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For sandwich panels with truss core, the weakest part is the low-density core; therefore,

some effective damage identification methods have been previously proposed for

sandwich panels. However, these studies have mainly focused on damage location

identification and only a few studies have discussed detection of the extent of the

damage. In this study, a damage identification method integrating a deep learning

technique with dynamic properties is proposed to identify both the location and extent

of internal damage in sandwich panels with truss core. An analytical model verified

by experiments based on a laser vibrometer is used to obtain raw data, which can

generate various levels of damage inside the two face sheets. Instead of using surface

photographs or raw data as the deep learning training dataset, the dataset is constructed

using damage indices. By combining this with an analytical model, a dataset of

specimens with various defects was collected and used as the input for the neural

networks. The ability to identify the locations of damage and the extent of damage

was used to evaluate the effectiveness of the proposed technique. The results show

that the proposed method could be used to identify the location and extent of internal

damage accurately.

Keywords: sandwich panel with truss core, damage identification, deep learning, vibration-based damage index,

feature extraction

INTRODUCTION

Structural safety and integrity cannot be overemphasized because a catastrophic structural failure
may result in a significant loss of human life and wealth. Also, a more complicated service
environment may bring about additional problems (Lai, 2019; Lai et al., 2019a,b). Sandwich
structures with truss core (SPTCs) have been increasingly applied in industrial sectors, such as in
ships, aircraft, civil engineering, and aerospace engineering (Hg, 1969; Chiras et al., 2002; Wadley
et al., 2003). The lightweight cellular core can be in the form of a stochastic foam, a periodic
honeycomb, a corrugated sheet, or a lattice truss (He et al., 2014; Liu et al., 2014). During the
manufacturing process or during service, damage or defects are inevitable, such as buckling of the
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panel (Yuan et al., 2014, 2015), breakage of the truss, burn-
through of the face sheets, or truss nodes that are not bound to the
face sheet. Different damage features (style, extent, and location)
have different influences on the structural vibration properties
(Lou et al., 2014). Compared with traditional structure styles,
such as beams or plates, internal damage identification of SPTCs
is more difficult:

1) Internal damage, such as unbound nodes, is shielded by
the face sheets, which hinders direct visible inspection,
so a vibration-based identification method may be an
important choice.

2) There is a wealth of damage features that vary in damage type,
location, extent, and their combinations; these can, in turn,
affect the structural vibration behavior.

3) Damage identification can be classified into inversion
problems, and the solutions may be non-unique.

4) The final process of damage identification relies on human
judgment, which is time-consuming and subjective.

In the literature, some methods have been proposed for the
detection and localization of damage in sandwich structures.
For surface cracks in composite laminates, Hu et al. (2006)
proposed a strain-energy method to identify the surface crack
location. The results revealed that the method could identify
the location of the damage successfully. For honeycomb
sandwich plates, Andrzej (2014) proposed a vibration-based non-
destructive testing method with a post-processing algorithm
based on wavelet analysis. The results revealed that different
types of damage could be detected and localized accurately.
For composite SPTCs, Li et al. (2015) proposed a baseline-
free damage localization method based on uniform load surface
curvature, a gapped smoothing method, and the Teager energy
operator to detect truss bar damage. Lu et al. (2017a) proposed
a damage identification method based on a flexural matrix of
metallic SPTCs. Subsequently, an improved method was also
developed to identify damage to unbounded nodes (Lu et al.,
2017b). Seguel and Meruane (2018) proposed four damage
indices, including mode shape curvatures, uniform load surface,
modal strain energy, and gapped smoothing, to evaluate the
debonding damage of an aluminum honeycomb sandwich panel.
Sikdar et al. (2018) proposed an acoustic emission-based real-
time health monitoring framework to efficiently identify the
probable damage in sandwich composite structures. Zhu et al.
(2016) proposed a torsional guided wave method to detect
debonding damage in honeycomb sandwich beams. Klepka et al.
(2013) used non-linear acoustics to detect impact damage in
a composite chiral sandwich panel. High-frequency ultrasonic
excitation and low-frequency model excitation were used to
observe non-linear modulations in ultrasonic waves due to
structural damage.

Most of these studies could detect and locate the damage
accurately, but fewer studies have discussed quantification of the
extent of damage (Kumar et al., 2009; Zhu et al., 2014; Khan
et al., 2019). To detect the extent of damage more accurately,
some intelligent techniques, such as a genetic algorithm (GA)
or convolutional neural networks (CNNs), have been combined

with traditional vibration-based methods or other methods
(Zhu et al., 2014; Khan et al., 2019). In these studies, damage at
different locations and of different extents are considered. Kumar
et al. (2009) presented a model strain-energy two-step method
for a composite sandwich beam. This method can identify
both the location and extent of damage in the faces and the
core. Using the frequency response function (FRF), Zhu et al.
(2014) proposed a non-destructive evaluation method to identify
debonding in a honeycomb sandwich beam. By combining this
with a GA, the method could determine both damage location
and size. When detecting damage in large structures, the method
cannot effectively identify small debonding, which has little
influence on the low-frequency range of an FRF. Khan et al.
(2019) proposed a CNN-based approach for the classification and
prediction of various types of in-plane and through-the-thickness
delamination in smart composite laminates by using structural
vibration information.

With the capacity ofmassive data processing, datamining, and
fast training through the deep architecture of neural networks,
machine learning gives an objective solution with quantitative
accuracy. Chen and Jahanshahi (2018) proposed a deep learning
(DL) framework to analyze individual video frames for crack
detection. The proposed framework achieves a 98.3% hit rate.
Cha et al. (2017) proposed a vision-based method by using the
deep architecture of a CNN for detecting cracks in concrete. The
trained CNN was combined with a sliding window technique
to scan any image size. The results indicate that the proposed
method performs well in finding cracks in concrete in realistic
situations. Zhang et al. (2016) used deep CNN to detect cracks in
roads. The training images were obtained by means of a low-cost
smart mobile phone, demonstrating that DL has the potential
to be applied in practical damage identification. Pathirage et al.
(2018) proposed an autoencoder-based framework for damage
identification, which could support deep neural networks and
which could be used to obtain optimal solutions for pattern
recognition problems of a highly non-linear nature. The method
was applied on steel-frame structures. Guo et al. (2020) presented
a DL-based method that extracts the damage features from
mode shapes without utilizing any hand-engineered feature
or prior knowledge. Datasets based on numerical simulations,
along with two datasets based on laboratory measurements,
were used. Zhang et al. (2020) used machine vision and DL
for structural health monitoring by focusing on detecting bolt
loosening. A dataset that contains 300 images was used. Huang
et al. (2020) proposed a CNN-based method for detection of
surface damage to a steel wire rope (SWR). In this work, only
two different types of SWR surface defects were investigated.
In this study, the authors mentioned that it is necessary
to combine the method with other imaging techniques to
detect SWR inner damage. Liu et al. (2020) reported that a
novel damage identification framework was established in this
study by integrating massive datasets constructed by structural
transmissibility functions and a DL strategy based on one-
dimensional convolutional neural networks (1D-CNNs). Avci
et al. (2017) used 1D-CNNs to automatically extract damage-
sensitive features from the raw acceleration signals and presented
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the preliminary experiments that were conducted to verify the
proposed method.

Previous studies often dealt with damage to the structural
surface that could be captured by a camera or that used the
structural raw displacement or acceleration data captured in
experiments directly as the input data. However, for SPTCs, the
weakest part is the low-density truss core, and the inside damage
is covered by the face sheets and cannot be directly detected
in photographs. Also, compared with plates or beams, SPTCs
consist of two face sheets and a truss core, meaning that the raw
response data hardly reflect the structural damage information.
Therefore, vibration-based methods, which involve many forms
of damage indices that could reflect both the surface and internal
damage, could be used in combination with DL for structural
damage identification in SPTCs.

This work incorporates a DL technique with a vibration-based
method to detect internal damage to SPTCs. Unlike previous
studies, which used surface photographs or raw data as the
DL training dataset, we construct a dataset by using damage
indices instead of raw data. An analytical model is then used
to obtain massive raw structural data, which are verified by
experiments. Then two damage indices, one with a baseline
and the other without a baseline, are used to construct the
input to the neural networks. The effectiveness of the method
is evaluated according to the accuracy of damage location and
extent identification.

CONSTRUCTION OF THE DATASET

Outline of the Construction Process
Obtaining more data is always the best way to make a neural
network model generalize better, although the amount of data is
usually limited in practice. In this study, a vibration analytical
model with random damage features, described previously by
the authors (Lu et al., 2017c), was used to generate the raw
data. Experiments were carried out to verify the proposed model.
Two damage indices were applied to extract the internal damage
features. Finally, the input dataset, including massive and diverse
samples, was built.

SPTC Specimens
A sketch of the pyramidal SPTC model being simulated is
provided in Figure 1. The SPTC is made of stainless steel.
The boundary condition for the SPTC is fully clamped (CCCC).
The unit cell of the pyramidal truss is shown in Figure 1B. The
thickness of the face sheets is 1mm. Parameter Lx is equal to
Ly, which is 11.312mm. There are 15 cells along the x- and
y-directions, respectively. The details of the model are given
in Table 1.

In the damage identification process, three types of damage
features are considered, including damage location, damage style,
and damage extent, denoted as DL, DS, and DE, respectively.
In this study, DS, that is, cell missing damage, is used to
simulate structural damage, which is a typical form of damage for
SPTCs. FourDE values are considered, including half-cell missing
(HCM), one cell missing (OCM), two cells missing (TCM),
and four cells missing (FCM). To consider all possible damage
distributions, the parameter DL is set as a random number, with
its position inside the sandwich panels.

Analytical Models With Random Damage
Features
The training dataset is often obtained through real videos or
images. However, information from videos or images is normally
very limited and cannot cover all possible damage features. In
addition, for SPTCs, only the surface information can be obtained
by videos or images, which does not reflect the internal damage
features of SPTCs. Therefore, in this study, analytical models with
random damage features, verified by experiments, are used as
they are able to consider all possible damage features.

TABLE 1 | Material properties and geometrical information.

Material property Geometrical parameter

Young’s modulus 200 GPa hc 8 mm

Poisson’s ratio 0.3 tc 1 mm

Mass density 7,800 kg/m3 θ 45◦

FIGURE 1 | Model information of sandwich panel with truss core (SPTC). (A) A damaged SPTC model. (B) A unit cell of a pyramidal truss.
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Analytical Models

To build the rich dataset, two kinds of analytical models are
presented. For single-damage cases, a step-by-step analytical
model is proposed. In the model, for a given DE and DS, DL

moves step by step until all possible DL values are used, as
shown in Figure 2A. For multiple-damage cases, an analytical
model with random damage features is used. In the analytical
model, the parameters DL, DS, and DE are set as variables. By

FIGURE 2 | Vibration analytical models of sandwich structure with truss core (SPTC). (A) Single-damage case. (B) Multiple-damage case.

FIGURE 3 | Experimental information. (A) Damaged specimen (SD1). (B) Experimental set-up.
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setting the values of DL, DS, and DE, the damage features can
be given randomly. DE includes HCM, OCM, TCM, and FCM,
and the corresponding parameter DE is set to 1, 2, 3, and 4,
respectively. DL is the starting location of the damage, including
DLX , DLY . The procedure used by the analytical model is shown
in Figure 2B.

Experimental Validation

To verify the proposed analytical model, experiments were
carried out in which pyramidal SPTCs (Figure 3A) were used.
The relative density of the truss core was about 3%. The
thicknesses of the face sheets and the truss core were 0.9
and 7mm, respectively. The dimensions of the metallic SPTC
specimen were 250× 250 mm.

In the experiments, specimens with a single area of damage
and multiple areas of damage were considered. For specimens
with a single area of damage, three cases were used: SD1,
SD2, and SD3. The corresponding DE values were 2×3, 3×4,
and 4×5, where x×y represents the DE and x and y are the
numbers of the missing cells by row and column, respectively.
The defined single area of damage is in the center of the
specimens. For specimens with areas of multiple damage, a
specimen comprising two areas of damage at DE 2×3 and
3×5, respectively (MD1), was used. The healthy specimen is
denoted by SD0. For each damage case, repeated experiments of
specimens with the same damage extent were conducted to verify
the model.

The experimental set-up is shown in Figure 3B. The
specimens were excited by a JZK-50 shaker. Two edges of
the specimens were clamped. A laser Doppler vibrometer
(Polytec, PSV-400) generated the excitation signal and measured
the structural response. The structural modal information
was obtained by analyzing the excitation and structural
response signal.

Numerical models of the same dimensions as the experimental
specimens were built to verify the analytical model. In contrast
to the experimental specimens, in which the damage zone was
prefabricated, the numerical model could simulate various cases
with randomly distributed damage. The number of random
damage cases Cmax was set as 80.

To compare the numerical and experimental results,
parameter ηi is defined as

ηi = ωD
i /ωU

i (1)

where ωD
i and ωU

i are the i-th natural frequency of the damaged
and undamaged specimens, respectively.

In the experiment, only the 1st order of mode is selected
and i is set as 1. According to the results for η1 shown in
Figure 4, it can be seen that the trend of η1 of simulation is
in accordance with the experimental results as the DE increases
from 0 to 4×5. For a given DE, DL has a significant influence
on the structural vibration properties. Taking SD3 for example,
the largest η1 is almost 1, and the smallest η1 is 0.84, because
theDL is different. Therefore, in structural damage identification,
various damage cases using different DE and DL values must
be considered. When the damage case changes from SD3 to

FIGURE 4 | Numerical and experimental results.

MD1, the trend of η1 of simulation is also in accordance with
experimental results. Although there are two areas of damage in
the case of MD1, the effect of MD1 on the structural vibration
properties is smaller than that of SD3, demonstrating that a
number of areas of damage, DL, DE, and DS, couple together and
influence the structural vibration properties. This demonstrates
that small changes in damage features may cause large variations
in the structural properties. However, it is impractical to
obtain massive data merely from experiments. Therefore, a
simulation or numerical model is a very important way to obtain
the data.

Damage Indices
Because of the difficulty in identifying internal damage in
sandwich panels (as mentioned in section introduction), damage
indices are used to extract damage features. Then, by combining
these with a DL technique, the identification of damage features
is more accurate.

Vibration-based damage indices are used to extract the
internal damage features according to information gained
from the face sheet. Two damage indices are used (Li et al.,
2015; Le et al., 2019) and compared; these are denoted DI-1
and DI-2.

DI-1 is proposed for filled SPTCs, and needs information
from a healthy structure as the baseline. When a specimen is
damaged, its stiffness or mass changes. Therefore, the vibration
characteristics (natural frequencies and mode shapes) change.
According to the variations in the vibration characteristics, the
damage features can be identified. The damage index DITr(k) is
defined as:

DITr

(

k
)

=

∣

∣DI12r
(

k
)

− DI1r
(

k− 1
)

DI1r
(

k+ 1
)
∣

∣ (2)

where DI-1r is calculated according to the natural
frequencies and mode shapes, expressed in Equation (3);
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FIGURE 5 | Samples of datasets based on (A) DI-1 and (B) DI-2. HCM, half-cell missing; OCM, one cell missing; TCM, two cells missing; FCM, four cells missing.

k is the number of the selected node; and r is the
weight coefficient.

DI1r =

√

√

√

√

√

√

√

P2
∑

p=P1

ωr
p

P2
∑

p=P1

ωr
p

([

Fp · I
]

D
−

[

Fp · I
]

U

)2
(3)

Fp =
8p8

T
p

ω2
p

(4)

where ωp and Φp are the p-th natural frequency and mode shape,
respectively; I is {1,. . . ,1}T1×n; P1 and P2 are the beginning and
ending order modes, respectively, in the practical case; and D
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and U denote the damaged and undamaged model, respectively.
Parameter r is used to define the weight of low- and high-order
modes in the damage index DI-1. Different damage features have
different influences on different order modes: some damage has a
great influence on low-order modes and some damage has a great
influence on high-order modes.

However, in practice, it is hard to obtain information on a
healthy status. Therefore, a baseline-free damage index DI-2 was
also used in this study. A gapped smoothing method (GSM)
was used to construct a baseline. If there was no damage in the
structure, the mode shapes were smooth and continuous. When
there was damage in the structure, themode shapes at the damage
were not smooth. We used a GSM to construct a baseline. By
comparing the information before and after the GSM, the damage
features could be extracted. DI-2 is expressed as:

DI∗m(n) = T(DI2m(n)) = DI22m (n) − DI2m (n+ 1)DI2m (n− 1) (5)

where DI-2 is defined in Equation (6), n is the number of the
selected node, andm is the weight coefficient.

DI2m(xi, yj) =

P2
∑

p=P1

αmp

(

MDCp(xi, yj)−MDCp(xi, yj)
′
)2

E
∑

i=1

F
∑

j=1

(

MDCp(xi, yj)−MDCp(xi, yj)′
)2

(6)

αm
p =

ωm
p�K2

∑

p=K1

ωm
p

(7)

where E and F are the numbers of the columns and rows of the
measuring points; P1 and P2 are the beginning and ending order
modes, respectively, in the practical case; and αm

p is defined as
the weight coefficient of the p-th component and is expressed in
Equation (7). The details of DI-2 can be found in our previous
work (Le et al., 2019).

Dataset Building
Based on the proposed analytical models and the two damage
indices, data in the cases of single and multiple damage are
obtained. Some samples are shown in Figure 5. To detect damage
of a different orientation and to increase the variety of the
dataset, data enhancement was applied to increase the number
of samples.

Comparing the first line of results for DI-1 (Figure 5A) and
DI-2 (Figure 5B), it can be seen that the results for HCMorOCM
identified by DI-1 are better than those identified by DI-2 because
the influence of small areas of damage on the structural vibration
properties is small; however, when DE becomes significant, DI-2
also shows very good performance.

DL FRAMEWORK FOR INTERNAL
DAMAGE IDENTIFICATION IN SPTCS

In this study, Faster RCNN (Ren et al., 2015), a framework for
target recognition, is combined with a vibration-based method

FIGURE 6 | Flowchart of the identification process.

TABLE 2 | Parameters of faster RCNN.

Parameter Parameter

Learning rate: 0.001 Average loss 100

Gamma 0.1 Momentum 0.9

Step size 30,000 Weight decay 0.0005

Learning rate policy Step

FIGURE 7 | The training loss curves of DI-1 and DI-2.

(section construction of the dataset) to identify internal damage
features of SPTCs. The flowchart of the identification process
is provided in Figure 6. The method can be summarized in
four steps:

Step 1 Build dataset according to the damage indices and
analytical model.
Step 2 Set the dataset as input and train the Faster
RCNNmodel.
Step 3 Obtain the trained Faster RCNNmodel.
Step 4 Input the new data and evaluate the trained model.
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In this study, a Zend Framework (ZF) CNN was selected. Before
the training process, all images were normalized to 1,491× 1,501
pixels. To detect damage of different orientations and increase the
variety of the dataset, data enhancement was applied to increase
the number of samples. Of the 2018 samples obtained, 50% were
set as the training set and 50% were set as the testing set. The
parameters of the Faster RCNN are shown in Table 2.

Caffe, a DL framework, was used to conduct the training
process as it has been widely applied in DL andmachine learning,
such as computer vision, speech recognition, image feature
coding, and information retrieval. The computing platform was
Ubuntu 16.04, and all the codes were run on a server equipped
with 12 Intel Core i7-6800K CPUs (3.40 GHz) and an NVIDIA
GeForce GTX 1080 Ti with 11 GB of memory.

RESULTS AND DISCUSSION

As is well-known, in damage identification, the effectiveness of
different damage indices for the same damage feature is different.
Even for the same damage, one index could identify it and
another one may not. Therefore, in this section, comparisons
betweenDI-1 andDI-2 are conducted to investigate the capability
and applications of the indices.

There are two steps in damage identification: first, detect if
there is any damage in the structures and identify theDL; second,
identify the DE and DS. Compared with DL, it is more difficult to
identify theDE andDS. Most of the previous studies have focused

on the identification ofDL, and few studies could identify all three
damage features. In this study, only oneDS (truss core missing) is
considered. Therefore, in section 4.1, the capacity of the proposed
method to determine the DL and DE is discussed.

DL and DE Identification
Figure 7 shows the training loss results of DI-1 and DI-2. For DI-
1, the loss value becomes stable very quickly. For DI-2, it can be
seen that the loss value tends to be stable when the iteration is
around 1,000 times, and the final loss value is stable at around 0.1.
Because the proposed damage indices have extracted the damage
feature effectively, the loss value becomes stable more quickly.

Figure 8 provides some identification results of DI-1 and DI-
2. From Figure 8, it can be seen that the accuracy of damage
feature identification is high, no matter whether the DE is HCM,
OCM, TCM, or FCM or whether the DL is in the center of the
model or on the boundary edge. From the middle and right-hand
panels in Figure 8A, it can be seen that the features of HCM and
OCM are similar; it is difficult for humans to identify the DE

accurately, but the DL-based method could identify the location
and extent accurately.

To evaluate the proposed method, 100 figures were used to
test the trained network, and the statistical results are provided in
Figure 9. In Figures 9A,B, the x-axis is the DE results identified
by the trained network and the y-axis is the real DE. When
using the trained network to identify the damage, five cases
may occur. Taking HCM as an example, the five cases are listed
in Table 3. Cases 3–5 demonstrate that the damage location is

FIGURE 8 | Examples of the identified results. (A) DI-1 and (B) DI-2.
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FIGURE 9 | The statistical results. (A) DI-1 and (B) DI-2. HCM, half-cell

missing; OCM, one cell missing; TCM, two cells missing; FCM, four cells

missing.

TABLE 3 | Five cases for HCM identification.

Case number Detail Status

1 HCM is not identified ×

2 HCM is identified as HCM
√

3 HCM is identified as OCM ×

4 HCM is identified as TCM ×

5 HCM is identified as FCM ×

HCM, half-cell missing; OCM, one cell missing; TCM, two cells missing; FCM, four

cells missing.

identified accurately, but the damage extent could not be detected
accurately. Case 2 shows the best result, with both the location
and extent identified.

The accuracies of damage location and extent identification
based on DI-1 and DI-2 are listed in Tables 4 and 5, respectively.
It can be seen that the identification accuracy increases as the DE

TABLE 4 | Accuracy of damage location identification according to the statistical

results.

Index

Accuracy
HCM OCM TCM FCM

DI1 70.8% 79.1% 79.4% 83.4%

DI2 41.9% 75.6% 82.4% 94.5%

HCM, half-cell missing; OCM, one cell missing; TCM, two cells missing; FCM, four

cells missing.

TABLE 5 | Accuracy of damage extent identification according to the statistical

results.

Index

Accuracy
HCM OCM TCM FCM

DI-1 55.4% 57.5% 62% 72.2%

DI-2 36.9% 58.8% 80.9% 92.8%

HCM, half-cell missing; OCM, one cell missing; TCM, two cells missing; FCM, four

cells missing.

increases because the damaged feature identified by the indices
becomes more obvious as the DE increases.

From Figure 10A, it can be seen that there are three areas
of damage in the SPTC, including one OCM and two HCMs.
However, after identifying the network, only damage areas 1
and 2 are identified because the effects of damage area 3 on the
structure vibration properties are hidden by those of damage
areas 1 and 2. This demonstrates that the sensitivity of the
damage index to the damage feature plays a very important
role in DL identification. This conclusion is in accordance with
previous studies. From Figure 10B, there are three areas of
damage, including FCM, TCM, and HCM. The trained network
could only identify damage areas 1 and 3. The reason for damage
area 2 in Figure 10B not being identified is that the DE for
damage area 2 is smaller than that for the other two damage
areas. Damage area 3 (TCM) is identified as HCM, and the
corresponding accuracy is about 0.352, meaning that the trained
network could identify that there is damage at this location but
the probability of identifying it as HCM is not high.

In conclusion, according to the results in Figure 10, it can
be seen that the damage can be located if the damage can be
characterized in the figure, and the damage cannot be located
if the damage cannot be characterized. When there are multiple
areas of damage in SPTCs, damage feature identification is more
difficult. The small DE value is easily covered by large DE values,
meaning that the small DE values could not be identified or that
the damage is mis-identified, as in cases 3, 4, or 5. Therefore, to
identify the damage with small DE values, it is better to combine
more effective indices that are sensitive to the small DE values.

Comparison of DI-1 and DI-2
In this study, a dataset based on two damage indices is used;
this dataset has a significant influence on the effectiveness of the
proposed method. Therefore, the effectiveness of the two damage
indices is compared. Comparing Figure 5A with Figure 5B, it
can be seen that the extracted feature based on DI-1 is more
obvious than that based on DI-2 when DE is small (HCM and
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FIGURE 10 | Examples of DI-1. (A) Case 1 and (B) case 2.

OCM). When DE is small, the identification of damage features
is easily affected by other factors, such as the boundary condition
or singularity caused by contact points, especially in the baseline-
free damage identification process.

When the extent of the damage is small (HCM), the accuracy
of damage feature identification based on DI-1 is higher than
that based on DI-2, as shown in Tables 4 and 5. When the
extent of the damage increases, the accuracy of damage feature
identification based on DI-1 is smaller than that based on DI-
2. From Figure 5A, it can be seen that the HCM feature is
very obvious based on index 1. However, based on index 2, it
shows that HCM tends to be covered by an influencing factor (in
Figure 5B), such as the singularity caused by the contact nodes.
Therefore, when theDE is small, DI-1 is more effective than DI-2.

However, as the DE increases from HCM to TCM or FCM,

the accuracy based on DI-2 is better than the accuracy based on
DI-1, as shown in Tables 4 and 5. From Figure 5A, when the
DE increases from HCM to TCM or FCM, the characteristics of
the identified damage, such as the color gradient or area, change
a little, especially for HCM, OCM, or FCM. When the trained
network identifies the DE, it is easy for the framework to identify

one DE as another DE. But, for DI-2, it can be seen that the
characteristics of the identified damage change a lot as the DE

increases fromHCM to FCM. As theDE increases, DI-2 performs
better than DI-1.

According to the accuracy results inTable 5, it can be seen that
DI-2 performs better than DI-1. Therefore, for identification of
internal damage in sandwich panels, the proposed method based
on DI-2 is better and more effective, as it is more successful in
extracting internal damage features.

CONCLUSIONS

This paper proposed a method for identifying internal damage to
sandwich panels by integrating a DL technique with a vibration-
based method for internal damage in sandwich panels with a
truss core. Instead of using the photographs or raw structural
responses, two damage indices were used to extract the damage
features and construct the dataset. According to the statistical
results, the proposed method can identify the internal damage
features DL and DE. As the DE increases, the accuracy of
identification increases. The statistical results also reveal that
damage indices play a very important role in the identification
process. Considering massive damage features, it is better to
combine the two indices to improve their accuracy. When DE

is small, DI-1 is better than DI-2. When DE is large, DI-2 is
better than DI-1. According to the characteristics of the damage
identified by the indices, we can choose suitable indices to
identify as many damage features as possible.
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