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This work focuses on the electronic, magnetic, and half-metallic behaviors and
interesting surface state of a hypothetical CsCrCl3 ferromagnet with a P63/mmc space
group, investigated using the spin-polarized generalized gradient approach (GGA)
and spin-polarized GGA plus Hubbard U correction within the framework of density
functional theory. The calculated total magnetic moment of P63/mmc CsCrCl3 is∼7.397
µB, and the main contribution to the total magnetism is from the Cr atoms. Based on
the obtained spin-polarized band structures, we confirm that this hypothetical CsCrCl3
ferromagnet is a half-metal with 100% spin-polarization. Without spin-orbit coupling,
i.e., when the spin and orbit degrees of freedom are dependent, we found an interesting
nodal surface state at the kz = π plane due to the P63/mmc type lattice structure having
a twofold screw axis S2z. Our study provides strong evidence that a protected nodal
surface state can be achieved in magnetic materials.
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INTRODUCTION

The search for half-metallic materials (De Groot et al., 1983; Pickett and Moodera, 2001; Elfimov
et al., 2002; Kusakabe et al., 2004; Zhang et al., 2018) with 100% spin-polarization (P) (Žutic et al.,
2004) is a hot research topic in next-generation spintronics (Li and Yang, 2016). Half-metallic
materials (Ding and Wang, 2016; Hu et al., 2017; Wang et al., 2017; Wu et al., 2017; Bhattacharyya
et al., 2018; Du et al., 2019; Huang et al., 2019; Wang et al., 2019; Zhang et al., 2019) are so called
owing to their unique electronic band structures in both spin channels: the bands in one spin
channel exhibit a metallic property, whereas those in the other spin channel have semiconducting
or insulating behaviors. Therefore, based on the formula: P = n↑(EF)−n↓(EF)

n↑(EF)+n↓(EF) × 100%, where (n ↑
(EF) and n ↓ (EF) are the spin-up density of states (DOS) and the spin-down DOS at the Fermi level
(EF), respectively, the half-metallic materials should have 100% P in theory. Notably, half-metallic
materials are good spin injectors into semiconductors, with maximum efficiency in spintronics
devices. Various families of materials, including Heusler alloys (Kandpal et al., 2007; Wang et al.,
2015; Cui et al., 2019; Han et al., 2019; Singh and Gupta, 2019), metallic oxides (Szotek et al., 2004),
perovskite compounds (Li et al., 2015), wurtzite compounds (Wu et al., 2006), nanowires (Li et al.,
2017), nanoribbons (Son et al., 2006), and some two-dimensional (2D) monolayers (Gao et al.,
2016; Ashton et al., 2017; Feng et al., 2018; Liu et al., 2019), have been predicted to be half-metallic
materials. Half-metals can be used for pure spin generation and injection. To develop practicable
spintronic devices using half-metals, the spin-flip (half-metallic gap) should be wide enough to
prevent thermally agitated spin-flip transition and preserve half-metallicity.
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FIGURE 1 | Crystal model of CsCrCl3 from different perspectives (A,B).

Wu et al. (2018) proposed a new class of topological bulk
materials, 3D nodal surface semimetals. They are topological
materials with 2D nodal surface states, which are different from
topological semimetals with a 0D nodal point (Soluyanov et al.,
2015; Young and Kane, 2015; Kumar et al., 2017; Jin K. et al.,
2019) and 1D nodal line (Chen et al., 2018; Liu et al., 2018;
Zhou et al., 2018; He et al., 2019; Jin L. et al., 2019; Pham et al.,
2019; Yan et al., 2019; Yi et al., 2019; Zou et al., 2019; Zhao
et al., 2020). To date, only a few nodal surface semimetals (Wu
et al., 2018) have been the subject of theoretical investigations.
Nodal surface semimetals have a 2D nodal surface state composed
of numerous band-crossing points. That is, each point on the
surface is an intersection point between the two bands, and its
dispersion is linear along the surface normal direction. Coarse-
grained quasiparticles excited from a nodal surface effectively
behave as 1D massless Dirac fermions along the surface normal
direction and may show novel physical behaviors.

In this work, we use density functional theory (DFT)
calculations to systematically investigate the electronic, magnetic,
and half-metallic properties of the hypothetical CsCrCl3
ferromagnet, as well as a topological nodal surface signature,
with respect to its potential applications in next-generation
spintronics and electronics devices. We predict that the

FIGURE 2 | Selected high-symmetry points in the first Brillouin zone. The
kz = π plane is shown in green.

hypothetical CsCrCl3 ferromagnet is a novel material co-
featuring a half-metallic property and nodal surface state at
the kz = π plane. The formation energy of the ferromagnetic
type CsCrCl3 with P63/mmc space group and 194 space

Frontiers in Materials | www.frontiersin.org 2 September 2020 | Volume 7 | Article 262

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/
https://www.frontiersin.org/journals/materials#articles


fmats-07-00262 September 21, 2020 Time: 17:15 # 3

Li Half-Metallic and Nodal Surface States

FIGURE 3 | Spin-polarized band structures of CsCrCl3 system via GGA method. (A) for spin-up and (B) for spin-down.

FIGURE 4 | Spin-polarized band structures of CsCrCl3 system via DFT + U method. (A) for spin-up and (B) for spin-down.

FIGURE 5 | Spin-polarized band structures of CsCrCl3 system with DFT + U method (A) and with uniform strain (B), respectively.

number was calculated to be -1.736 eV in https://www.
materialsproject.org/materials/mp-570326/, indicating that this
hexagonal ferromagnet is theoretically stable.

COMPUTATIONAL DETAILS

All atomic and electronic structure calculations were performed
using the Vienna ab initio simulation package (Sun et al., 2003)

with generalized gradient approximation (GGA) (Perdew et al.,
1996) using the Perdew–Burke–Ernzerhof (Perdew et al., 1998)
exchange-correlation functional. The projector augmented wave
pseudo-potential was employed, with a cutoff energy of 600 eV
for plane-wave expansions and a Monkhorst–Pack special
5 × 5 × 9 k-point mesh. The convergence criteria for energy
and force were set to 10−6 eV per atom and 0.0005 eV/Ǻ,
respectively. For the CsCrCl3 material, we considered strong
correlation effects in the transition-metal Cr atoms. The Hubbard
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FIGURE 6 | Spin-density for the CsCrCl3 ferromagnet.

U correction was also used in the rotationally invariant DFT + U
approach to further confirm the band structure.

RESULTS AND DISCUSSION

The crystal structure of CsCrCl3 from different perspectives
is given in Figures 1A,B, respectively. CsCrCl3 has a BaVS3
type hexagonal structure, with a P63/mmc space group and a
space number of 194. As shown in Figure 1, the Cr atoms
are surrounded by octahedrons of Cl atoms, which form 1D
chains along the z-axis and share common faces. These chains
are arranged in a trigonal lattice in the x-y plane, with Cs
atoms inserted between the chains. We fully optimized the crystal
model (Figure 1), and the obtained equilibrium lattice constants
for the CsCrCl3 ferromagnet were a = b = 7.40130 Ǻ and
c = 6.1870 Ǻ. Our calculated results were in good agreement
with those in the materials project database1 (a = b = 7.395 Ǻ,
c = 6.173 Ǻ) and topological materials database2 (a = b = 7.249
Ǻ, c = 6.228 Ǻ).

Based on the obtained equilibrium lattice constants,
we studied the electronic band structures of the CsCrCl3
ferromagnet. The 0-M-K-0-A-L-H-A high-symmetry points
(Figure 2) in the first Brillouin zone were selected to describe the
spin-polarized band structures of the CsCrCl3 ferromagnet. The
spin-up and spin-down band structures were calculated using
the GGA method and the results are shown in Figures 3A,B,
respectively. One can see that the spin-up electronic bands
and the EF overlapped with each other, reflecting the metallic

1https://www.materialsproject.org/materials/mp-570326/
2https://www.topologicalquantumchemistry.org/#/detail/36132

property. For the spin-down channel, a clear band gap appeared,
indicating the semiconducting behavior. Moreover, the values
of the band gap and half-metallic gap (Guo et al., 2016;
Wang et al., 2016) were calculated to be 3.78 and 0.7 eV,
respectively, indicating that the half-metallic state of the
CsCrCl3 system is very robust. To properly account for the
strong correlation effects in the transition-metal Cr atoms, a
Hubbard U correction was adopted in the rotationally invariant
DFT + U approach. In Figure 4, the spin-polarized band
structures obtained via the DFT + U method (U = 3 eV for
Cr-d orbitals) are shown. One can see that the half-metallic
state for this CsCrCl3 system was retained. That is, the
metallic state and semiconducting state, in the spin-up and
spin-down directions, respectively, could still be observed.
However, the band gap and the half-metallic band gap in
the spin-down channel increased to values of 4.496 and
2.375 eV, respectively.

Furthermore, we would like to point out that the half-
metallic states of the CsCrCl3 ferromagnet are very robust
to the Hubbard U correction and the uniform strain. In
Figure 5, the band structures of the CsCrCl3 ferromagnet
with U = 5 eV for Cr-d orbitals and with 5 GPa uniform
strain, respectively, are given. One can see that the CsCrCl3
ferromagnet still hosts half-metallic properties under the above-
mentioned situations.

The primitive cell of the CsCrCl3 ferromagnet contained eight
atoms, i.e., two Cr atoms, two Cs atoms, and six Cl atoms. The
total magnetic moment for this system was 7.397 µB, and the
atomic magnetic moments of Cr atoms (∼3.693 µB) dominated
the total magnetism. To further examine the magnetism of this
system, the spin-density in both spin channels was determined
(Figure 6). The spin-density was mainly located around the Cr
atoms, indicating that they have large atomic magnetic moments.
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FIGURE 7 | A-point centered 3D band structures of CsCrCl3 ferromagnet at kz = π plane in spin-up channel (without SOC effect). (A,B) are from different view sides.

The contributions of other atoms, including Cs and Cl atoms, to
the total magnetism were almost negligible.

Note that the spin-orbit coupling (SOC) effect was not
considered in this work. Without SOC, the spin and orbit degrees
of freedom are independent; therefore, the spin degree and the
orbit degree can be regarded as different subspaces (Wu et al.,

2018). With a selected spin-polarization axis, the spin-up and
spin-down directions are decoupled; therefore, the bands for each
spin species can be effectively seen as for a spin-free system. Thus,
the protected nodal surface state can be realized in one spin of
a ferromagnet when the SOC effect is neglected. As shown in
Figure 3, along the A-L-H-A direction, two bands (in the range

Frontiers in Materials | www.frontiersin.org 5 September 2020 | Volume 7 | Article 262

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/
https://www.frontiersin.org/journals/materials#articles


fmats-07-00262 September 21, 2020 Time: 17:15 # 6

Li Half-Metallic and Nodal Surface States

FIGURE 8 | Orbital-resolved band structures of Cl-p (A) and Cr-d (B) orbitals of CsCrCl3 in the spin-up channel. The nodal surface state, formed by the crossing of
two bands near the EF , is highlighted by an arrow along the A-L-H-A direction.

of -0.1 to 0.1 eV) were totally degenerate with each other. The
lattice structure of the CsCrCl3 ferromagnetic system features a
2-fold screw axis S2z . As discussed by Wu et al. (2018), a nodal
surface state (at the kz = π plane) must occur in the ferromagnetic
material if the crystal structure of the ferromagnetic material
hosts a 2-fold screw axis S2z . To further investigate whether
there was a nodal surface state in this CsCrCl3 system, the 3D
band structure (A-point-centered) in the spin-up channel was
examined from different perspectives. In Figures 7A,B, one can
see that a nodal surface state existed in the kz = π plane near the

EF . Furthermore, one can see that the nodal surface state (at the
kz = π plane and in the spin-up channel) was relatively flat in
energy, that is, the energy variation was less than 0.2 eV. Finally,
in Figure 8, the calculated orbital-resolved band structures of
the Cl-p and Cr-d orbitals states are shown. The orbital-resolved
band structure of the Cs-s orbitals is not shown, as it had little
effect on the nodal surface state near the EF in the spin-up
channel. The main contribution to the nodal surface state was
from the Cr-d orbits; however, the contribution of the Cl-p
orbitals was not negligible.
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CONCLUSION

In conclusion, in this study, a hypothetical CsCrCl3
ferromagnetic system with a P63/mmc space group and a space
number of 197 was investigated in detail with respect to its
electronic structures, magnetism, half-metallic behavior, and
topological signature via DFT and DFT + U. We predict that
the CsCrCl3 ferromagnet is an excellent half-metal with a large
band gap and a half-metallic gap. Moreover, this CsCrCl3
ferromagnet has a nodal surface state (at the kz = π plane)
in the spin-up channel when the SOC effect is not taken
into consideration. The nodal surface state in the spin-up
channel is due to the P63/mmc lattice structure, which features
a twofold screw axis S2z . Based on the spin-density and the
orbital-resolved band structure, we confirmed that the main
contribution to the total magnetism and the surface state
near the EF was from the Cr-d orbitals. It is hoped that our
theoretical work will inspire further research to explore the half-
metallic behaviors and the nodal surface states of many other
materials in the future.
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