β

)

dx̃,

L(r) : =

∫

∂�±

F · rdx+

∫

Ŵg

G · rdŴ +

∫

∂S
f · 〈〈r〉〉dγ ,

where f : =
(

K̂3α[[s]]+ εK̂αβ〈〈s〉〉,β

)

να denotes the load on

the lateral boundary of the interface, which can be evaluated. By
virtue of the Lax-Milgram lemma, we can infer that the interface
variational problem (6) admits one and only one solution (see
Serpilli et al., 2019, for more details).

3. NUMERICAL VALIDATION OF THE
GENERALIZED INTERFACE CONDITIONS

This Section is devoted to the numerical implementation of
the generalized interface conditions, identified in Serpilli et al.
(2019) and expressed by means of the transmission problem
(6). The numerical simulations will help to prove the numerical
performance of the proposed asymptotic approach. The above
problem is numerically solved through the finite element
method by considering a multiphysic composite constituted
by two parallelepiped adherents separated by a thin adhesive,
subject to general loading conditions. The analysis is carried
out by choosing two particular multiphysic constitutive laws,
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FIGURE 1 | The 3D geometry of the piezoelectric laminated plate represented

in the plane (x1, x3).

corresponding to the case of piezoelectricity and thermo-
elasticity. Finally, the numerical solution of the three-phase
model (two adherents and adhesive) is compared with the
numerical solution provided by the generalized interface problem
(6), obtained by means of the asymptotic methods. These
simple examples can be employed to model and understand
the mechanical behavior of real laminated structures presenting
multiphysic couplings such as piezoelectric stack actuators,
piezo-patch sensor glued on a controlled substructure (see, for
instance, Geis et al., 2004).

The numerical simulations hereinafter are performed using a
finite element method to solve the weak problem (6). For that
purpose, standard piecewise linear finite element are considered.
As in the description of the interface model, the multiphysic
variables are considered using a generalized variable s, leading to
a fully coupled problem.

Finally, the problem is solved employing the software
GetFem++ (see Renard and Pommier, 2002; Geuzaine and
Remacle, 2009 for more details), with a standard linear solver
(conjugate gradient).

3.1. The Piezoelectric Case
A piezoelectric material represents one of the most peculiar
multiphysic material, combining the linear elastic behavior
with the electric counterpart. As mentioned in section 2, the
piezoeletric state reduces to a pair s = (u,ϕ), constituted by
the displacement field u = (ui) and the electric potential ϕ. The
constitutive law takes the form (1).

In what follows, we define the geometrical and physical
settings of the numerical simulations. Let us consider a
piezoelectric laminated plate occupying a 3D domain defined by
� = [0, L1]× [0, L2]× [−h/2, h/2], with L1 = 10h and L2 = 5h
(see Figure 1).

The adherents (Piezoelectric 1) are constituted by PVDF
(Polyvinylidene fluoride), a monoclinic piezoelectric material
with poling axis e3, while the adhesive (Piezoelectric 2) is made
of PZT-4, a transversally isotropic piezoelectric material with
poling axis e3, whose mechanical properties are shown in Table 1
(Fernades and Pouget, 2002). The constitutive sub-matrices (Kij)
are defined as follows:

TABLE 1 | Piezoelectric material properties for PZT-4 and PVDF, Fernades and

Pouget (2002).

Moduli PZT-4 PVDF

c11, GPa 139 238.24

c22, GPa 139 23.6

c33, GPa 115 10.64

c12, GPa 77.8 3.98

c13, GPa 74.3 2.19

c23, GPa 74.3 1.92

2c44, GPa 25.6 2.15

2c55, GPa 25.6 4.4

2c66, GPa 30.6 6.43

e31, C/m
2 −5.2 −0.13

e32, C/m
2 −5.2 −0.145

e33, C/m
2 15.1 −0.276

e24, C/m
2 12.7 −0.009

e15, C/m
2 12.7 −0.135

H11, nF/m 13.06 0.111

H22, nF/m 13.06 0.106

H33, nF/m 11.51 0.106

K33 =









2c55 0 0 0

0 2c44 0 0

0 0 c33 e33
0 0 −e33 −H33









, K12 =









0 2c66 0 0

c12 0 0 0

0 0 0 0

0 0 0 0









,

K13 =









0 0 2c55 e15
0 0 0 0

c13 0 0 0

−e31 0 0 0









, K23 =









0 0 0 0

0 0 2c44 e24
0 c23 0 0

0 −e32 0 0









,

K11 =









c11 0 0 0

0 2c66 0 0

0 0 2c55 e15
0 0 −e15 −H11









, K22 =









2c66 0 0 0

0 c22 0 0

0 0 2c44 e24
0 0 −e24 −H22









.

For a transversally isotropic material with poling axis e3, one has
c11 = c22, c13 = c23, c55 = c44, c66 = (c11 − c12)/2, e15 = e24,
e31 = e32 and H11 = H22.

3.1.1. Numerical Results: The Applied Electric

Potentials

The FEM discretization is carried out using P1 finite elements
(linear on thetrahedrons), with 6552 nodes (27187 degrees of
freedom) for the three-phases problem and 5824 nodes (24275
degrees of freedom) for the problem with the generalized
interface law.

In this section, we study the case of two electric potentials
V0 = ±25V, applied on both the upper and the lower faces
of the composite plate (see Figure 1). No mechanical loading is
considered in this example. The piezoelectric laminated plates
behaves as a piezoelectric actuator.

Following the ideas proposed in Fernades and Pouget (2002),
the numerical results for the variables are provided using the
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dimensionless units. For an applied electric potential V0, we set:

(Ui,8i) =
E0

V0
(ui,

ϕi

E0
) (Tij,Dk) =

hE0

C00V0
(σij,E0Dk)

where, for numerical convenience, E0 = 109Vm−1 and
C00 = 1GPa.

First, the influence of the relative thickness of the interphase ε
h

is investigated in order to evaluate the accuracy of the asymptotic
modeling. In particular, the quality of the solutions is evaluated

considering the L2-relative error ‖sε−smodel‖
‖sε‖ , where sε denotes

the reference solution computed using the three-phases problem
with a sufficiently fine finite element mesh to ensure a good

approximation of the solution, while smodel indicates the solution
of the interface model (6). Let us notice that the mesh does not
depend on the thickness ε for the interfacemodel, on the contrary
of the computation of the reference solution, where the meshing
of the interphase is necessary. The convergence of the general
interface model toward the three-phases one with respect to the
thickness ratio ε

h
is presented in Figure 2.

From the plot, it can be observed that, by reducing the
thickness of the adhesive, the relative error has a drastic reduction
and so, the proposed general interface model provides an
acceptable solution and it is able to correctly approximate the
solution sε (see Bonnet et al., 2016). The convergence rate is
(ε/h)3 and is consistent with expectancy. Besides, even if the

FIGURE 2 | Convergence results with respect to the relative thickness ε/h.

FIGURE 3 | Displacement field and electric potential on a section along the x3 axis, with ε/h = 0.1.
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relative thickness is of 1%, the relative error is close to 7.05 · 10−4

for the displacement field and close to 2.42 · 10−5 for the electric
potential, meaning that the general interface model can also be
used for moderately thick adhesive layers.

In Figure 2, we also compared the solutions of the generalized
interface conditions with some other classical interface models,
namely, the hard and soft interfaces. Firstly, we consider the
model, referenced as hard model, where the displacements
and the electrical potential fields, and the traction vector and
normal electric displacement at the interface are considered as
continuous. Hence, the hard interface can be considered perfect.
This case is obtained with asymptotic expansions method at
order 0, when the materials properties in the interphase are
independent of the parameter ε, and thus they have similar
rigidities with respect to the adherents (see the equations at order
0 in section 2.2). In addition, we present the results obtained by
the so-called soft model, obtained with asymptotic expansions at
order 0 when the interphase material properties depend linearly
on the parameter ε. In the soft case, it can be shown that the
interface behaves as a linear multiphysic spring, where only the

first term of the bilinear form A(s, r) =
∫

S
1
ε
K̂33[[s]] · [[r]]dx

FIGURE 4 | Jumps of the displacement field and the electric potential across

the interface on a line along the x1 axis, with ε/h = 0.1.

FIGURE 5 | Jumps of the displacement field and the electric potential across

the interface on a line along the x2 axis, with ε/h = 0.1.

is considered in the interface model (6) (see, also, equations at
order 0 in section 2.1). Figure 2 shows that the present modeling
significantly improve the quality of the approximation, even for
large ε: the trend of the L2-relative error convergence rate, both
for the displacements and the electric potential field, is passing
from ε/h to (ε/h)3. This means that the solution of the three-
phases model converges more quickly toward the solution of the
present reducedmodel, as ε tends to zero, then the solution of the
classical hard or soft interface models. Moreover, it is important
to stress that the current generalized multiphysic interface model
has been built in order to adapt itself to the any kind of adhesive,
since it comprises and also improve both the hard and soft cases,
taking into account higher order terms, see Serpilli et al., 2019 for
a detailed discussion.

We now present a comparison between the solutions
obtained on the three-phases problem and on the asymptotic

FIGURE 6 | Jumps of the traction vector and normal electric displacement

across the interface on a line along the x1 axis, with ε/h = 0.1.

FIGURE 7 | Jumps of the traction vector and normal electric displacement

across the interface on a line along the x2 axis, with ε/h = 0.1.
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approximations. In this case, the relative thickness of the interface
is equal to 0.1, and the relative error is equal to 0.04% in terms of
displacements and is equal to 10−3% in terms of electric potential.
In the sequel, the plots of the solutions (Ui,8i) are represented
on the orthogonal line to the interface mid-plane defined by
(x1 = L1/2, x2 = L2/2, x3/h ∈ [−0.5, 0.5]), while the jumps of
the various physical quantities are plotted on the lines parallel to

FIGURE 8 | Convergence results with respect to the relative thickness ε/h.

the interface mid-plane, namely (x1 ∈ [0, L1], x2 = L2/2, x3 = 0)
and (x1 = L1/2, x2 ∈ [0, L2], x3 = 0).

Figure 3 represents the trend of the displacement field and
electric potential, evaluated on the central orthogonal fiber to the
mid-plane of the interface. The plot shows a very good agreement
between the solution of the general interface problem (dotted
line) and the solution of the three-phases problem (solid line).
The composite plate behaves mostly as a Kirchhoff–Love single-
layer plate, taking also into account the transversal deformation
of the adhesive. From the electric point of view, the electric

FIGURE 10 | Jumps of the displacement field and the electric potential across

the interface on a line along the x1 axis, with ε/h = 0.1.

FIGURE 9 | Displacement field and electric potential on a section along the x3 axis, with ε/h = 0.1.
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FIGURE 11 | Jumps of the displacement field and the electric potential across

the interface on a line along the x2 axis, with ε/h = 0.1.

FIGURE 12 | Jumps of the traction vector and normal electric displacement

across the interface on a line along the x1 axis, with ε/h = 0.1.

potential is linear through the adherents and constant through
the adhesive: this is due to the fact that the intermediate layer
(PZT-4) has a higher electrical conductivity with respect to upper
and lower bodies (PVDF), see Table 1, and, hence, it behaves as a
highly conducting interface.

Figures 4, 6 represent the trend of the jumps of the
displacement and electric potential and the jumps of the traction
vector and normal electric displacement along the x1-axis,
namely (x1 ∈ [0, L1], x2 = L2/2, x3 = 0), and Figures 5, 7
along the x2-axis, namely (x1 = L1/2, x2 =∈ [0, L2], x3 = 0).
The numerical simulations highlight that the proposed model is
able to describe the mechanical behavior of the composite. Few
solution oscillations can be found close to the lateral boundaries,
due to the presence of edges, which produce expected stress
concentrations and singularities.

3.1.2. Numerical Results: The Applied Surface Loads

In this section, we study the case of a constant surface load equal
to p = 1Pa, applied on the top face of the plate, with no electrical

FIGURE 13 | Jumps of the traction vector and normal electric displacement

across the interface on a line along the x2 axis, with ε/h = 0.1.

loadings (see Figure 1). The composite laminated plate behaves
as a sensor. As previously shown, the numerical results for the
unknowns are provided using the dimensionless units. For an
applied pressure p, we set:

(Ui,8i) =
C00

hp
(ui,

ϕi

E0
) (Tij,Dk) =

1

p
(σij,E0Dk)

where E0 = 109Vm−1 and C00 = 1GPa.
In Figure 8 one can observe, as before, that the rate of

convergence of the solution of the approximated interface
problem to the solution of the initial three phases problem is
of order 3. As a consequence, even if the relative thickness of
the interphase is large, the asymptotic approximation provides
accurate results. More precisely, in the case of a relative thickness
of the interphase equal to 0.1, the relative difference is equal to
0.07% for the displacement field and is equal to 0.1% for the
electric potential.

Figure 9 presents the trend of the displacement field and
electric potential on the orthogonal line to the interface mid-
plane defined by (x = L1/2, y = L2/2, z/h ∈ [−0.5, 0.5]),
showing a good numerical fit between the three-phases problem
solution (solid line) and our generalized interface model solution
(dotted line). As expected, the composite laminated plate,
being more elongated on the x1 axis, shows a Kirchhoff–
Love kinematics with respect to U1, while the displacement U2

almost vanishes along the fiber. The electric potential presents
a quadratic trend which coherent with the results proposed in
Fernades and Pouget (2002). Moreover, since the PZT-4 adhesive
layer is much more stiffer and has higher electric conductivity
with respect to the PVDF adherents, it behaves as a rigid highly
conducting interface, as shown in Figures 10–13, according to
which the jump of the piezoelectric state almost vanishes at the
interface, while the jump of the traction vector can be different
from zero (see [T33]).
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3.2. The Thermo-Elastic Case
The interface problem (6) can be easily adapted in the case of
linear elasticity with thermal effect. The thermo-elastic state is

TABLE 2 | Thermo-elastic material properties.

Moduli Upper

adherent

Lower adherent Adhesive

Young’s modulus E, GPa 14.53 200 2

Poisson’s ratio ν 0.33 0.33 0.2

Thermal expansion β, K−1 0.8·10 −6 12·10 −6 76·10 −6

Thermal conductivity k, Wm−1K−1 37 40 20

FIGURE 14 | Convergence with respect to the relative thickness ε/h.

defined by the pair s = (u, θ), constituted by the displacement
field u = (ui) and the variation of temperature θ : = T − T0,
where T and T0 denote the temperature field and a reference
temperature, respectively. The corresponding constitutive law
takes the following form:

{

σ = Ce(u)− Xθ ,
q = −K∇θ ,

where q = (qi) denotes the thermal flow,X = (Xij) andK = (Kij)
represent, respectively, the thermal expansion tensor and the
thermal conductivity tensor.

Adapting the same method used for the case of
piezoelectricity, the variational problem for thermo-elasticity
can be easily derived, where the bilinear form defined on the
interface S is given by

A(s, r) =

∫

S

(

1

ε
K̂33[[s]] · [[r]]+ K̂α3〈〈u〉〉,α · [[v]]

+ K̂3α[[u]] · 〈〈v〉〉,α + εK̂αβ〈〈s〉〉,α · 〈〈r〉〉,β−

−〈〈θ〉〉
(

X̂3 · [[v]]+ εX̂α · 〈〈v〉〉,α

))

dx̃,

where v denotes the displacement test function and X̂k =

(X̂k
i ) : = (X̂ik).
In what follows, we consider the same geometrical setting of

Figure 1, namely a thermo-elastic laminated plate occupying a
3D domain defined by � = [0, L1]× [0, L2]× [−h/2, h/2], with
L1 = 10h and L2 = 5h. The boundary and loading conditions
are slightly different with respect to the piezoelectric cases. We
suppose that:

• The union of the lateral boundaries Ŵ1 is a free boundary;

FIGURE 15 | Displacement field and temperature on a section along the x3 axis, with ε/h = 0.04.
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FIGURE 16 | Jumps of the displacement field, temperature (left), traction

vector, and thermal flux (right) across the interface on a line along the x1 axis,

with ε/h = 0.04.

• A portion of (or the whole) top face Ŵ2 is subject to a variation
of temperature θ1 = 1 K around a given temperature T0 and is
mechanically free;

• The bottom face Ŵ3 is vertically clamped and subject to
a variation of temperature θ = 0 K around a given
temperature T0;

• No mechanical volume or surface loads are applied.

The reference temperature T0 is set at 310 K. We assume that
both the adherents and the adhesive are made of thermo-elastic
isotropic materials, such that Cijkl = E

1+ν (δikδjl + δilδjk) +
Eν

(1+ν)(1−2ν)
δijδkl, Kij = kδij, Xij = βδij, where δij represents

the Kronecker’s delta. The constitutive coefficients are defined in
Table 2:
Remark. These data comes from Rakotomanana and
Ramaniraka (2004), devoted to the bonding of metallic implant
on bones using cement. The upper body models the bone, the
lower body represents the metallic implant, while the adhesive
is made of classical cement used in this type of surgery. Let us
notice that the rigidity of the interphase is very smaller than the
rigidity of the implant (the ratio between the Young’s modulus
is equal to 1%). In that case, the displacements in the interphase
is large compared to the displacements in the adherents. This
case is generally called a soft interface problem, and it is often
considered that the rigidity of the interphase depends linearly of
the thickness in the asymptotic analysis (see, e.g., Dumont et al.,
2018). It is worth noticing that in the present work the interphase
is considered as a hard interface.

3.2.1. Numerical Results: The Applied Variation of

Temperature

In all the numerical simulations, the problem is treated as a
full coupled problem, with a variable s = (u, θ) with values in
R
4. The Finite Elements are piecewise linear on thetrahedrons

(commonly called P1 Finite Elements). The number of nodes
of the mesh is equal to 5824 (resp. 6552) for the interface
problem (resp. the three phases problem), leading to 24,275

FIGURE 17 | Jumps of the displacement field, temperature (left), traction

vector, and thermal flux (right) across the interface on a line along the x1 axis,

with ε/h = 0.04.

(resp. 27,187) degrees of freedom. In this case, we did not use
dimensionless unit.

In Figure 14 is shown the trend of convergence of the solution
of the interface problem to the solution of the three phases
problem. Even in the less favorable case of a relative thickness ε/h
of 10−1, corresponding to comparable thickness for the adhesive
and the adherents, the relative L2 error is below 1% for the
displacement field and 10−2% for the temperature field.

In Figure 15 is reported the displacement and temperature
fields on a section along the x3 axis for a relative thickness of the
interphase equal to 0.04. Continuous curves correspond to the
numerical solution of the original three-dimensional problem,
while the dotted curves to the data calculated by numerically
implementing the transmission conditions. We obtain a relative
difference of 0.06% in terms of displacement, and of 9 · 10−4%
in terms of temperatures. The applied temperature difference
between the upper and lower faces provides an elongation along
x3 of the composite. The adhesive layer is characterized by weaker
elastic material properties with respect to the adherents, while the
thermal conductivities are slightly similar (see Table 2). Thus the
interphase behaves as a soft interface from the mechanical point
of view and almost hard interface in terms of the heat conduction,
providing a jump on the displacement field and a quasi-constant
temperature variation across the interface.

In Figures 16, 17, we present the jumps of the displacement,
temperature, traction vector and normal heat flow across the
interface on a line along the x1 axis. Even if the jumps are large
relatively to the displacements and the temperatures, one can
conclude that the interface approximation is able to correctly
reproduce their distributions. The soft elastic interface behavior
is also corroborated by the vanishing of the traction vector jump,
which is typical of weak interface models.

4. CONCLUSIONS

The validity of multiphysic interface transmission conditions as
an approximated model of a thin multiphysic thin layer has
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been discussed through numerical examples. The investigation
has be framed within the context of two different multiphysical
context: piezoelectricity and thermo-mechanical coupling. The
numerical simulation have been developed by using a finite
element approach which generalizes an analogous methodology
already proposed in Dumont et al. (2018) in the framework
of linearized elasticity. In the numerical examples, a composite
made of two phases joined by an adhesive has been studied in two
different configurations. In the first configuration, the adhesive
is a three-dimensional thin endowed with material parameters
taken to be softer or harder than the material parameters of
the two adherents. In the second configuration, the adhesive
is a material interface, whose transmission conditions are the
multiphysic interface laws obtained in Serpilli et al. (2019). The
relevant fields of the two configurations (displacement, electric
potential, temperature) are then compared to test the validity
of the proposed interface laws. The latter have been obtained
for several cases of material behavior of the adhesive: soft, hard
and rigid. These case are numerically compared with the three-
dimensional solution (the first configuration). A good agreement
has been found even if the elastic moduli of some layers of

the adhesive are of the same order as that of the adherents.
Moreover, we show that the rate of convergence of the L2-
relative error of the current model increases when compared
to the one obtained with two classical interface models, namely
the hard and soft interfaces. These findings clearly indicate
that the approach of substituting the multiphysic interphase
with the proposed interface law provides a robust modeling
for the composite and improves the numerical results with
respect to classical interface laws. This fact, intuitive but not
a priori obvious, represents the main original result of the
present paper.
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