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The conventional design method of concrete mix ratio relies on a large number of tests for
trial mixing and optimization, and the workload is massive. It is challenging to cope with
today’s diverse raw materials and the concrete’s specific performance to fit modern
concrete development. To innovate the designmethod of concrete mix ratio and effectively
use the various complex novel raw materials, the traditional mix ratio test method can be
replaced with the intelligent optimization algorithm, and the concrete performance
prediction can be realized rapidly and accurately. The mixed ratio of the rubber fiber
concrete was designed with its 28-day strength test. Then the range and variance analysis
of the orthogonal test results were carried out to determine the optimal mix ratio and its
influencing factors. A data set containing 114 sets of valid test data was collected by
combining the rubber concrete mix test data published in recent years. Based on this data
set, there are six influencing factors; rubber content, rubber particle size, and
polypropylene fiber content are considered as the input variables, and the 28-day
concrete compression, splitting tensile, and flexural strength are considered as the
output variables. A strength prediction model of rubber fiber concrete is established
based on the extreme learning machine (ELM). For verifying the ELM prediction model’s
performance, this article has conducted a comparison experiment between this model and
other intelligent algorithm models. The results show that the model has the advantages of
high accuracy and high generalization ability compared with other algorithm models such
as conventional neural networks. It can be used as an effective method for predicting
concrete performance. The method allows for the innovation and development of concrete
mixing technology.

Keywords: rubber fiber concrete, mix ratio design, intelligent optimization, concrete strength, extreme learning
machine

INTRODUCTION

With the development and application of green-energy-saving and resource recyclable materials,
green and friendly waste rubber fiber concrete, which has excellent physical and mechanical
properties, has attracted much attention. Rubber fiber concrete is a kind of engineering
composite material made of ordinary concrete as a base material, mixed with waste rubber
aggregates and fibers according to a specific ratio. It is solidified and hardened to form a kind
of engineering composite material. Rubber fiber concrete has excellent properties such as good
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toughness, wear-resistance, and frost resistance. Besides, it
effectively solves the problem of waste rubber treatment and
improves the performance of concrete. So it plays a dual role in
resource conservation and environmental protection. Rubber
recycled concrete has become a hot topic in the research and
development of the concrete industry and contributed to much
research (Fang et al., 2001; Topçu and Demir, 2007; Reda Taha
et al., 2008; Atahan and Yücel, 2012; Bravo and de Brito, 2012;
Richardson et al., 2016). Farhad Aslani et al. prepared a self-
compacting rubber fiber concrete. Fibers include polypropylene
(PP) fiber and steel fiber, and they studied the influence of
different rubber fiber particles’ parameters on concrete’s
mechanical properties (Aslani and Gedeon, 2019). Zahid
Hossain et al. studied rubber crumbs (CR), recycled coarse
aggregate (RCA) and polypropylene fiber composite concrete,
and tested the compressive strength, splitting tensile strength, and
bending resistance at different ages (Zahid et al., 2019). Mostafa
Jalal et al. prepared high-strength concrete by adding different
fine rubber particles and polypropylene fibers. The performance
of high-strength concrete (HSC), rubber high-strength concrete
(RHSC), polypropylene high-strength concrete (PHSC), and
polypropylene rubber high-strength concrete (PRHSC) before
and after the high temperature was studied (Jalal et al., 2019a;
Jalal et al., 2019b). Jiaqing Wang et al. prepared rubber fiber
concrete samples with different rubber volume content and fiber
volume fraction and made ordinary concrete samples for
comparison. The synergistic effect of polypropylene fiber and
rubber concrete was studied in terms of mechanical properties,
durability properties, and microstructure (Wang et al., 2019).

Due to low hydrophilicity, the rubber particles have different
properties than the concrete particles, and the adhesion between
the two kinds of particles is poor. The rubber particles’ strength is
reduced after the concrete is mixed with the rubber aggregate.
The performance of rubber fiber concrete is affected by many
factors, and the research on the design of its mix ratio is still
developing (Zheng et al., 2008; Skripki�unas et al., 2009;
Richardson et al., 2012). In practical engineering, for the
performance of rubber fiber concrete to meet the
requirements, a large number of tests are carried out to
determine the optimal range of each influencing factor in the
design of its mix ratio. This makes the mix ratio design process
more complicated. Many workforce and material resources are
consumed (Gao, 2018). Although the orthogonal test method has
uniform dispersion features in the mix ratio design, it is an
efficient and economical test design method. However, it still
requires many experiments to get satisfactory results in practical
engineering. This situation brings a significant challenge to the
mix design. The traditional concrete strength test method is to
test the concrete specimens after 28 days of standard curing.
Thus, it is difficult to know whether the concrete’s strength will
meet the design requirements in time for concrete-based
construction. If the final test strength of concrete does not
meet the design requirements, it will seriously affect the
construction period and construction quality. Therefore, how
to get the expected 28-day strength of concrete with different
mixing ratios in time for construction is a subject worthy of
in-depth study. The concrete strength is affected by many factors

such as cement strength grade, water-cement ratio, sand ratio,
and admixture. There is a complex and highly nonlinear
relationship between these influencing factors and concrete
strength. So it is difficult to find out the regularity between
them by using the traditional regression method. In recent
years, the rapid development of machine learning technology
has provided a platform for establishing this complicated
nonlinear mapping relationship. The application of machine
learning technology to establish a prediction model of material
performance is a more effective method in improving novel
materials development efficiency. It has become a hot
international issue (Wu et al., 2019; Li et al., 2020).

In recent years, some scholars have applied machine learning
methods such as neural networks (ANN), support vector
machines (SVM), deep learning, and gray theory to the
prediction of concrete strength. They have even made some
valuable achievements (Ni and Wang, 2000; Lim et al., 2004;
Topçu and Sarıdemir, 2008; Chou et al., 2014; Xu et al., 2015;
Young et al., 2019; Xu and Yu, 2020). Mostafa Jalal et al. used an
adaptive neurofuzzy inference system to establish a concrete
compressive strength prediction model and studied the
influence of cement content, rubber content, silica fume, and
sample age on the concrete compressive strength (Jalal et al.,
2020). They also used rubber powder and pozzolan to partially
replace the aggregate and cement in the concrete raw materials
and established three different regression models: linear
regression model, logarithmic regression model, and power
regression model to predict the compressive strength of
concrete (Jalal et al., 2019a; Jalal et al., 2019b). Hesam
Madanil et al. tried to use artificial neural methods such as
adaptive neurofuzzy inference system (ANFIS), artificial neural
network (ANN) technology, and linear and nonlinear regression
analysis to predict the compressive strength of cement composite
materials and compared the difference of those methods in
predicting the strength of the cementitious mixture (Madanil
et al., 2020).

However, these methods still have certain limitations.
Traditional algorithms such as ANN and SVM are based on
the Empirical Risk Minimization (ERM) criterion, which requires
a sufficient number of learning samples to obtain a good learning
effect. The limitations of the small sample test environment, such
as poor adaptability and generalization, affect the prediction
accuracy to a certain extent (Yeh, 2006; Li et al., 2015; Xu
et al., 2017; Dutta et al., 2018; Prayogo, 2018). Therefore, it is
necessary to study a more effective prediction method. Extreme
learning machine (ELM) is a particular type of neural network.
ELM only needs to set the number of hidden layer nodes of the
network. During the algorithm’s execution, there is no need to
adjust the input weight of the network and the threshold of the
hidden element. The weight and threshold can be initialized
randomly, and the corresponding output weight can be
obtained. It is only necessary to solve a linear least-squares
problem. Its solution can be directly generated by the
generalized inverse matrix from the hidden layer output
matrix, and the optimal solution is unique. Due to this
particular network design, ELM has a simple structure and has
few training parameters, fast learning speed, and excellent
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generalization performance compared to other traditional
algorithms that pursue infinite training samples. Because of
this "ultimate learning speed," it is named the extreme learning
machine (Huang et al., 2006; Huang et al., 2011).

Currently, the application of the ELM is mainly focused on
fault diagnosis, defect detection, and sound analysis, but rarely
in the field of material performance prediction (Bhat et al.,
2008; Yaseen et al., 2018). Yaseen et al. proposed a high-
precision prediction model of foam concrete compressive
strength based on extreme learning machine (ELM) and
compared it with multiple adaptive regression spline
(MARS), M5 tree model, and support vector regression
(SVR) (Yaseen et al., 2018). Jian Tang et al. compared
several prediction modeling methods of concrete
compressive strength based on extreme learning machine
(ELM). The compressive strength of concrete is simulated
and verified by various methods (Tang et al., 2014).

The number of data samples in the current literature is
relatively small, and the model parameters need to be further
optimized. Most approaches are for the strength prediction of
ordinary concrete, while rubber fiber concrete with multivariable
indicators has not yet been involved. Therefore, it is necessary to
establish a prediction model and achieve a more accurate and
useful performance prediction of rubber fiber concrete based on
ELM. This article, combined with the orthogonal test results of
rubber fiber concrete mix, collected relevant concrete mix test
data. A predictionmodel based on ELMwas established to predict
rubber fiber concrete’s mechanical properties and compared with
other methods such as BP neural network. The model has high
accuracy and robustness. It moves concrete mixing towards high
efficiency, intelligence, and generalization. The work further
enhances the level of innovation and the application of
concrete mixing.

LABORATORY EXPERIMENT

Raw Materials of Rubber Fiber Concrete
As a multicomponent composite material, rubber fiber concrete
mainly consists of cement, fly ash, coarse aggregate, fine
aggregate, rubber particles, polypropylene fiber, and additives.

Cement (P·O 42.5 ordinary Portland cement produced by Conch
Cement Co., Ltd.) was used. The chemical composition and
performance indexes are shown in Tables 1 and 2.

Fly ash: grade II fly ash, material properties shown in Table 3.
Coarse aggregates: calcareous gravel, 5–25 mm continuous

gradation, apparent density 2,720 kg/m3.
Fine aggregate: river sand, fineness modulus 2.55, apparent

density 2,650 kg/m3.
Rubber particles: 10 orders (1140 kg/m3), 20 orders (1120 kg/

m3), 40 orders (1130 kg/m3).
Polypropylene fiber: single bundle of staple fiber (12 mm).
Admixture: polycarboxylic acid superplasticizer, water

reduction rate 20%.

Testing Scheme and Mix Ratio
According to "Specification for Mix Proportion Design of
Ordinary Concrete" JGJ55-2011, the mix design of the C40
benchmark concrete was carried out to determine each cubic
meter of concrete with a water-cement ratio of 0.4, a sand ratio
of 42%, and a slump of 100–120 mm. The rubber aggregate
was mixed into the concrete to replace part of the fine
aggregate with an equal volume (substitution rate is
10–30%). The polypropylene fiber was added in the way of
external reference. For the multi-index mixed design of rubber
fiber concrete, it is necessary to investigate the influence of the
three factors of rubber content, polypropylene fiber content,
and rubber particle size on the mechanical properties of
concrete at different levels. The L9 (33) orthogonal test
scheme was used to optimize the mix proportion of the
three levels of each influencing factor and seek the optimal
level combination. The levels of various factors are shown in
Table 4.

In Table 4, the three levels and the three factors of rubber
content, polypropylene fiber content, and rubber particle size are
represented by A1, A2, A3, B1, B2, B3, and C1, C2, C3,
respectively. The comprehensive combination test was carried
out; the total number of mix ratio groups is 27. From the L9 (33)
orthogonal test plan, the number of mix ratio groups obtained is
nine groups, as shown in groups 1–9 of Table 5. Another nine sets
of mix ratio designs were made in work, such as groups 10–18 in
Table 5.

TABLE 1 | Cement chemical components (%).

Composition SiO2 Al2O3 Fe2O3 CaO MgO SO3 Na2Oeq

Content 22.51 4.6 3.59 64.18 2.85 0.66 0.58

TABLE 2 | Cement performance index.

Standard consistency
water consumption/%

Stability (Boiling method) Setting time/min Flexural
strength/MPa

Compressive
strength (MPa)

Initial setting Final setting 3 d 28 d 3 d 28 d

27.3 Qualified 178 249 4.5 8.3 22.0 49.2
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Testing Content and Method
The testing content considers the 28-day compressive strength,
split tensile strength, and flexural strength tests of rubber fiber
concrete. According to the mix ratio of each group listed in
Table 5, the rubber fiber concrete specimens were prepared by
referring to "Standard for Test Methods of Mechanical Properties
of General Concrete" GB/T 50081-2016. For each mixing ratio of
1–18 groups in Table 5, 3 groups of test blocks (3 test blocks for
each group) were prepared for compressive, split tensile, and
flexural strength tests. The size of the compression and splitting

test block is 150 × 150 × 150 mm, and the size of the bending test
block is 100 × 100 × 400 mm. The concrete was mixed with a
forced mixer. The test piece was vibrated and compacted on the
shaker, left to stand for 24 h in the room, and the numbering
mark was marked. Then it was put into the standard curing room
for 28 days. After that, the concrete strength test was performed.
The various test blocks produced are shown in Figure 1.

Experimental Results and Analysis
(1) Testing Results

TABLE 3 | Physical and chemical performance indexes of fly ash.

Loss on
ignition/%

Fineness/% Water requirement
ratio/%

Water content/% Density/kg/m3 SO3/% f-CaO/%

2.97 18 92 0.9 2,480 0.51 0.8

TABLE 4 | Factor levels of orthogonal test.

Level Influencing factors

A-Rubber content/% B-polypropylene fiber content/kg/m3 C- rubber particle size/orders

1 10 0.6 10
2 20 0.9 20
3 30 1.5 40

TABLE 5 | Mix ratio of rubber fiber concrete.

Group Water/kg/
m3

Cement/kg/
m3

Fly
ash/kg/m3

Water
reducer/kg/

m3

Gravel/kg/
m3

Sand/kg/
m3

Rubber
content/kg/

m3

Polypropylene
fiber

parameters/kg/
m3

Rubber
particle
size/
orders

1-A1B1C1 185 416 46 9.3 1,016 662 30.67 0.6 10
2-A2B1C2 185 416 46 9.3 1,016 589 61.34 0.6 20
3-A3B1C3 185 416 46 9.3 1,016 515 92.01 0.6 40
4-A1B2C2 185 416 46 9.3 1,016 662 30.67 0.9 20
5-A2B2C3 185 416 46 9.3 1,016 589 61.34 0.9 40
6-A3B2C1 185 416 46 9.3 1,016 515 92.01 0.9 10
7-A1B3C3 185 416 46 9.3 1,016 662 30.67 1.5 40
8-A2B3C1 185 416 46 9.3 1,016 589 61.34 1.5 10
9-A3B3C2 185 416 46 9.3 1,016 515 92.01 1.5 20
10-
A1B3C1

185 416 46 9.3 1,016 662 30.67 1.5 10

11-
A2B2C1

185 416 46 9.3 1,016 589 61.34 0.9 10

12-
A3B1C1

185 416 46 9.3 1,016 515 92.01 0.6 10

13-
A1B1C2

185 416 46 9.3 1,016 662 30.67 0.6 20

14-
A2B3C2

185 416 46 9.3 1,016 589 61.3 1.5 20

15-
A3B2C2

185 416 46 9.3 1,016 515 92.01 0.9 20

16-
A1B2C3

185 416 46 9.3 1,016 662 30.67 0.9 30

17-
A2B1C3

185 416 46 9.3 1,016 589 61.34 0.6 30

18-
A3B3C3

185 416 46 9.3 1,016 515 92.01 1.5 30
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Three test blocks with the same conditions were taken as a
group, and the average of each test value was taken as the
strength. The 28-day compressive, split-pull, and flexural
strength of each group mix ratio is shown in Table 6, and the
test process is shown in Figure 2.

(2) Orthogonal Range and Variance Analysis

The orthogonal test results (group 1–9) in Table 6 were
analyzed by range and variance. The analysis results are
shown in Table 7. In Table 7, from the range analysis, the
three influencing factors of the rubber content (A),
polypropylene fiber content (B), and rubber particle size (C)
were considered. The rubber content (A) is the largest for the
effect of strength. The rubber particle size (C) is the second, and
the effect of the polypropylene fiber content (B) is the smallest.
The order of each influencing factor is rubber content > rubber
particle size > polypropylene fiber content. From the analysis of
variance, for the 28-day compressive strength, factor A is highly
significant, while the other two factors are not significant. For the
28-day flexural strength, factor A is highly significant, the
influence of factor C is significant, and factor B is no
significant; for the 28-day tensile strength, factor A is
exceptionally significant and factor C is highly significant. The

primary and secondary factors influenced by variance analysis are
consistent with the results of range analysis.

According to the concrete performance index mentioned
above and the comprehensive analysis results of range and
variance, it shows that the influence of rubber content A on
the three essential indexes of 28-day compressive, flexural, and
tensile strength is extremely significant, and A1 is the best. The
rubber content selects A1. The fiber content B only has a
significant effect on the compression ratio, and it is best when
B2 is used. However, there is no significance to the other
indicators. The fiber content selects B2. The rubber particle
size C has a significant effect on the 28-day flexural and
tensile strength, and it is best when C1 is used. Nevertheless,
there is also no significance for the other indicators. The rubber
particle size selects C1. Therefore, the optimal ratio of rubber fiber
concrete obtained by comprehensive analysis is A1B2C1.

INFLUENCE OF VARIOUS FACTORS ON
RUBBER CONCRETE PERFORMANCE

From the orthogonal test in Table 7, it can be seen that the
influencing factors (A, B, C) of different levels (k1, k2, k3) affect
the basic mechanical properties of rubber fiber concrete
(compressive, flexural, and splitting tensile strength).

Analysis of Influence on Compressive
Strength
It can be seen from Table 7 that the change in the number of
rubber particles (A) has a significant effect on the compressive
strength of rubber fiber concrete. With the increase in the number
of rubber particles (A), the concrete cube’s compressive strength
shows a significant downward trend. The change of rubber content
on the compressive strength of concrete is that the rubber particles
are a low-strength organic elastic and hydrophobic material. It has
low compatibility with the cement matrix and has a large difference
in strength. There is a weak bonding surface inside the concrete,
and the effective bearing area is reduced, resulting in decreasing the
strength of the concrete.

The most important effect of polypropylene fiber parameter
(B) on concrete strength is the weak interface effect and the crack
resistance effect. It can be seen from Table 7 that the change in

FIGURE 1 | Test block for the strength test.

TABLE 6 | Testing strength of rubber fiber reinforced concrete.

Orthogonal group 28-day strength index/MPa Other groups 28-day strength index/MPa

Compression Bending Tensile Compression Bending Tensile

1-A1B1C1 40.5 5.21 3.11 10-A1B3C1 40.3 5.33 2.99
2-A2B1C2 33.6 4.65 2.62 11-A2B2C1 34.1 4.89 2.67
3-A3B1C3 27.1 3.83 2.17 12-A3B1C1 28.4 4.48 2.49
4-A1B2C2 37.4 5.28 2.93 13-A1B1C2 37.6 5.21 3.02
5-A2B2C3 29.3 4.42 2.45 14-A2B3C2 33.5 4.68 2.50
6-A3B2C1 28.2 4.54 2.38 15-A3B2C2 26.6 4.18 2.33
7-A1B3C3 37.5 4.99 2.73 16-A1B2C3 37.4 5.02 2.81
8-A2B3C1 34.3 4.86 2.58 17-A2B1C3 29.7 4.39 2.58
9-A3B3C2 26.8 4.16 2.24 18-A3B3C3 27.0 3.87 2.04
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concrete compressive strength and fiber content is not a simple
linear relationship with the increase of polypropylene fiber
content. Generally, it first decreases and then rises. When
polypropylene fiber’s content increases from level k1 (0.6 kg/
m3) to level k2 (0.9 kg/m3), the compressive strength is reduced.
The weak interface effect of polypropylene fiber is evident at this
stage. When the fiber content continues to increase to the level k3
(1.5 kg/m3), the concrete compressive strength rises again. The
crack resistance effect of polypropylene fiber plays a leading role
at this stage.

The impact of different rubber particle size (C) on concrete’s
compressive strength is also apparent. It can be seen from Table 7
that the compressive strength of the concrete mixed with rubber
particles of particle size level k1 (10 mesh) is significantly higher
than the particle size level k2 (20 mesh) and level k3 (40 mesh)
when the rubber volume is the same. It can be seen that the
addition of coarse rubber particles reduces the degree of
weakening of the compressive strength of concrete while the

specific surface area of fine rubber particles is relatively large. The
larger the weak bonding surface formed between the cement
matrix, the more unfavorable the compressive strength of
concrete.

Analysis of Influence on Flexural Strength
It can be seen from Table 7 that the increase in the number of
rubber particles (A) has a significant adverse effect on the flexural
strength of concrete. In addition, the flexural strength of concrete
decreases significantly with the decrease of the rubber particle size
(C). The magnitude of the decrease in strength is even more
remarkable when the rubber particle size changes from level k2
(20 mesh) to level k3 (40 mesh). With the increase of the content
of polypropylene fiber (B), the flexural strength of concrete shows
a change law that first increases and then gradually decreases. The
crack resistance effect of polypropylene fiber is dominant within a
particular content range, which strengthens toughness and delays
the development of cracks. The flexural strength of concrete

TABLE 7 | Range and variance analysis results.

Indicator Factors k1 k2 k3 R Primary
and sec-
ondary
factors

Optimal
ratio

Deviation
sum of
squares

Freedom Variance F Significant Threshold

Compression
strength

A 38.47 31.67 27.37 11.10 A > C > B A1B1C1 187.94 2 93.97 38.78 ** F0.01 (2, 2) �
9 9.0; F0.05
(2, 2) � 19.0;
F0.10 (2, 2)

� 9.0

B 33.73 30.90 32.87 2.83 12.65 2 6.32 2.61
C 34.33 32.60 30.57 3.76 21.33 2 10.66 4.40

Bending
strength

A 5.16 4.64 4.18 0.98 A > C > B A1B2C1 1.45 2 0.725 57.15 **
B 4.56 4.75 4.67 0.19 0.05 2 0.025 2.00
C 4.87 4.70 4.41 0.46 0.32 2 0.159 12.55 *

Tensile
strength

A 2.92 2.55 2.26 0.66 A > C > B A1B1C1 0.66 2 0.329 271.3 ***
B 2.63 2.59 2.52 0.11 0.02 2 0.010 8.54
C 2.69 2.60 2.45 0.24 0.09 2 0.044 36.26 **

FIGURE 2 | Specimen strength testing.
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increases with the increase of fiber content. However, as
polypropylene fiber’s content increases, the weaker interfaces
in the concrete matrix will increase, and the weak interface
effect of polypropylene fibers is more prominent and gradually
approaches the crack resistance effect. When the content exceeds
the critical value, the polypropylene fiber’s weak interface effect
plays a leading role. It leads to a decrease in the strength of the
concrete matrix, which shows that as the amount of
polypropylene fiber increases, the flexural strength of concrete
gradually decreases.

Analysis of Influence on Splitting Tensile
Strength
It can be seen from Table 7 that the impact of rubber particle
content (A) and rubber particle size (C) on the split tensile
strength of concrete is similar to the impact mentioned earlier
on flexural and compressive strength. By increasing the rubber
particles’ content and decreasing the rubber particle size, the
splitting tensile strength of concrete shows a significant
downward trend. Especially, the change of rubber particle
content has a significant impact on the splitting tensile
strength of concrete. The polypropylene fiber (B) content has
no noticeable effect on the split tensile strength of concrete. The
splitting strength of concrete decreases slightly with the increase
of fiber content, but the overall change is not significant. Besides,
it can be seen that, for the split tensile strength of concrete, the
content of rubber particles (A) is hugely significant, the size of
rubber particles (C) is significant, and the content of
polypropylene fiber (B) is not significant.

STRENGTH PREDICTION MODEL BASED
ON EXTREME LEARNING MACHINE

The orthogonal test’s optimal mix ratio of rubber fiber concrete
was finally determined through the range and variance analysis of
the orthogonal test. The influence of various factors on the
mechanical properties of concrete was also analyzed. However,
the relationship between these influence factors and concrete
strength is highly nonlinear. The traditional mixing ratio test
method is time-consuming and labor-intensive and difficult to
adapt to the requirements of using diverse and differentiated raw
materials to prepare new concrete. The extreme learning machine
(ELM) has good nonlinear mapping capabilities and reasonable
response to the nonlinear relationship between concrete strength
and various influencing factors. It can realize rapid and accurate
prediction of the strength of rubber fiber concrete. Therefore,
ELMmodeling will be carried out in this article, and the obtained
model will be used for the strength prediction of rubber fiber
concrete.

Extreme Learning Machine Principle and
Parameter Optimization
Given a set of M training samples (xi, yi), xi ∈ Rn, yi ∈ R, the
number of hidden layer neurons isN in a single-layer feedforward

neural network, and the activation function of each hidden layer
neuron is f. Then the output of the network can be expressed as
follows:

∑N
i�1

βi f (wixj + bi), j ∈ [1,M], (1)

where wi and bi are the weight and bias of the i neuron in the
hidden layer, respectively; βi is the output weights.

To reduce the error between prediction and target, the
following relationship can be established:

∑N
i�1

βi f (wixj + bi) � yj, j ∈ [1,M]. (2)

Equation (2) can be simplified as follows:

Hβ � Y , (3)

where β � (β1 . . . βN)
T; Y � (y1 . . . yN)

T; H is the output matrix of
the hidden layer. It can be defined as follows:

H � ⎛⎜⎝ f (w1x1 + b1) / f (wNx1 + bN)
« 1 «

f (w1xM + b1) / f (wNxM + bN )
⎞⎟⎠. (4)

The output weight β can be obtained from β � H†Y according
to (3), where H† is the Moore-Penrose generalized inverse of the
matrix H.

Given a training sample set, activation function, and the
number of hidden layer neurons, the ELM algorithm’s specific
steps are as follows:

(1) The hidden layer weight matrix wi and bias matrix bi are
from probability distribution random setting.

(2) The hidden layer output matrix H is calculated.

(3) The output weight matrix β
∧
is calculated from β

∧ � H†Y.

The hidden layer activation function of extreme learning
machine usually chooses the Gaussian radial basis function.
The prediction accuracy of the model is related to the
selection of hyperparameters. The adjustment and
optimization of hyperparameters usually use the Bayesian
Optimization Algorithm (BOA). The optimization steps are as
follows:

(1) Define the objective function: X* � argmax f(x).
(2) Randomly generate n initial sample points of

hyperparameters. The hyperparameter distribution obeys
the Gaussian distribution. UsingGaussian process obtains
the prior distribution of the initial hyperparameters.

(3) The acquisition function is based on the principle of
maximizing the expected increment and selecting the
expected X that maximizes the expected function.

(4) Calculate the actual target value of X. If the conditions are
met, output X is the optimal hyperparameter. Otherwise,
add X and the real value to the initial sampling point and
repeat the previous step.
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Construction of Prediction Model
The orthogonal experiment design adopted a representative
factor parameter combination for the experiment, and the
resulting sample set was highly representative and
comprehensive in the information. The complete sample set
met the ELM algorithm’s requirements for the
representativeness of the training samples, and the accurate
prediction model can be obtained through a small number of
training samples. This paper combined the 27 sets of data
obtained from the above-mentioned orthogonal test of the
rubber fiber concrete’s mix ratio and used searching engines
such as Springer, Google, and CNKI (China National Knowledge
Infrastructure) to collect the cement-based rubber data in recent
years. The concrete mix ratio test data (a total of 87 data sets as
shown in Table 8) was established, which contains 114 data sets.
The selection of the data set’s variable factors is based on the
available information of all test data samples. According to the
orthogonal test of the rubber fiber concrete’s mix ratio, the rubber
content, rubber particle size, and polypropylene fiber content are
variable factors that affect the strength of concrete and the cement
content water-cement ratio factors. The rubber aggregate is
mixed in the same volume instead of as part of the fine
aggregate, sand changes with the rubber content. Therefore,
the data set established includes the above six influencing
variables.

The data set’s six variables were taken as input parameters
with the MATLAB program platform, and 28-day-old concrete
compressive, flexural, and tensile strength were taken as output
parameters. The rubber fiber concrete’s strength prediction
model was constructed. Since the established data set is from
different researchers, a small part of the data samples lacks

concrete flexural strength or tensile strength output variables.
For making the data samples in the data set consistent and
facilitating the model’s training, the statistical regression
relationship between the concrete compressive strength and its
tensile strength or flexural strength was used based on the
relevant literature. For a data sample with incomplete output
variables, the tensile or flexural strength can be calculated from
the sample’s compressive strength. Thus, the three output
variables were complemented. The influencing variables and
their statistical descriptions are shown in Table 9.

To improve the efficiency and generalization characteristics of
the model, first, the data set is normalized, and then about 80% of
the original data set is randomly selected as the training and
validation data set (90 data samples) and 20% as the test data set
(24 data samples). A 5-fold cross-validation method is used to
train and verify the ELM prediction model. The training and
verification data set containing 90 data samples is randomly
divided into five parts, and four of them are used as the
training set and one as the verification set. The average of the
five verification results is used to estimate the accuracy of the
algorithm (performance index of the prediction model). Finally,
the test data set is used to evaluate or validate the model. When
the number of samples is limited, this method can effectively
avoid over-learning and under-learning states. Thereby it can
obtain a prediction model with good robustness and good
generalization ability.

Model Performance Evaluation
In the process of training and testing, this article adopts the
correlation coefficient (R2), relative standard deviation (RSD),
and mean relative error (MRE) to evaluate the effectiveness and
prediction accuracy of the model. The equation is as follows:

R � ∑n
i�1(xi − x)(yi − y)�����������∑n

i�1(xi − x)2
√ �����������∑n

i�1(yi − y)2√ , (5)

RSD �

���������������
1

n − 1
∑n
i�1

(xi
yi
− 1)2

√√
× 100%, (6)

MRE � 1
n
∑n
i�1

∣∣∣∣∣∣∣∣xiyi − 1

∣∣∣∣∣∣∣∣ × 100%, (7)

where xi is the measured or experimental value of concrete
strength, yi is the predicted value or model output, x is the

TABLE 8 | 87 groups of rubber fiber concrete’s test data sets.

References Rubber content/% Rubber size (mm) Fiber content/kg/m3 No. of samples

Chen et al. (2014) 20 1–2 0.6, 1.2 12
Xue et al. (2016) 15 2–4 2, 4, 6, 8, 10 18
Li (2016) 5, 10, 15 0.18, 0.42, 2 0, 1 10
Huang (2017) 2, 5, 8 1.18 2, 4, 6 9
Bai et al. (2018) 4, 10, 15 0.42, 0.84, 2 2, 6, 10 9
Hossain et al. (2019) 5, 10 Maximum size of 4.75 9.1, 18.2 15
Wang et al. (2019) 10, 15 0.6–2.8 4.5 4
Mo et al. (2020) 0, 4.5 0.38 0, 1.6, 3.2, 4, 6 10

TABLE 9 | Input and output variable in the data set.

Variables Min Max Average

Input Cement/kg/m3 262 528 353.72
W/C ratio 0.35 0.59 0.46
Fine aggregate/kg/m3 448 688 573.26
Rubber content/kg/m3 0 129.2 28.0
Rubber particle size/mm 0.18 4.75 1.37
Fiber content/kg/m3 0 18.2 4.93

Output 28-day compressive strength 13.3 56.8 31.19
28-day tensile strength 1.33 3.93 2.51
28-day flexural strength 1.79 6.84 4.03

Frontiers in Materials | www.frontiersin.org January 2021 | Volume 7 | Article 5826358

Zhang et al. Rubber Fiber Concrete Strength Prediction

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles#articles


average measured or experimental value, y is the average
predicted value, and n is the number of collected data samples.

Efficient models with good predictive capabilities have lower
RMSE and MAPE values and higher R values. The RSD is not
more than 12%, and theMRE is not more than 10%. The accuracy
of the model is relatively ideal.

RESULTS AND DISCUSSION

The concrete strength value predicted and the actual concrete
strength value in the data set are shown in Figures 3–5. Figure (a),
(b), and (c) are the linear least squares regression lines between
the output predicted value and the actual value of the ELMmodel

for training, verification, and testing. R2, RSD, and MRE of each
linear regression equation are listed in Table 10. It can be seen
that the prediction of training, verification, and testing of the
ELM model are close to the actual values. R2 values of each data
set are relatively high, and the RSD andMRE are less than 10%. In
considering multiple influencing parameters, the model can well
establish the nonlinear relationship between input and output
variables. It has good robustness for predicting the complex
behavior of rubber fiber concrete mechanical properties.

According to Table 10, the average of the comprehensive
performance indicators R2, RSD, and MRE of each stage of the

FIGURE 3 | Correlation between predicted and experimental
compressive strengths: (A) training dataset, (B) validation dataset, and (C)
testing dataset of ELM.

FIGURE 4 | Correlation between predicted and experimental tensile
strengths: (A) training dataset, (B) validation dataset, and (C) testing dataset
of ELM.
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ELM model are 0.9644, 6.75%, and 5.22%, respectively. For
verifying the ELM’s generalization performance and
computational efficiency, this study also used BP neural
network (BPNN) and support vector machine (SVM) to
establish a prediction model and conducted a comparative
experiment of the three algorithms.

For obtaining the best structure of the prediction model and
ensuring its generalization, it is necessary to optimize the
hyperparameters of the model. Levenberg–Marquardt method
and Bayesian regularization were used to determine the optimal
weight of the ANN model. A 5-fold cross-validation method was

used to determine the optimal number of neurons in the
network’s hidden layer to avoid over-fitting and make the
model have a better generalization and minimum prediction
bias. The number of neurons in the input layer and the output
layer is determined by the input and output parameters. The
kernel function is a Gaussian function. For SVM’s optimal
penalty parameter C and RBF kernel parameter gamma, it is
also obtained by optimizing the 5-fold cross-validation method.
The cross-validation method can effectively avoid the over-fitting
and under-fitting of the model.

The comprehensive performance indicators of each algorithm
model are shown in Table 11. The training time of the model
ignores super-parameter optimization. It can be seen from
Table 11 that the extreme learning machine has the highest
prediction accuracy compared with BP neural network and
support vector machine. The training time is similar to that of
a support vector machine and shorter than the BP neural network.
It indicates that the generalization ability of extreme learning
machines is more suitable for predicting the strength of rubber
fiber concrete. BP neural network has the longest training time, but
its accuracy is slightly higher than that of support vector machine.

Wu Xiaoping et al. used Bayesian optimization of the extreme
learning machine prediction model to predict concrete
compressive strength. The model has higher accuracy and
higher efficiency of model training than classic algorithms
(Wu et al., 2020). The BP neural network has the highest
prediction accuracy in the experiment, but the calculation
performance is the worst, and the training time is the longest.
The training time of extreme learning and support vector
machine is similar, and both are shorter than the BP neural
network. Jian Tang et al. compared several concrete compressive
strength prediction model methods based on extreme learning
machines (ELMs) (Tang et al., 2014). The results show that the
conventional ELMs algorithm has fast modeling speed and high

FIGURE 5 | Correlation between predicted and experimental flexural
strengths: (A) training dataset, (B) validation dataset, and (C) testing dataset
of ELM.

TABLE 10 | Results of performance criteria of the ELM model.

Dataset R2 RSD/% MRE/%

Compressive strengths Training 0.9902 5.17 3.89
Validation 0.9723 7.89 6.15
Testing 0.9505 8.79 6.43

Tensile strengths Training 0.9707 6.34 4.75
Validation 0.9652 4.29 3.67
Testing 0.9432 6.68 5.40

Flexural strengths Training 0.9807 5.93 4.63
Validation 0.9687 5.79 4.43
Testing 0.9384 9.85 7.65

TABLE 11 | Performance criteria comparison of different machine-learning
models.

Algorithm R2 RSD/% MRE/% Running time/s

ELM 0.9644 6.75 5.22 2.5301
BPNN 0.9601 7.66 5.91 30.0715
SVM 0.9489 10.03 7.48 2.8540
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prediction accuracy and can be used to predict concrete’s
compressive strength. Thus, our experimental results are
basically consistent with the above-mentioned literature.

CONCLUSIONS

The rubber fiber concrete mix was designed with the orthogonal
test method. The rubber fiber concrete’s mix test data were
collected based on published articles in recent years. A data
set containing 114 sets was obtained. Based on the data set
and the MATLAB platform, a strength prediction model of
rubber fiber concrete was established with ELM. The
prediction performance of the model was also verified.

The conclusions can be drawn as follows:

(1) Orthogonal experiment design adopts a representative
factor parameter combination for the experiment, and the
obtained sample set is highly representative and complete
in its information. The orthogonal test method was used to
design the mix ratio of rubber fiber concrete and its 28-day
strength test for obtaining the complete data sample. The
complete sample set meets the ELM algorithm’s
requirements for representing the training samples, and
an accurate prediction model can be obtained through a
small number of training samples.

(2) There is a highly nonlinear relationship between rubber fiber
concrete’s strength and its influencing factors, challenging to
deal with using traditional regression methods. With the
orthogonal experiment, there are six influencing factors;
rubber content, rubber particle size, and polypropylene
fiber content are used as input; and 28-day concrete
compression, splitting tensile, and flexural strength are
used as output. One strength prediction model was
established based on ELM. The experimental results show
that themodel has strong nonlinearmapping ability and high
prediction accuracy. It can be used as an effective method for
the strength prediction of the rubber fiber concrete.

(3) Since the generalization accuracy of the ELM model is
greatly affected by the hyperparameters, the ELM needs
further research in the super-parameter optimization

method and the reduction of optimization time. It is
also difficult to carry out a large number of mix ratio tests
in the laboratory. The complete rubber fiber concrete’s
mix ratio test data samples currently available are limited.
Although ELM has outstanding advantages over other
small sample modeling methods, the prediction accuracy
of this method still depends on the number and quality of
learning samples. Therefore, it is necessary to
continuously enrich the learning samples to further
improve the prediction model’s reliability in future
practical applications.
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