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The fact that high-strength concrete is easily to crack has a significant negative impact on
its durability and strength. This paper gives an optimum design method of high-strength
concrete for improving crack resistance based on orthogonal test artificial neural networks
(ANN) and genetic algorithm. First, orthogonal test is operated to determine the influence of
the concrete mix proportion to the slump, compressive strength, tensile strength, and
elastic modulus, followed by calculating and predicting the concrete performance using
ANN. Based on results from orthogonal test and ANN, a functional relationship among
slump, compressive strength, tensile strength, elastic modulus, and mix proportion has
been built. On this basis, using the widely used shrinkage and creep models, the functional
relationship between the concrete cracking risk coefficient and the mix proportion is
derived, and finally genetic algorithm is used to optimize the concrete mix proportion to
improve its crack resistance. The research results showed that, compared with the control
concrete, the cracking risk coefficient of the optimized concrete was reduced by 25%, and
its crack resistance was significantly improved.
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INTRODUCTION

The characteristics of high-strength concrete are the low water-binder ratio and the extensive use of
mineral admixtures. Therefore, compared with ordinary concrete, high-strength concrete has the
properties of rapid early hydration, rapid internal temperature rise, rapid reduction of internal humidity,
and large shrinkage, which leads to very prominent early cracking phenomenon (Yun-sheng et al.,
2002). The early cracking of concrete seriously reduces its durability and safety, so it is of great
significance to prevent early cracking of concrete (Bentz et al., 1999; Wittmann, 2002; Liu et al., 2012).

There are many factors that may affect the cracking of concrete, such as its compressive and tensile
strength, elastic modulus, shrinkage, and creep (Zhang et al., 2012; Huang et al., 2020; Li et al., 2020; Xin
et al., 2020). Bruce Menu studied the effect of shrinkage of concrete on cracking. He found that when the
water-to-binder ratio decreases, the shrinkage of concrete increases as well as the risk of cracking (Menu
et al., 2020). Inamullah Khan found that the creep coefficient has a significant impact on the cracking risk
of concrete. The higher the creep coefficient, the lower the cracking risk of concrete (Khan et al., 2019).
Bendimerad et al. (2020) have observed the same phenomenon. The concrete mix proportion determines
its performance (Li et al., 2019). In order to reduce the cracking risk of concrete, it is an effectivemethod to
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directly optimize themix proportion. However, the current methods
to improve the crack resistance of concrete are mainly use of internal
curing and incorporation of fibers (Schroefl et al., 2012; Feng et al.,
2019). The research on the optimization of concrete mix proportion
is urgently needed.

Artificial neural networks (ANN) have already been applied in
the field of concrete research, mainly to predict various properties
of concrete (Yeh, 2007; Far et al., 2009; Mangalathu et al., 2018;
Abellan Garcia et al., 2020). For example, Chithra applied
regression analysis and ANN, respectively, to predict the
compressive strength of concrete mixed with copper slag. The
results show that results predicted by ANN were more accurate
(Chithra et al., 2016). Xu et al. (2019) used ANN to predict the
performance of recycled aggregate concrete under triaxial loads.
Zhou et al. (2020) used ANN to predict the interface bond
strength between fiber and concrete. It has been found that
the prediction results of the ANN had high accuracy and good
application effects. Many studies have shown that it is feasible to
predict the performance of concrete through ANN.

Genetic algorithm (GA) is a parallel random search
optimization that combines the principles of biological
evolution and genetic mechanism. As a kind of biological
modeling algorithm, GA has the advantages of global search,
which consideration of whether the function is continuous,
differentiable and derivable is unnecessary. Therefore, GA has
been put into extensive use in various fields (Shahnewaz et al.,
2016; Chowdhury and Garai, 2017). In the field of concrete, GA is
often used to optimize the mix proportion of concrete.
Considering the cost, strength, workability and carbonation
durability of concrete, Wang (2019) used GA to optimize the
content of fly ash and mineral powder, and obtained satisfactory
results. Lee et al. (2009) applied GA to optimize the mix
proportion of concrete, which reduced the price of unilateral
concrete. Rita et al. (2018) also optimized the concrete mix
proportion by GA to reduce the project cost. However, there
are only few reports on the use of GA to optimize the mix
proportion of concrete in order to improve crack resistance.

This paper optimizes the mix proportion of concrete based on
orthogonal test, ANNandGA to improve its cracking resistance. First,
orthogonal tests are used to determine the effects of concrete
components on slump, compressive strength, tensile strength, and
elastic modulus. Then ANN is used to predict the above properties.
Based on the results of orthogonal test and ANN prediction, the
functional relationship between concrete slump, compressive strength,
tensile strength, and elastic modulus and the mix proportion was
fitted. On this basis, shrinkage and creepmodels are used to derive the
functional relationship between the concrete cracking risk coefficient
and the mix proportion. In the end, GA is used to optimize the
concrete mix ratio to proportion its crack resistance.

MATERIALS AND METHODS

Material
The cement used is PO42.5 Portland cement and its compressive
strength of 28 days is 47.3MPa. The type of fly ash is Class F Class I,
while the water demand ratio is 88%. The slag grade is S95 and its

7 days activity index is 78%. The pozzolanic activity index of silica
fume is 120%. The chemical composition of cement, fly ash, slag, and
silica fume is shown in Table 1. The fine aggregate is made of finely
graded river sand with a fineness modulus of 2.65. The coarse
aggregate is made of continuously graded calcareous gravel with a
particle size of 5–20mm. The type of water reducing agent is
polycarboxylate superplasticizers with a water reduction rate of 33%.

Concrete Mix Proportion
The goal is to prepare concrete with its compressive strength
above 60 MPa. In order to establish a mathematical model
between the performance of concrete and its mix proportion,
six factors affecting the mix proportion have been determined,
expressed as x1–x6: water to binder ratio (x1), sand ratio (x2), the
amount of cement per cubic meter of concrete (x3), the ratio of fly
ash mass to cementitious materials mass (x4), the ratio of slag
mass to cementitious materials mass (x5), and the ratio of silica
fume mass to cementitious materials mass (x6). In order to
effectively analyze the influence of various factors on the
performance of concrete, orthogonal experiments are used.
Since each factor is selected at five levels, a total of 25 sets of
experiments are designed. The concrete mix proportion is shown
in Table 2. The mass of polycarboxylate superplasticizers in all
proportions is 2.4% of the mass of cementitious materials.

TABLE 1 | The chemical components of cementitious materials (wt%).

CaO SiO2 Al2O3 Fe2O3 SO3 MgO Loi

Cement 59.1 24.2 7.6 2.9 2.1 1.9 2.2
Fly ash 3.2 57.2 25.5 7.7 0.5 2.2 3.7
Slag 42.5 38.7 7.5 0.4 0.9 6.9 3.1
Silica fume 0.4 93.4 0.4 0.8 0.5 0.3 4.0

TABLE 2 | Concrete mix proportion.

No x1 (%) x2 (%) x3 (kg/m3) x4 (%) x5 (%) x6 (%)

E1 27 43 240 15 11 4
E2 27 46 270 20 14 5.5
E3 27 49 300 25 17 7
E4 27 52 330 30 20 8.5
E5 27 55 360 35 23 10
E6 29 43 270 25 20 10
E7 29 46 300 30 23 4
E8 29 49 330 35 11 5.5
E9 29 52 360 15 14 7
E10 29 55 240 20 17 8.5
E11 31 43 300 35 14 8.5
E12 31 46 330 15 17 10
E13 31 49 360 20 20 4
E14 31 52 240 25 23 5.5
E15 31 55 270 30 11 7
E16 33 43 330 20 23 7
E17 33 46 360 25 11 8.5
E18 33 49 240 30 14 10
E19 33 52 270 35 17 4
E20 33 55 300 15 20 7
E21 35 43 360 30 17 5.5
E22 35 46 240 35 20 7
E23 35 49 270 15 23 8.5
E24 35 52 300 20 11 10
E25 35 55 330 25 14 4
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Method
Slump, Strength, and Elastic Modulus
The slump is measured in accordance with the test method in
“Standard for test method of performance on ordinary fresh
concrete” (GB/T 50080-2016). Compressive strength, tensile
strength, and modulus of elasticity are determined in
accordance with the test methods in “Standard for test
methods for mechanical properties on ordinary concrete” (GB/
T 50081-2016). The size of the sample used in the compressive
strength test is 100 × 100 × 100 mm. The size of the sample used
in the tensile strength and elastic modulus test is 100 × 100 ×
300 mm. The loading rate of compressive strength test and tensile
strength test is 0.8 MPa/s.

Shrinkage and Creep
The test method of shrinkage and creep refers to the “Standard for
test methods of long-term performance and durability of
ordinary concrete” (GB/T 50082-2009). The size of the sample
for shrinkage test is 100 × 100 × 515 mm. The size of specimen for
creep test is 100 × 100 × 400 mm, while the loading stress is 40%
of its compressive strength. The curing temperature for shrinkage
and creep is 20 ± 2°C, and the relative humidity is 65%. The
drying shrinkage test and creep test were carried out when the
concrete age was 1 day. The creep performance of concrete is
usually expressed in terms of the creep coefficient and its
calculation method is shown in Eq. 1:

φt � (ΔLt − ΔL0
Lb

)/ε0 (1)

where φt is the creep coefficient after loading for t days; ΔLt is the
total deformation after loading for t days; ΔL0 is the initial
deformation during loading; Lb is the measured gauge length.
εt is the same age shrinkage and ε0 is the initial strain during
loading.

Early Cracking Test
A slab cracking frame is used to detect the cracking of concrete, as
shown in Figure 1. The size of the slab cracking frame is 800 ×
600 × 100 mm. The side plates, bolts and are applied to fix the
steel formwork of the cracking frame, as well as the crack inducer
to induce the early concrete cracking caused by shrinkage.

PREDICTION OF CONCRETE PROPERTIES
BY ARTIFICIAL NEURAL NETWORKS

Artificial Neural Networks Calculation
Process
The process of ANN is shown in Figure 2A. First, the system
assigns weights to each group of input data. Then trains according
to the set parameters to calculate the predicted value. After that,
calculate the error between the predicted value and the test value.
If the error meets the requirements, the predicted value is output.
If the error is too large, the system resets weights and re-predict
until the error meets the requirements. The simplest forward
artificial neural network could be divided into three layers: input

layer, hidden layer, and output layer, as shown in Figure 2B. The
role of the input layer is to input data. Hidden layer is for data
analysis and calculation. Output layer is to output predicted
values. Calculation method of the ANN is explained in detail
by following.

Processing of Input Data
When the magnitude of each group of input data differs greatly,
the accuracy of the system’s prediction is reduced. Therefore, in
order to avoid this situation, it is necessary to normalize the input
data on each neuron. The data is converted to [0,1], as shown in
Eq. 2 (Yan and Lin, 2016).

xi � xi − xmin

xmax − xmin
(2)

where xi is the ith data before normalization. xmin and xmax are the
minimum and maximum of all data before normalization
respectively. xi is the ith data after normalization.

Weights and Activation Function
Based on the characteristics of neurons, it is needed to assign
weights to input data and set activation functions (also known as
transfer function).

The sum of data is expressed by weight and input data, as
shown in Eq. 3.

netj � ∑n
i�1

xiωij (3)

where ωij is the weight from the ith neuron in the previous layer to
the jth neuron in the current layer. netj represents the sum of the
weighted inputs of the jth neuron.

After the neuron receives the information, data needs to be
processed and transmitted. At this time, an activation function
needs to be set to output data. The general form of the activation
function is shown in Eq. 4.

FIGURE 1 | Schematic diagram of slab cracking frame test.
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y � f (netj + bj) (4)

where bj is the bias.
Commonly used activation functions are Purelin function (Eq.

5), Sigmoid function (Eq. 6), Tansigmoid (Eq. 7) function, and
Relu function (Eq. 8).

Purelin(x) � x (5)

Sigmoid(x) � 1
1 + e−x

(6)

Tansigmoid(x) � ex − e−x

ex + e−x
(7)

Relu(x) � max(0, x) (8)

Training: When the predicted value calculated by the system is
not equal to the expected value, an error Eerror occurs. The weight
between the input layer and the hidden layer is ωij, the weight
between the hidden layer and the output layer is ωjk, d represents
the expected output, then:

Eerror � 1
2
∑l
k�1

⎧⎨⎩d − f ⎡⎢⎢⎣∑m
j�0

ωjkf⎛⎝∑n
i�0

ωijxi⎞⎠⎤⎥⎥⎦⎫⎬⎭2

(9)

According to Eq. 9, the error is determined by the weight of
each layer. Therefore, training is a process which continuously
adjusts the weight of each layer to make the error meet the
requirements. The principle of weight adjustment is to reduce the
error. Therefore, the adjustment of the weight is proportional to
the gradient of the error, see Eqs 10 and 11.

Δωij � −χ zEerror

zωij
(10)

Δωjk � −χ zEerror

zωjk
(11)

where χ is the learning efficiency, and the value is between (0,1).

Artificial Neural Networks Model
Establishment
It can be seen from Artificial Neural Networks Calculation
Process that the model first requires the ANN structure, which
is the number of nodes in each layer (the number of neurons) and
the number of hidden layers. For the prediction of concrete
performance, a simple ANN structure of three layers can meet
the requirements (Ji et al., 2006). The experiment set six variables,
so the number of nodes in the input layer is 6. Although it is
necessary to predict multiple properties of concrete, only one type
is predicted at a time. Therefore, the number of nodes in the
output layer is 1. The number of nodes in the hidden layer can be
determined by Eq. 12 (Peng and Gao, 2018). In this case, the
number of nodes in the hidden layer is 3. The ANNmodel used in
the test is shown in Figure 2C, where x1–x6 represent the water to
binder ratio, sand ratio, the amount of cement per cubic meter of
concrete, the ratio of fly ash mass to cementitious materials mass,

FIGURE 2 | The process and models of ANN. (A) the process of ANN,
(B) a typical neuron Model, (C) the ANN model used in the test.
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the ratio of slag mass to cementitious materials mass and the ratio
of silica fume mass to cementitious materials mass, respectively.

m � log2 n (12)

Where m is the number of hidden layer nodes, and n is the
number of input layer nodes.

The weight is set to a value between [−1,1]. For the prediction
of concrete performance, many studies have shown that the
Tansigmoid function has good applicability (Yan et al., 2017).
Therefore, this paper chooses the Tansigmoid function as the
activation function. The learning efficiency is an empirical value,
which is 0.1 in this paper (Yan and Lin, 2016).

Performance Assessment Indices
The performances of ANN prediction are usually evaluated by
Mean Absolute Error (MAE), Mean Square Error (MSE), Root
Mean Square Error (RMSE), and Correlation Coefficient (R2),
which is shown in Eqs 13–16. MAE demonstrates the residual
error between the target values and predicted values for each data
set. MSE demonstrates the mean of the sum of squares of the
errors of the target values and predicted values. RMSE
demonstrates the square root of average residual error between
the target values and predicted values for each data set. The
smaller the MAE, MSE, and RMSE, the larger R2, the better the
prediction performance of ANN.

FIGURE 3 | Cracking state of concrete at the age of 3 days. (A) E1, (B) E6, (C) E11, (D) E16, (E) E21.
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MAE � 1
N

∑N
i�1
|Ei − Pi| (13)

MSE � 1
N

∑N
i�1

(Ei − Pi)2 (14)

RMSE �

�������������
1
N

∑N
i�1

(Ei − Pi)2
√√

(15)

R2 �
[ ∑N

i�1
(Ei − E)(Pi − P)]2

∑N
i�1

(Ei − E)2 ∑N
i�1

(Pi − P)2 (16)

where Ei is the ith experimental value, E is the average of the
experimental values, Pi is the ith predicted value, P is the average
of the predicted values.

Artificial Neural Networks Prediction
Results
Table 3 shows the test results and ANN prediction results of all
the 25 groups of concrete properties in Concrete Mix Proportion.
In the table, Exp represents the test results and Pre represents the
ANN prediction results. Table 4 shows the MAE, MSE, RMSE,
and R2 values of slump, compressive strength, tensile strength,
elastic modulus, and shrinkage. For each performance, the error
between the predicted value and the test value was very small and
R2 was above 0.94, which shows that ANN has very high accuracy
in predicting concrete performance.

OPTIMIZATION CONCRETE FOR CRACK
RESISTANCE BY GENETIC ALGORITHM

Mathematical Model Between Concrete
Performance and Mix Proportion
The objection of this paper was to improve crack resistance of
concrete, thus we should find a criterion to evaluate it firstly.
According to the concrete cracking criterion (Bendimerad et al.,
2016), the cracking risk coefficient η is used to evaluate the early
anti-cracking performance of concrete, as shown in Eq. 17:

η � E(t) · εsh−e(t)
ft(t) (17)

where ft(t) is the tensile strength of concrete at age of t, E(t) is the
elastic modulus of concrete at the age of t, εsh−e(t) is the effective
shrinkage strain at the age of t.

When η < 0.7, the concrete does not crack; when 0.7 ≤ η ≤ 1.0,
the concrete may crack; when η > 1.0, the concrete cracks.

Studies have shown (Andrade et al., 1999; Gao et al., 2013) that
the effective shrinkage strain is the result of the combined effect of

TABLE 3 | Concrete performance test results and ANN prediction results.

No Slump (mm) Compressive strength
(MPa)

Tensile strength (MPa) Elastic Modulus (MPa)

Exp Pre Exp Pre Exp Pre Exp Pre

E1 248 251 76.1 76.4 6.74 6.59 37.37 37.08
E2 255 252 77.3 76.7 6.92 6.81 37.43 36.75
E3 252 254 77.4 76.9 6.97 7.02 37.46 37.15
E4 261 257 78.4 77.1 7.16 7.09 37.51 37.93
E5 258 260 78.6 77.3 7.25 7.10 37.54 37.01
E6 260 258 72.8 71.1 6.79 6.80 37.10 37.93
E7 262 261 70.3 71.6 6.61 6.54 37.01 36.14
E8 265 266 72.4 73.0 6.56 6.57 37.07 36.76
E9 256 257 74.8 76.2 6.83 6.81 37.25 38.02
E10 261 261 71.9 72.2 6.53 6.68 37.05 36.23
E11 267 270 66.9 66.1 6.04 6.07 36.33 37.16
E12 259 260 69.9 69.6 6.31 6.39 36.97 35.78
E13 262 261 68.4 70.1 6.07 6.14 36.43 36.63
E14 266 268 66.5 66.0 5.87 5.90 36.06 36.02
E15 271 271 66.4 66.9 5.93 5.95 36.01 36.35
E16 263 263 66.2 64.7 5.84 5.72 35.97 36.08
E17 265 267 67.9 65.3 5.89 5.70 36.41 36.71
E18 272 273 65.7 63.8 5.64 5.66 35.95 36.74
E19 278 276 63.9 63.9 5.48 5.29 35.54 35.01
E20 263 265 66.1 65.2 5.74 5.64 35.96 36.86
E21 272 273 63.1 63.5 5.18 5.37 35.25 34.62
E22 277 279 62.2 63.3 5.06 5.33 35.07 35.88
E23 268 268 62.6 63.5 5.27 5.45 35.13 35.72
E24 276 274 63.2 63.6 5.36 5.47 35.27 34.96
E25 280 277 61.8 63.7 5.05 5.08 34.99 35.27

Note: Exp is the experimental value and Pre is the predicted value.

TABLE 4 | Assessment indices for prediction.

Properties MAE MSE RMSE R2

Slump 1.650 3.897 1.974 0.941
Compressive strength 0.987 1.369 1.170 0.952
Tensile strength 0.097 0.014 0.120 0.970
Elastic modulus 0.125 0.021 0.145 0.972
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concrete shrinkage strain and creep strain (the strain produced by
concrete creep), as shown in Eq. 18:

εsh−e(t) � εsh(t) − εcreep(t, t0) (18)

where t and t0 are the age of concrete and the age of concrete
when loaded respectively, εsh(t) is the shrinkage strain at the age t,
εcreep(t, t0) is the shrinkage strain caused by creep during the
concrete age (t-t0).

Bentz (2008) believes that the relationship between creep
strain and effective shrinkage strain can be expressed by the
creep coefficient, as shown in Eq. 19:

φ(t, t0) � εcreep(t, t0)
εsh−e(t, t0) (19)

where φ(t, t0) is the creep coefficient during the early age of
concrete (t-t0).

Therefore, the relationship between the effective shrinkage
strain εsh−e(t, t0) in the age (t-t0) and the shrinkage strain εsh(t)
with creep coefficient φ(t, t0) can be expressed as Eq. 20.

εsh−e(t, t0) � εsh(t)
1 + φ(t, t0) (20)

Substituting Eq. 20 into Eq. 17, the concrete early cracking
risk prediction model shown in Eq. 21 is obtained.

η � E(t) · εsh(t)
ft(t) · [1 + φ(t, t0)] (21)

Therefore, η is affected by elastic modulus, tensile strength
shrinkage and creep coefficient s.

To apply GA to optimize concrete mix, a mathematical model
between concrete performance and mix proportion is required.
The result of GA optimization is highly dependent on the
accuracy of the mathematical model. Therefore, a large
amount of data is required for fitting to ensure the accuracy of
the model. Many studies use literature data for fitting. However,
since the composition of concrete and the performance of
materials varies greatly, using other research’s data may result
in large errors. In Prediction of Concrete Properties by ANN, we
showed that ANN has a very high accuracy in predicting concrete
performance. Therefore, 81 sets of experiments based on the
principle of orthogonal experiment were designed. ANN is
applied to predict the slump and compressive strength, tensile
strength and elastic modulus. The concrete mix proportion and
ANN prediction results are shown in Supplementary Material.

Based on the test and ANN prediction results, the
mathematical model between slump, compressive strength,
tensile strength, elastic modulus and mix ratio parameters is
obtained by multiple linear fitting method. Many factors affect

shrinkage and creep. There are many factors affecting shrinkage
and creep, and the fitting is difficult. Therefore, the functional
relationship between shrinkage and creep and concrete mix
proportion is derived based on the existing formula. Thus, the
functional relationship between cracking risk coefficient and
concrete mix proportion is obtained according to Eq. 21.

Mathematical Models of Slump, Compressive
Strength, Tensile Strength and Elastic Modulus
Studies have shown that the slump, compressive strength, tensile
strength and elastic modulus of concrete have a linear
relationship with the mix proportion, as it is shown in Eq. 22.
a0–an are the coefficients to be fitted, and x represents the
concrete mix proportion (Lim et al., 2004).

y � a0 + a1x1 + a2x2 + a3x3 + ... + anxn (22)

Therefore, based on the results from experiments and ANN
predictions, a multiple linear fit is performed on Eq. 17. The fit
results and R2 are shown in Table 5. The R2 of all fitting results is
greater than 0.950, indicating that the fitted formula has very high
accuracy.

Mathematical Model of Shrinkage
Shrinkage is affected by many factors. It is nearly impossible to
use multiple linear fitting to obtain the relationship between
shrinkage and mix proportion. At present, there are many widely
used shrinkage models, such as EN 1992-2-2:2005 model, CEB-
FIP (MC 2010) model, Bazant-Panula model and Dilger model.
Among them, Dilger model is suitable for high performance
concrete with water to cement ratio ranging from 0.15 to 0.40 and
using superplasticizer and silica fume, which is consistent with
the type of concrete studied in this paper. Therefore, Dilger model
is used in this paper (Gilliland and Andrew, 2000).

The Dilger model divides the total shrinkage into two parts:
basic shrinkage and drying shrinkage, as shown in Eqs 23–25.

εcs(t, ts) � εbs(t) + εds(t, ts) (23)

εbs(t) � εbs0βbs(t) (24)

εds(t) � εds0βRHβds(t, ts) (25)

where

εbs0 � 700 × exp(−3.5w/c) + 120

βbs(t) �
t0.7

16.7 × (− 0.04 + 1
3
w/c) + (1.04 − 1

3
w/c)t0.7

εds0 � (100w/c)2(0.8 × f 1.05cu )− 0.23 + 200

βRH � 1.22 − 1.75 × (RH
100

)3

TABLE 5 | Multiple linear fitting results between concrete properties and mix proportion.

Properties Multiple linear fitting results R2

Slump y � 2.165x1 + 0.277x2 − 0.028x3 + 0.51x4 − 0.153x5 + 0.005x6 + 182.437 0.953
Compressive strength y � −1.896x1 + 0.049x2 + 0.021x3 + 0.069x4 + 0.153x5 + 0.014x6 + 119.611 0.961
Tensile strength y � −0.23x1 − 0.003x2 + 0.002x3 − 0.004x4 + 0.006x5 + 0.047x6 + 12.419 0.987
Elastic modulus y � −0.288x1 + 0.013x2 + 0.003x3 − 0.008x4 − 0.002x5 + 0.053x6 + 43.571 0.955
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βds(t, ts) �
(t − ts)0.6

0.0016(v/s)2[6.42 + 1.5 ln(ts)] + (t − ts)0.6

t and ts, respectively, indicate the age of concrete and the age of
the beginning of drying shrinkage; w/c is the water to binder ratio
(x1); fcu is the cube compressive strength;

fcu � − 1.896x1 + 0.049x2 + 0.021x3 + 0.069x4 + 0.153x5
+ 0.014x6 + 119.611

RH is the relative humidity, which 60% has been applied,
therefore βRH � 0.739; v/s is the body-to-surface ratio, which is
22.8 in this paper.
Based on the above equations, the relationship between concrete
shrinkage and mix proportion can be derived (Eq. 26)

εcs(t, ts) � [700 × exp(−3.5x1) + 120]
× t0.7

16.7 × (−0.04 − 1
3
x1) + (1.04 − 1

3
x1)t0.7 + 0.842

× {(100x1)2[0.8 × (−1.896x1 + 0.049x2 + 0.021x3

+ 0.069x4 + 0.153x5 + 0.014x6 + 119.611)1.05]−0.23

+ 200} × (t − ts)0.6
0.832 × [6.42 + 1.5 ln(ts)] + (t − ts)0.6

(26)

Mathematical Model of Creep
Creep is also affected by many factors (Geng et al., 2018). There
are many creep models such as CEB-FIP (1990) model, EN 1992-
1-1:2004, ACI-209R model, etc. The CEB-FIP (1990) model
contains many parameters with a wide range of applications.
Therefore, it is applied in this paper (Betonbau, 2013) as shown in
Eq. 27.

φ(t, t0) � φ(∞, t0)βc(t − t0) (27)

where

φ(∞, t0) � β(fc) · β(t0)ϕRH

β(fc) � 16.76
f 0.5c

β(t0) � 1
0.1 + t0.20

ϕRH � [1 + 1 − RH/100

0.1(2A/u)1/3 · α1] · α2

βc(t − t0) � [ t − t0
βH+(t − t0)]0.3

βH � 1.5 × [1 + (1.2 × RH
100

)18] × 2A
u

+ 250 × α3

α1 � (35
fc
)0.7

α2 � (35
fc
)0.2

α3 � (35
fc
)0.5

t and t0, respectively; indicate the age of concrete and the age since
loading starts; fc is the cube compressive strength of the cube,
described as:

fc � − 1.896x1 + 0.049x2 + 0.021x3 + 0.069x4 + 0.153x5
+ 0.014x6 + 119.611

RH is relative humidity, which in this article is 65%;A is the cross-
sectional area of the member; u is the perimeter of the member
exposed to the air; Based on the equations above, the relationship
between concrete creep coefficient and mix proportion can be
derived (Eq. 28):

φ(t, t0) � 16.76

(−1.896x1 + 0.049x2 + 0.021x3 + 0.069x4 + 0.153x5 + 0.014x6 + 119.611)0.5

× [1 + 1 − RH/100

0.1(2A/u)1/3 · ( 35
−1.896x1 + 0.049x2 + 0.021x3 + 0.069x4 + 0.153x5 + 0.014x6 + 119.611

)0.7]
× ( 35

−1.896x1 + 0.049x2 + 0.021x3 + 0.069x4 + 0.153x5 + 0.014x6 + 119.611
)0.2

× 1
0.1 + t0.20

× t − t0{1.5 × [1 + (1.2 × RH
100

)18] × 2A
u

+250 · ( 35
−1.896x1 + 0.049x2 + 0.021x3 + 0.069x4 + 0.153x5 + 0.014x6 + 119.611

)0.5} + (t − t0)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

0.3

(28)

TABLE 6 | Experimental value and predicted value of concrete properties at the age of 3 and 7 days.

No Tensile strength (MPa) Elastic modulus (MPa) Shrinkage Creep coefficient Cracking risk
coefficient

Exp Pre Err Exp Pre Err Exp Pre Err Exp Pre Err Exp Pre Err

E1 4.58 4.47 2.4 28.7 27.6 3.8 346 337 1.6 0.641 0.658 2.7 1.32 1.26 4.9
5.73 5.52 3.7 34.5 33.3 3.5 498 490 2.6 0.715 0.742 3.8 1.75 1.70 2.9

E6 4.41 4.50 2.0 26.7 27.3 2.2 323 319 1.2 0.652 0.673 3.2 1.18 1.16 2.3
5.47 5.56 1.6 33.2 32.9 1.0 487 482 1.0 0.733 0.759 3.5 1.71 1.62 4.9

E11 4.21 4.01 4.7 26.1 26.7 2.3 317 303 4.4 0.728 0.695 4.5 1.14 1.19 4.7
5.13 4.94 3.7 32.7 32.1 1.8 471 478 1.5 0.802 0.784 2.2 1.67 1.74 4.5

E16 3.98 3.87 2.8 26.3 25.9 2.8 284 289 1.8 0.761 0.733 3.7 1.11 1.19 3.6
4.86 4.78 1.6 32.5 31.6 1.5 452 467 3.3 0.845 0.827 2.1 1.64 1.69 3.1

E21 3.31 3.44 3.9 24.7 25.4 2.8 271 278 2.6 0.782 0.759 2.9 1.13 1.17 2.8
4.11 4.24 3.2 29.5 30.8 4.4 449 459 2.2 0.881 0.857 2.7 1.71 1.80 4.8

Note: Exp is the experimental value, Pre is the predicted value and Err (Unit: %) is the error between Exp and Pre. The upper and lower data indicate that the concrete age is 3 and 7 days
respectively.
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Mathematical Model of Cracking Risk Coefficient
The calculation of cracking risk coefficient is shown in Eq. 21.
εsh(t) and φ(t, t0)can be calculated by Eqs 26 and 28. E(t) [ft(t)]
can be expressed as a function of 28 days elastic modulus (tensile
strength) and age t, as shown in Eqs 29 and 30.

E(t) � 3, 500 + 4, 300

×
������������������������������������{exp[0.2 × (1 − ����

28/t
√ )]}2 × (E28/19.4)3×10

√
(29)

f (t) � ft,28 × exp[0.2 × (1 − ����
28/t

√ )] (30)

where

E28 � − 0.288x1 + 0.013x2 + 0.003x3 − 0.008x4 − 0.002x5
+ 0.053x6 + 43.571

ft,28 � − 0.23x1 − 0.003x2 + 0.002x3 − 0.004x4 + 0.006x5
+ 0.047x6 + 12.419

Therefore, the cracking risk coefficient can be expressed as a
function of concrete mix proportion and age:

η � f (x1, x2, x3, x4, x5, x6, t, t0, ts) (31)

Model Validation
The relationship between tensile strength, elastic modulus,
shrinkage, creep coefficient, cracking risk coefficient and

FIGURE 4 | Application of genetic algorithm toolbox.

TABLE 7 | Range of independent variables.

Independent variables Value range

x1 (water to binder ratio) 25–55 (%)
x2 (sand ratio) 40–55 (%)
x3 (the amount of cement) 200–450 (kg/m3)
x4 (the proportion of fly ash) 0–30 (%)
x5 (the proportion of slag) 0–30 (%)
x6 (the proportion of silica fume) 0–15 (%)

FIGURE 5 | Changes of cracking risk coefficient with evolution times.
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concrete mix ratio and age are all derived from existing models. In
order to verify the accuracy of the model, select E1, E6, E11, E16,
E21 five groups of mix proportion from Table 2 to test. The
performance of each group of 3 and 7 days are measured and
compared with the predicted value of the model. Results were
shown in Table 6. When the concrete age is 3 days, the maximum
errors between the experimental and predicted values of the
tensile strength, elastic modulus, shrinkage, creep coefficient,
and cracking risk coefficient of the five groups are 4.7, 3.8,4.4,
4.5, and 4.9%, respectively. When the concrete age is 7 days, the
maximum errors between the experimental and predicted values
of the tensile strength, elastic modulus, shrinkage, creep
coefficient and cracking risk coefficient of the five groups are
respectively 3.7, 4.4, 3.3, 3.8, and 3.8%. The errors between the
experimental values and predicted values of various properties at
different ages are all less than 5%, which indicates that the model
established in this paper is accurate.

The cracking risk factor was calculated by Eq. 28 from the
tensile strength, elastic modulus, shrinkage rate, and creep
coefficient, and the Results was shown in Figure 4. It is
obvious that the cracking risk coefficient of the five groups of
concrete with 3-day age is already greater than 1, Which means
that the concrete cracks. Therefore, in order to verify the accuracy
of the calculation results, the five groups were tested with a slab-
plate cracking frame to observe the cracking situation when the
concrete reached an age of 3 days, and the results were shown in
Table 6. There were cracks circled with red ellipse in the five
groups of concrete, indicating that the calculation results of the
cracking risk coefficient were accurate.

Model Establishment of Genetic Algorithm
After building the mathematical model between concrete
performance and mix proportion, the objective function and
constraint function are further determined, after which GA
can be used to optimize concrete mix proportion. The process
of GA is shown as following. First create a population, then
calculate the fitness of each individual. Continue to evolve
through selection, crossover and mutation, which finally leads
to the optimal solution.

The purpose of this paper is to improve the anti-cracking
performance of high-strength concrete. In this case, the
cracking risk coefficient is taken as the objective function.
It can be seen from Mathematical Model Between Concrete

Performance and Mix Proportion that the concrete has
cracked at the age of 3 days, thus the crack resistance
performance of the concrete with the age of 3 days is
optimized. It is necessary to meet the requirements of
slump and strength while improving the crack resistance.
Therefore, the slump and strength are taken as the
constraint function. The design slump is greater than
260 mm and the strength is greater than 60 MPa. The
independent variable is x1-x6, and their range of values is
shown in Table 7.

GA toolbox is used to optimize concrete mix proportion, as
shown in Figure 4. The objective function, constraint function,
number of variables, and variable value range are set in the A
area. The selection method, crossover probability, and
mutation probability are set in the B area, and in the
calculation process, keep the default settings for the
parameters in Options. The selection function is uniform,
and the method of crossover and mutation is constraint
dependent. The number of iterations and optimization
results are displayed in the C area.

Genetic Algorithm Optimization Results
When applying genetic algorithm to optimize the mix
proportion, the variation of the cracking risk coefficient
with the number of evolutions is shown in Figure 5. The
cracking risk coefficient dropped sharply in the first few
generations, while basically stabilized after 50 generations of
evolution, and stopped when the final number of evolutions
was 121. The minimum value of the cracking risk coefficient
was 0.974.

In order to compare the change of concrete performance
after optimization, a group of concrete proportion commonly
used in engineering is used as the control. Table 8 shows the
mix proportion of engineering concrete (named Control) and
optimized concrete (named Optimal). Through experiments,
the mechanical properties such as the compressive strength
and elastic modulus of the two groups of concrete were
determined, the cracking risk coefficient was calculated and
their results are shown in Table 9. The test result showed that
the slump and strength of the optimized concrete are 262 mm
and 71 MPa respectively, which meet the constraint
conditions. The cracking risk coefficient of Control is 1.276,
while that of Optimal is 0.951. The cracking risk coefficient of
Optimal was reduced by 25% to less than 1 compared with that
of Control, indicating that the concrete with an age of 3 days
switched from the inevitable cracking state to the state that
may not crack. The optimization effect is obvious. Figure 6
shows the slab-plate cracking frame test of Control and
Optimal. There were many cracks in the Control, while
Optimal had not cracked, indicating that the crack

TABLE 8 | Mix proportion of Control and Optimal.

No x1 (%) x2 (%) x3 (kg/m3) x4 (%) x5 (%) x6 (%)

Control 30 47 320 25 16.7 5.8
Optimal 34 43 374 18.5 21.5 9.8

TABLE 9 | Performance comparison between control and optimal.

No Slump (mm) Compressive strength (MPa) Tensile strength (MPa) Elastic modulus (GPa) Shrinkage (×10–6) Creep cofficiens η

Control 257 75 4.09 27.2 321 0.673 1.276
Optimal 262 71 3.95 25.7 258 0.764 0.951
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resistance of the optimized concrete was significantly
improved and the optimization goal were achieved.

CONCLUSION

(1) ANN is applied to predict concrete slump, compressive
strength, tensile strength and elastic modulus. Errors
between the predicted value and the test value were very

small and R2 was above 0.94, indicating that ANN is very
accurate in concrete performance prediction.

(2) Based on the test results andANNprediction results, the functional
relationship between slump, compressive strength, tensile strength
and elastic modulus and concrete mix proportion was established.
Based on the existing shrinkage and creep models, the functional
relationship between the shrinkage, creep coefficient and cracking
risk coefficient and the concrete mix proportion was derived. The
error between the test value and the model prediction value is
within 5%, indicating the accuracy of the model.

(3) GA is used to optimize the concrete mix proportion to
improve its crack resistance. The research results show
that the cracking risk coefficient of the optimized concrete
is significantly reduced compared with the that of commonly
used engineering concrete. The established GA optimized
concrete mix design method has a good applicability.
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