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We discuss the propagation of Rayleigh waves at the boundary of a semi-infinite elastic
lattice connected to a system of gyroscopic spinners. We present the derivation of the
analytical solution of the equations governing the system when the lattice is subjected to a
force acting on the boundary. We show that the analytical results are in excellent
agreement with the outcomes of independent finite element simulations. In addition,
we investigate the influence of the load direction, frequency and gyroscopic properties of
the model on the dynamic behavior of the micro-structured medium. Themain result is that
the response of the forced discrete system is not symmetric with respect to the point of
application of the force when the effect of the gyroscopic spinners is taken into account.
Accordingly, the gyroscopic lattice represents an important example of a non-reciprocal
medium. Hence, it can be used in practical applications to split the energy coming from an
external source into different contributions, propagating in different directions.
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1 INTRODUCTION

According to their original definition, Rayleigh waves are a class of elastic waves that propagate on
the surface of an infinite homogenous isotropic solid, and they are confined within a superficial
region whose thickness is comparable with their wavelength (Rayleigh, 1885). These waves are well
known by seismologists, since they are usually detected after the occurrence of an earthquake. They
are also observed in other common urban activities, such as construction and demolition works and
vehicular traffic, in addition to industrial processes and technologies, like mining exploration, non-
destructive testing and design of electronic instruments. In the literature, they have been studied in
depth especially with reference to continuous media (see, for instance, the classical treatizes by
Viktorov (1967), Achenbach (1973) and Graff (1975)).

Surface waves traveling on the free boundaries of periodic media are usually referred to as
Rayleigh-Bloch waves. They are of great importance in problems concerning the dynamic
propagation of cracks in discrete systems, as discussed by Marder and Gross (1995) and Slepyan
(2002) for uniform media and in successive works (Nieves et al., 2013) for non-uniform lattices.
Similar localized phenomena may play a substantial role in non-uniform crack propagation as
evidenced in (Piccolroaz et al., 2020), where lattice dissimilarity has been shown to promote or
diminish localized deformations around the faces of the crack. Trapped modes associated with
Rayleigh-Bloch waves in systems incorporating periodic gratings or periodic arrays of resonators
were analyzed by Porter and Evans (1999), Porter and Evans (2005), Linton and McIver (2002) and
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Antonakakis et al. (2014) for scalar problems, by Colquitt et al.
(2015) for vector systems and by Haslinger et al. (2017) and
Morvaridi et al. (2018) for plates.

Recently, there has been an increasing interest in the design
and fabrication of elastic media with unusual properties, often
referred to as metamaterials (see the recent works by Filipov et al.
(2015), Misseroni et al. (2016), Armanini et al. (2017), Bordiga
et al. (2018), Bacigalupo et al. (2019), Al Ba’ba’a et al. (2020),
Tallarico et al. (2020) and Wenzel et al. (2020) amongst others).
In this paper, we focus the attention on an elastic metamaterial
consisting of a triangular lattice connected to a system of
gyroscopic spinners. The presence of gyroscopic spinners
breaks the time-reversal symmetry of the system and makes
the medium non-reciprocal, as proved by Nieves et al. (2020).
We observe that the gyroscopic effect plays the role of magnetic
bias (Bi et al., 2011) or angular momentum (Sounas et al., 2013) in
linear non-reciprocal electromagnetic metamaterials and of
circulating fluids in acoustic linear circulators (Fleury et al., 2014).

Firstly introduced by Brun et al. (2012) and later developed by
Carta et al. (2014), a gyroscopic elastic lattice is a tunable system,
whose dispersive properties can be varied by changing the spin and
precession rates of the spinners. This type of metamaterial can be
utilized to force waves to propagate along a line, whose direction is
defined by the geometry of the medium (Carta et al., 2017).
Gyroscopic spinners can also be employed to design topological
insulators, where waves travel in one direction and are immune to
backscattering (Nash et al., 2015; Süsstrunk and Huber, 2015; Wang
et al., 2015; Garau et al., 2018; Lee et al., 2018; Mitchell et al., 2018;
Carta et al., 2019; Garau et al., 2019; Carta et al., 2020). Furthermore,
systems with gyroscopic spinners can be used to design coatings to
hide the presence of objects in a continuous or discrete medium
(Brun et al., 2012; Garau et al., 2019). In a recent work byNieves et al.
(2020), the dispersion analysis of Rayleigh waves in a semi-infinite
triangular gyroscopic lattice has been carried out. The non-
symmetry of the eigenmodes of the lattice’s particles at the free
boundary for positive and negative values of the wave number has
been linked to the non-symmetry of the system’s response to an
applied force, determined by means of finite element simulations. In
addition, a comparison with an effective gyroscopic continuum
discussed in that paper has corroborated the results for the
discrete system when low values of the wave number are considered.

In this paper, we present for the first time the analytical
derivation of the displacement field in a semi-infinite elastic
lattice incorporating gyroscopic spinners, focusing the
attention on Rayleigh waves. Conversely, the main objective of
previous papers (Garau et al., 2018, 2019) was related to the study
of topologically-protected waveforms in lattices incorporating
sub-domains with different values of the parameters of the
gyroscopic spinners. The analytical results of the present paper
are also verified with an independent finite element code. The
displacement field produced by a point load acting on the
boundary of the medium and the calculation of the energy
flow demonstrate that the considered system is non-reciprocal,
as the response of the forced lattice is not symmetric with respect
to the point of application of the concentrated load. The influence
of different physical quantities on the behavior of the gyroscopic
system is also investigated through a detailed parametric analysis.

While in (Nieves et al., 2020) the wave field produced by a
force on the boundary was determined numerically by using a
finite element code, here the response of the system is calculated
by means of a novel analytical formulation. The latter has many
advantages. First, it does not require Adaptive Absorbing Layers
(AAL) to prevent wave reflections at the boundaries of the
computational domain; in fact, AAL are frequency-dependent
and, as a consequence, their characteristic parameters need to be
tuned manually every time the frequency is changed. The
analytical formulation does not require the introduction of
fictitious boundaries as in finite element codes. Second, the
analytical formulation allows one to perform a parametric
analysis quickly and efficiently, a task that is not
straightforward in many finite element packages and that is
performed here. Third, analytical results are necessary to
validate the outcomes of finite element models. For these
reasons, it is envisaged that the proposed analytical approach
can be useful to the interested reader to tackle similar dynamic
problems in discrete elastic systems.

2 MATERIALS AND METHODS

The material under consideration consists of a semi-infinite two-
dimensional triangular lattice of masses m, linked by elastic
springs of stiffness γ, length L and whose inertia is negligible
in comparison with m. The planar and three-dimensional
representations of the lattice are shown in Figures 1A,C,
respectively. In addition, each mass is attached to a gyroscopic
spinner (see Figure 1B), whose configuration is described by the
Euler angles θ, ϕ and ψ, denoted as the nutation, precession and
spin angles, respectively. We assume that the nutation angle θ is
small (θ≪ 1), together with the displacement of the mass
attached to the spinner. Each gyroscopic spinner has length l,
moments of inertia I1 about the axis of revolution and I0 about the
other two principal axes passing through the spinner’s base.
Firstly derived by Carta et al. (2018) and Nieves et al. (2018),
the gyricity Ω is an independent parameter, representing the sum
of the initial precession and spin rates, that remains constant
throughout the motion: Ω � _ϕ + _ψ � Const. We also introduce
the effective gyricity Ω* � Ω[I1/(I0 +ml2)] and the effective mass
m* � m[1 + I0/(ml2)], that both include the inertial contribution
of the spinners.

In practice, such a lattice can be realized by constructing a
triangular array of masses (represented, for example, by spheres)
connected by thin elastic rods. At the bottom part of each mass a
cylindrical hole can be drilled, where the tip of the gyroscopic
spinner can be inserted. The connection needs to be frictionless,
so that the spinning motion of the gyroscope is not transmitted to
the mass, which can only move in the x1- or x2-direction without
rotating. The spinning motion of the gyroscopic spinner can be
applied by using an electric motor; in this way, its spin rate can
remain constant during the motion. Each gyroscopic spinner is
pinned at the base and its axis is parallel to the x3-direction in the
initial configuration.

The boundary of the semi-infinite lattice is subjected to an
oscillatory force of amplitude P and prescribed radian frequency
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ω0 (see Figure 1A), which generates Rayleigh waves localized at
the boundary and bulk waves propagating inside the medium.
The displacement of a generic particle, whose position is
identified by the multi-index n � (n1, n2)T, is denoted by
u(n1,n2)(t) and is a function of time t.

We introduce the following normalizations:

x � ~xL, u(n1 ,n2) � ~u(n1 ,n2)L, t � ~t
�����
m*/c√

,

ω0 � ~ω0

�����
c/m*
√

, Ω* � ~Ω*
�����
c/m*
√

, P � ~PcL,
(1)

where the tilde symbol indicates a dimensionless quantity. In the
following, the tilde is omitted for ease of notation and it is
assumed that all the appearing quantities are dimensionless.

2.1 Governing Equations of the Forced
Lattice in the Transient Regime
The equations of motion of a mass within the bulk of the lattice
are given in normalized form as (Garau et al., 2019)

€u
(n1 ,n2) � −Ω*R _u(n1 ,n2) + [a(1) · (u(n1+1,n2) + u(n1−1,n2) − 2u(n1 ,n2))a(1)

+ a(2) · (u(n1 ,n2+1) + u(n1 ,n2−1) − 2u(n1 ,n2))a(2)
+ a(3) · (u(n1−1,n2+1) + u(n1+1,n2−1) − 2u(n1 ,n2))a(3)],

n1, n2 ∈ Z, n2 > 0,
(2)

where

u(n1 ,n2)(t) � u(x1, x2, t), (3)

with

x1 � n1 + n2

2
, x2 �

�
3

√
n2

2
. (4)

Further, the dot denotes the time derivative, the vectors a(i)
(i � 1, 2, 3) are

a(1) � (1, 0)T, a(2) � (1/2, �
3

√
/2)T, a(3) � ( − 1/2,

�
3

√
/2)T, (5)

as shown in Figure 1A, and the matrix R is

FIGURE 1 | (A) Semi-infinite triangular array of masses, interconnected by elastic links and joined to gyroscopic spinners; a point force is applied on the boundary of
the medium. (B) Representation of a gyroscopic spinner attached to a lattice’s mass; θ, ϕ and ψ indicate the nutation, precession and spin angles, respectively. (C)
Three-dimensional sketch of the gyro-elastic lattice.
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R � ( 0 1
−1 0

). (6)

The governing equations for a mass belonging to the boundary
of the semi-infinite lattice (n2 � 0) are

€u
(n1 ,0) � −Ω*R _u(n1 ,0) + [a(1) · (u(n1+1,0) + u(n1−1,0) − 2u(n1 ,0))a(1)

+ a(2) · (u(n1 ,1) − u(n1 ,0))a(2) + a(3) · (u(n1− 1,1) − u(n1 ,0))a(3)]
+ P cos(ω0t)δn1 ,0, n1 ∈ Z,

(7)

where

δi,j � { 1, i � j,
0, otherwise,

(8)

is the Kronecker delta.
In addition, we assume that the lattice is at rest initially, namely:

u(n1 ,n2)(0) � _u(n1 ,n2)(0) � 0, n1, n2 ∈ Z, n2 ≥ 0. (9)

2.2 Alternative Representations of the
Governing Equations in the Transient
Regime
We introduce the integer p � 2 n1 and the transient solution in
the form

u(n1 ,n2)(t) � Re(U(p,n2)(t)eiω0t), (10)

where the time-dependent complex displacement amplitude
U(p,n2)(t) � U(p + n2, n2, t) satisfies the conditions of zero
initial velocity and displacement. In addition, note that
for α, β ∈ Z

U(p,n2)(t) n1 � n1 + α
n2 � n2 + β

� U(p+2α+β,n2+β)(t).
∣∣∣∣∣∣∣∣∣∣∣∣∣ (11)

In terms of these complex displacement amplitudes, Eqs. 2, 7
become:

− ω2
0U

(p,n2) + (2iω0I +Ω*R) _U(p,n2) + iω0Ω*RU(p,n2) + €U(p,n2)
� [a(1) · (U(p+2,n2) + U(p−2,n2) − 2U(p,n2))a(1)
+ a(2) · (U(p+1,n2+1) + U(p−1,n2−1) − 2U(p,n2))a(2)
+ a(3) · (U(p−1,n2+1) + U(p+1,n2−1) − 2U(p,n2))a(3)], n1, n2 ∈ Z, n2 > 0,

(12)

and

−ω2
0U

(p,0) + (2iω0I + Ω*R) _U(p,0) + iω0Ω*RU(p,0) + €U(p,0)
� [a(1) · (U(p+2,0) + U(p−2,0) − 2U(p,0))a(1)

+ a(2) · (U(p+1,1) − U(p,0))a(2)
+ a(3) · (U(p−1,1) − U(p,0))a(3)] + Pδp,0, n2 � 0, n1 ∈ Z,

(13)

where I is the identity matrix. In the last equation, the complex
representation for the applied force was used.

2.2.1 Laplace and Fourier Transformed Equations for
the Complex Displacement Amplitudes
Next, we apply the Laplace transform in time t to Eqs. 12,13 and we
use the fact that the displacement amplitudes satisfy zero initial
conditions. After this, we apply the discrete Fourier transform with
respect to n1 ∈ Z x1. In what follows, ULF

n2 denotes the Laplace and
discrete Fourier transform of the solution, defined as

ULF
n2(s, k1) � ∑∞

n1�−∞
∫∞

0
U(p,n2)(t)e−st+ik1(n1+n2/2)dt. (14)

Here, s and k1 are the Laplace and discrete Fourier
transform parameters, respectively. The Fourier transform
parameter k1 will also be referred to as the (normalized)
wave number.

For the equations in the bulk, we obtain that the complex
displacement amplitude satisfies

[(s + iω0)2I +Ω*(s + iω0)R]ULF
n2
(s, k1) � 2a(1)

· (cos(k1) − 1)ULF
n2
(s, k1)a(1) + a(2)

· (e−ik1/2ULF
n2+1(s, k1) + eik1/2ULF

n2−1(s, k1) − 2ULF
n2
(s, k1))a(2)

+ a(3) · (eik1/2ULF
n2+1(s, k1) + e−ik1/2ULF

n2−1(s, k1) − 2ULF
n2 (s, k1))a(3),

(15)

for n2 > 0, where the factor e(−n2/2) appearing throughout due to
the application of the discrete Fourier transform has been
cancelled (see Eq. 10). Similar conversions for Eq. 7
describing the forced boundary at n2 � 0 lead to

[(s + iω0)2I + Ω*(s + iω0)R]ULF
0 (s, k1) � 1

s
P + 2a(1)

· (cos(k1) − 1)ULF
0 (s, k1)a(1) + a(2) · (e−ik1/2ULF

1 (s, k1) − ULF
0 (s, k1))a(2)

+ a(3) · (eik1/2ULF
1 (s, k1) − ULF

0 (s, k1))a(3).
(16)

2.3 Analysis of the Forced Problem in the
Steady-State Regime
The transition to the steady-state regime (i.e. when t→ +∞) is
made by multiplying Eqs. 15, 16 by the Laplace transform
parameter s and taking the limit as s→ + 0. In this limit, we
define the discrete Fourier transform of the displacement
amplitude in the steady-state regime as

UF
n2(k1) � lim

s→+0
sULF

n2(s, k1), n2 ∈ Z, n2 ≥ 0. (17)

From Eqs. 15, 16, these transformed amplitudes then satisfy[ − (ω0 − i0)2I + iΩ*(ω0 − i0)R]UF
n2(k1) � 2a(1)

· (cos(k1) − 1)UF
n2(k1)a(1) + a(2) · (e−ik1/2UF

n2+1(k1)
+ eik1/2UF

n2−1(k1) − 2UF
n2(k1))a(2) + a(3) · (eik1/2UF

n2+1(k1)
+ e−ik1/2UF

n2−1(k1) − 2UF
n2
(k1))a(3), (18)

for n2 > 0 and
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[ − (ω0 − i0)2I + iΩ*(ω0 − i0)R]UF
0(k1) � P + 2a(1)

· (cos(k1) − 1)UF
0(k1)a(1) + a(2) · (e−ik1/2UF

1(k1) − UF
0(k1))a(2)

+ a(3) · (eik1/2UF
1(k1) − UF

0(k1))a(3),
(19)

for n2 � 0. Here, ω0 − i0 � lims→+0(ω0 − is), and in what follows
“i0”will represent a small imaginary termwith positive imaginary
part. The presence of this term enables one to determine how
singular points of the Fourier transformed solution approach the
real axis in the complex plane in passing to the steady-state
regime. In this limit, the location of these singular points in the
complex plane provides a way of ascertaining the direction of
waves propagating in the medium relative to the load position.
This is linked to the causality principle (see Section 3.3.2 in
(Slepyan, 2002) for more details).

2.4 Solution to the Transformed
Steady-State Forced Problem
The transformed amplitudes UF

n2 are sought in the form

UF
n2
� UΛn2 . (20)

Here, Λ is such that |Λ|< 1 for n2 ≥ 1, since we are considering
waves that decay into the bulk of the lattice.

The solution in Eq. 20 is inserted into Eq. 18 in order to find
the eigensolutions for waves in the bulk; using Eq. 19 it is then
possible to satisfy conditions at n2 � 0 and find the response to
the applied load. The full derivation is reported in the
Supplementary Material, where it is shown that the solution
has the form

UF
n2
� U0Λ

n2[M2]− 1P|ω0�ω0−i0, (21)

where U0, Λ andM2 are the matrices specified in Supplementary
Equations S8, S7, S11, respectively.

Note, the right-hand side of Eq. 21 defines a 2π -periodic (4π
-periodic) function for real k1 when n2 is even (odd).

If the gyricity is zero and the load acts in the horizontal
(vertical) direction, the solution in Eq. 21 describes a vector
function whose first component has even (odd) real and
imaginary parts as functions of k1, whereas the second
component has odd (even) real and imaginary parts. When
gyricity is non-zero, these components have neither even nor
odd real and imaginary parts. Such properties can be observed in
Figure 2, where we report the horizontal and vertical components
of the Fourier transform of the steady-state solution UF

0, when
Ω* � 0 (parts (A) and (B)) and Ω* � 1 (parts (C) and (D)) for a
load acting in the horizontal direction. By further inspection of
the analytical solution in Eq. 21, we pose the attention on the
numerator in hj (j � 1, 2), belonging to U0 and M2 (see
Supplementary Equations S9, S11), where the presence of
gyricity induces a competition between terms and the
amplitude of the components depends on the sign of the wave
number. This feature of the solution in Eq. 21 for Ω* ≠ 0 is
responsible for the symmetry breaking in the considered problem
(see also (Nieves et al., 2020)).

2.5 The Displacements in the Forced Lattice
and Associated Wave Phenomena
The displacements in the lattice can be found from inverting the
discrete Fourier transform, taking into account the periodicity
properties of Eq. 21. Then, the displacements of the nodes in the
lattice are given by

u(n1 ,n2)(t) � Re(U(n1 ,n2)eiω0t), (22)

where

U(n1 ,n2) �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
2π
∫π

−π
UF

n2
e−ik1(n1+n2/2)dk1, if n2 is even,

1
4π
∫2π

−2π
UF

n2
e−ik1(n1+n2/2)dk1, if n2 is odd.

(23)

Here, we note that U(n1 ,n2) � limt→+∞U(p,n2)(t), where p �
2 n1 and the complex time-dependent amplitude U(p,n2)(t) were
introduced in Section 2.2.

2.5.1 The Rayleigh Waves
Rayleigh waves carry some of the energy produced by the point
load in both directions along the boundary. The lack of
symmetry in the integral kernel of Eq. 23 with respect to the
zero wave number results in a disparity between amplitudes of
waves outgoing from the source to the left and to the right of
the load.

The Rayleigh waves are defined by the degenerate values of the
wave number of M2 for a given frequency ω0, and these singular
points are represented by the simple poles of Eq. 21. One can
check that there exist no other singular points of this function for
ω0 ≠Ω* (the special case ω0 � Ω* will be discussed later). On the
dispersion diagram, these simple poles correspond to the
intersections of the line ω � ω0 with the curve ω � ωR, where
ωR is given by

ωR �

�������������������������������������������������
3 sin2(k1

2
) + (Ω*)2

2
−

�����������������������������⎡⎣3 sin2(k1
2
) + (Ω*)2

2
⎤⎦2 − 6 sin4(k1

2
)√√√√√
,

(24)

and represents the dispersion curve of the system associated
with Rayleigh waves.1 The dispersion curve is plotted in
Figure 3.

In Figure 3 we limit our attention to the intervals of
periodicity for Eq. 21 mentioned in Section 2.4. Since ω0 − i0
is present in Eq. 21, as discussed in Section 2.3, the degenerate
wave numbers of Eq. 21 are perturbed and are slightly shifted
from the real k1 -axis in the complex plane. The causality
principle enables the new locations of these points to be
determined using information concerning the group velocity vg �

1The dispersion analysis for Rayleigh waves in a semi-infinite gyroscopic triangular
lattice is discussed in detail by Nieves et al. (2020), where it is explicitly shown that
the dispersion diagram remains symmetric.
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dωR/dk1 (see also (Slepyan, 2002)). In particular, if at the
previously mentioned intersection points vg > 0 (vg < 0) the
frequency ω0 and the corresponding wave number k1 define
waves propagating to the right (left) of the load. Additionally,
when the frequency is ω0 − i0, the associated degenerate value of
Eq. 21 is located at k1 − i0 (k1 + i0). Consequently, the dispersion
diagram in Figure 3 predicts that the degenerate values required
later for the computation of outgoing waves from the source are at
k1 � ± k1R ∓ i0 and k1 � ± (2π − k1R) ± i0.

Using the above information, we can calculate the form of the
Rayleigh waves produced by the point load by determining the
simple poles of Eq. 23 and employing the residue theorem to
compute Eq. 23 at a point located far from the application point
of the oscillatory force. With this approach, it is possible to show
that for n2 � 0

u(n1 ,0)(t) ∼ Im(A(0)
+ (k1R)ei(ω0t−k1Rn1)) for n1 →∞, (25)

where the term on the right-hand side is the Rayleigh wave
produced to the right of the point load. On the other hand, we
have

u(n1 ,0)(t) ∼ Im(A(0)
− (−k1R)ei(ω0t+k1Rn1+π)) for n1 → −∞, (26)

where the right-hand side defines the Rayleigh wave traveling
away from the load to the left. Here,

A(n2)
± (k*1) � ⎛⎝A(n2 , ± )

1 (k*1)
A(n2 , ± )

2 (k*1)⎞⎠ � lim
k1→k*1 ∓ i0

(k1 − k*1 ± i0)UF
n2
, (27)

� lim
k1→k*1∓i0

(k1 − k*1 ± i0)U0Λ
n2[M2]− 1P

∣∣∣∣∣∣∣∣∣
ω0�ω0−i0

. (28)

It can be verified that when Ω* ≠ 0∣∣∣∣∣A(n2 ,± )
1 (k*1)∣∣∣∣∣≠ ∣∣∣∣∣A(n2 ,± )

1 (−k*1)∣∣∣∣∣ and ∣∣∣∣∣A(n2 ,± )
2 (k*1)∣∣∣∣∣≠ ∣∣∣∣∣A(n2 ,± )

2 (−k*1)∣∣∣∣∣.
(29)

Hence, the resulting dynamic response at the boundary of the
semi-infinite gyro-elastic lattice to the far left and right of the point
load is different. Moreover, these outwardly-propagating boundary
waves cause the nodes to follow elliptical trajectories, as shown by
the eigenmode analysis developed by Nieves et al. (2020).

2.5.2 Bulk Wave Radiation
Waves are also radiated along the rows of the lattice in the
bulk. As n2 →∞, the amplitudes of such waves decrease. These

FIGURE 2 | Plots of the discrete Fourier transformof the steady-state solution inEq. 21, for n2 � 0. PartsA,C (B,D) show the first (second) component ofUF
0 forΩ* � 0 and

Ω* � 1, respectively. The real parts of the components are represented by black curves, whereas the imaginary parts are indicated by gray curves. The vertical dashed lines
represent the wave numbers ± k1R for which these components are singular, having simple poles. The computations are performed for ω0 � 0.8 and P � (1, 0)T.
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waves are again attributed to the singular points of Eq. 21
associated with k1 � ± k1R ∓ i0, ± (2π − k1R) ± i0, which also
define Rayleigh waves along the boundary. The form of the
waves depends on the row of the lattice considered and it is
obtained following the same procedure outlined in
Section 2.5.1.

For n2 > 0 with n2 even, the displacements to the far right of
the lattice behave as

u(n1 ,n2)(t) ∼ Im(A(n2)
+ (k1R)ei[ω0t− k1R(n1+n2/2)]) for n1 →∞, (30)

where the term on the right-hand side describes a wave traveling along
the row defined by n2 > 0 to the right. On the other hand, we have

u(n1 ,n2)(t) ∼ Im(A(n2)
− (−k1R)ei[ω0t+k1R(n1+n2/2)+π]) for n1 → −∞,

(31)

where the term on the right-hand side represents a wave propagating
to the left along the row n2 > 0. We note that for the wave numbers
k1 � ± k1R, ± (2π − k1R) and the frequency ω0 − i0, the functions
Λj, j � 1, 2, are complex with modulus less than unity. Hence, the
matrix Λn2 in Eq. 21 ensures that these waves have a decreasing
amplitude for increasing n2.

For rows in the lattice defined by odd n2, we recall that Eq.
21 is a 4π -periodic function in k1. Hence, the inversion
formula for the discrete Fourier transform is as presented in
the second equation in Eq. 23. In this case, a slightly modified
procedure is required to compute the waves radiated in the
bulk, taking into account the singular points of the function
Eq. 21 on the interval [−2π, 2π]. For odd n2, the displacements
for n1 →∞ are

u(n1 ,n2)(t) ∼ 1
2
Im([A(n2)

+ (k1R) −A(n2)
+ (k1R − 2π)]ei[ω0 t− k1R(n1+n2/2)]),

(32)

whereas for n1 → −∞ we have

u(n1 ,n2)(t) ∼ 1
2
Im([A(n2)

− (−k1R) −A(n2)
− (2π − k1R)]ei[ω0 t+k1R(n1+n2/2)+π]).

(33)

Wepoint out that the amplitudes of thewaves along the odd rowsof
the lattice, specified in Eqs. 32, 33, take into account the contributions
from the wave numbers k1 � ± (2π − k1R) (see Figure 3).

There also exist preferential directions for energy radiation in
the bulk. When the gyricity is zero, along these specific lines in the
lattice, the nodal displacements decay slowly as O(n−1/32 ) for
n2 →∞, as shown by Slepyan (2010). These directions can be
identified by determining when Λj, involved in Eq. 21, is complex
with

∣∣∣∣Λj

∣∣∣∣ � 1, j � 1, 2, for the frequency equal to ω0. As discussed
by Slepyan (2010), this effect is purely attributed to the lattice’s
micro-structure and is not found in the analogous continuous
model. When the gyricity Ω* ≠ 0 is introduced, preferential
directions for wave propagation can remain and increasing the
gyricity causes the associated displacement amplitudes to decrease.

2.5.3 Resonant Modes
Next, we discuss the resonant case when the steady-state solution
to the considered problem does not exist. We show this by
investigating the derived solution in Eq. 21 along the
boundary, where n2 � 0.

When k1 → 0, for either horizontal or vertical loading at the
lattice boundary, the solution in Eq. 21 is bounded for ω0 ≠Ω*

and admits the following asymptotic representation:

UF
0 �

C0���������
D(Ω*,ω0)√ + O(k1), k1 → 0, (34)

where

FIGURE 3 | Dispersion diagram for k1 ∈ [−2π, 2π], relevant for Eq. 23 when n2 is odd. The black (gray) curve indicates the function ωR for Ω* � 1 (Ω* � 0). The line
ω � ω0 is shown for ω0 � 0.6. The intersections of this line with the curve of ωR for Ω* � 1 (Ω* � 0) are represented by black (gray) crosses. The interval [−π, π] is instead
relevant for Eq. 23 when n2 is even. Wave numbers k1 � k1R and 2π − k1R, defining singular points of Eq. 21, are also shown.
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D(Ω*,ω0) � −6ω2
0 + 3

��������������
ω2
0(3(Ω*)2 + ω2

0)√
(35)

and C0 denotes a constant vector with non-zero entries
depending on the gyricity Ω*, the frequency ω0 and the load
amplitude P. Clearly, D(Ω*,ω0) � 0 when ω0 � Ω*. In this
degenerate case, the asymptote near k1 → 0 takes the form

UF
0 �

1�
3

√ S0������
k1 − i0
√ ������

k1 + i0
√ + O(1), k1 → 0, (36)

that indicates the appearance of other singular points near k1 � 0
in the solution in Eq. 21. In the above, if the load is horizontal
(vertical) the vector S0 � (−i,−1)T (S0 � (1,−i)T).

We note that the singular points in this asymptote approach
each other as the Laplace transform parameter s→ + 0, with their
limiting location being the real axis at k1 � 0. An illustration
showing the typical behavior of the first component of Eq. 21 in
this case is given in Figure 4A. There, the kernel has a simple pole
for positive wave numbers but not for negative wave numbers,
which implies that the structure does not support Rayleigh waves
propagating to the left of the load on the boundary. The second
component of Eq. 21 possesses the same singular features.
Further to Eq. 36, in this situation UF

0 can be written in the form:

UF
0 �

1�
3

√ S0������
k1 − i0
√ ������

k1 + i0
√ +WF

0 + BF
0 , (37)

whereWF
0 represents the term that is singular at k1 � k1R − i0 of Eq.

21 and BF
0 is a bounded function for k1 ∈ [−π, π]. Upon applying

the inverse of the discrete Fourier transform, while the last two terms
in the right-hand side of Eq. 37 give bounded contributions to the
displacement, the first term leads to a function that is singular for
x1 � n1 + n2/2 � 0 and s→ + 0. Hence, the displacement at the
location of the load is unbounded for t→ +∞.

The asymptotic representation in Eq. 36 is also in agreement
with the dispersion diagram for ω0 � Ω*, shown in Figure 4B.

The associated horizontal line on this diagram intersects the
curves along which

∣∣∣∣Λj

∣∣∣∣ � 1 (j � 1, 2), represented by gray lines.
These additional curves are useful in characterizing the main
contribution of the integral contained in Eq. 23 in describing the
lattice far-field and are connected with the appearance of
waveforms and preferential directions in the bulk lattice (see
also Slepyan (2010)). At k1 � 0 on the dispersion diagram, the
group velocity at the associated intersection point is zero (see
Figure 4B, where at the point (k1,ω0) � (0,Ω*) the group
velocity is zero). Physically, such a point represents a
resonance mode of the considered system, as discussed in
(Slepyan, 2002, Section 3.3.5). The energy associated with this
mode is unable to leave the location where the force is applied.
Thus, the energy density at this location becomes unbounded as
t→ +∞. In other words, in the case ω0 � Ω* the steady-state
solution does not exist.

2.6 Determination of Energy Flow in the
Steady-State Regime
In this section, we analyze the energy carried by the Rayleigh
waves and by the waves radiated into the bulk of the gyroscopic
lattice by calculating the energy flow through the boundary of a
sufficiently large region of the medium, as shown in Figure 5. The
considered region is the rectangle S enclosed by the half-plane
boundary and by the segments zSi (i � 1, . . . , 4), indicated in
Figure 5.

In the steady-state regime, the rate at which energy is
introduced into the system through the action of an oscillating
point load applied at the node (n1, n2) � (0, 0), having the vector
amplitude P and frequency ω0, can be computed using the
formula:

W in � 1
2
ω0Im(P · U(0,0)), (38)

FIGURE 4 | (A) The first component of the steady-state solution for the case of horizontal forcing on the boundary, with unit amplitude, when ω0 � Ω* . The black
(gray) curve represents the real (imaginary) part of this component. (B) The dispersion diagram for ω0 � Ω*. The dispersion curve for Rayleigh waves is represented by the
black curve, based on Eq. 24. The horizontal black dashed line represents ω0 � 0.5, which intersects the gray curves corresponding to

∣∣∣∣Λj
∣∣∣∣ � 1 (j � 1, 2). The point

(k1 ,ω0) � (0,Ω*), indicated by the cross, corresponds to a resonance mode of the system. The computations in (A) and (B) have been performed for Ω* � 0.5.
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where the overline denotes the complex conjugate and U(n1 ,n2) is
defined in Eq. 23. The rate at which energy flows through each
segment zSi is given by the classical formula introduced by
Brillouin (see Chapter V in Brillouin (1953)):

Wout
i � −1

2
ω0Im⎛⎝ ∑

nj ∈Di

F(nj) · U(nj)⎞⎠, (39)

for 1≤ i≤ 4. In Eq. 39, F(nj) represents the elastic force supplied by
the nodes outside the considered region and connected to the
node indicated by nj, positioned in the immediate proximity of
zSi, within S. The set of the nodes with multi-indices nj located in
the vicinity of zSi, inside S, is denoted by Di. For the conservation
of energy law, the following equality is satisfied:

W in �∑4
i�1

Wout
i . (40)

In Section 3, the above formulae for the energy flow will be
used to show quantitatively that the presence of gyroscopic
spinners breaks the symmetry of energy propagation with
respect to a vertical line passing through the application point
of the load.

2.7 Finite Element Model
The results of the analytical formulation illustrated in the
previous sections will be verified with a finite element model
built in the commercial software Comsol Multiphysics
(version 5.4).

The numerical model consists of massless truss elements and
point masses inserted at the lattice’s nodes. The effect of gyricity is
simulated by imposing at each node a force that is proportional to
the velocity, as in the first term on the right-hand side of the

governing Eq. 2. Here the computational domain is finite, while
the analytical treatment developed above is for a semi-infinite
medium. In particular, the lattice has dimensions 100 × 46

�
3

√
.

Adaptive Absorbing Layers (AAL) are introduced close to the top
and vertical boundaries, in order to prevent waves from being
reflected at these boundaries. AAL are created by assigning to the
links located inside those regions a complex elastic modulus. A
point load is applied to the middle point of the bottom boundary
of the domain. The numerical simulations are performed in the
time-harmonic regime.

3 RESULTS

3.1 The Displacement Field in the
Semi-Infinite Gyro-Elastic Lattice
Loaded on the Boundary
In this section, we show the response of the semi-infinite lattice
with embedded gyroscopic spinners to a point force applied on
the boundary. In particular, we investigate how the gyricity affects
the behavior of Rayleigh waves traveling along the boundary and
of the waves propagating into the bulk of the medium.

Figure 6 shows the total displacement amplitude calculated at
each node of the discrete system, produced by an oscillating force
applied on the boundary. The results are based on the solution in
Eq. 22, derived in Section 2. The force has unit amplitude and
frequency ω0 � 0.6, and it acts in the horizontal (vertical)
direction in parts (A) and (C) (parts (B) and (D)).

In parts (A) and (B) of Figure 6 the effective gyricity is set
equal to zero. It is apparent that when Ω* � 0 the response of the
system is symmetric with respect to the point of application of the
force. This in agreement with the classical theory on Rayleigh

FIGURE 5 |Region S of the gyroscopic lattice, delimited by the half-plane boundary and the segments zSi (i � 1, . . . ,4), throughwhich the energy flow is calculated.
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wave propagation in elastic lattices without gyroscopic effects.
We also observe that in the vicinity of the load there exist
evanescent modes, which induce localized deformations in the
neighboring links. In the bulk there are preferential directions
along which waves are radiated from the source, as described in
Section 2.5.2. The region between these rays show outwardly
propagating oscillations that decay like O(n−1/22 ). Comparing
parts (A) and (B), we note that in (B) there exist waves with
larger amplitudes. Moreover, by looking at the wavelengths, we
observe that the bulk waves generated by a horizontal force are of the
shear type, while the vertical force induces bulk waves of the pressure
type, as expected.

Figures 6C,D illustrate the total displacement amplitude field
produced by a horizontal and vertical force, respectively, when
the effective gyricity is Ω* � 1. As in Figures 6A,B, the force has
unit amplitude and frequency ω0 � 0.6. The main difference
between Figures 6A–D is that when the effective gyricity is
non-zero the response of the system ceases to be symmetric
with respect to the vertical line passing through the point of
application of the force. In part (C) we note that the amplitude of
Rayleigh waves propagating to the right of the force is much
larger compared to that of the surface waves traveling to the left.
In addition, the force appears to activate waves in its vicinity
having significant amplitude and propagating at 120° to the
positive horizontal axis. On the other hand, the displacement
field produced by a vertical force (see part (D)) shows that the

symmetry is still broken, but the amplitudes of the waves
traveling to the right and to the left of the force along the
boundary are now comparable.

We also point out that the non-symmetric displacement field
in Figure 6 can be inverted by changing the sign of the effective
gyricity Ω*.

In Figure 7 we present the total displacement amplitude fields
computed by using the finite element model developed in Comsol
Multiphysics and described in Section 2.7. The values of the
parameters are the same as those considered in Figure 6.
Comparing Figures 6, 7, we observe that the numerical and
analytical results show an excellent agreement. This confirms the
validity and accuracy of the analytical treatment discussed in
Section 2.

3.2 The Energy Flow
Here, we report the analytical results concerning the energy flow
furnished by the external force, referred to asW in, and the energy
flow passing through each segment zSi in Figure 5, denoted as
Wout

i (i � 1, . . . , 4). The formulae for W in and Wout
i are given in

Section 2.6.
As in Section 3.1, two different values of the effective gyricity

are taken, namelyΩ* � 0 andΩ* � 1. Moreover, two directions of
the point load are considered, i.e. horizontal and vertical. The
values ofW in andWout

i for all the examined cases are summarized
in Table 1.

FIGURE 6 | Total displacement amplitude field in the elastic lattice, obtained from the analytical formulation developed in Section 2, due to a (A,C) horizontal and
(B,D) vertical point force applied on the boundary. In each figure, the force is represented by an arrow. The effective gyricity is (A,B) Ω* � 0 and (C,D) Ω* � 1.
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By looking at Table 1, we notice that when the effective
gyricity is zero Wout

1 +Wout
2 � Wout

3 +Wout
4 , implying that the

response of the system is symmetric with respect to the
application point of the force. The above equality ceases to
hold when Ω* � 1. We also note that the energy partition
between vertical and horizontal boundaries depends on the
gyricity and on the direction of the force. Furthermore, for
any of the four cases considered in Table 1, the energy
balance is satisfied, since W in � ∑​ 4

i�1Wout
i .

3.3 Parametric Analysis
In order to assess how the response of the micro-structured
medium is affected by different physical quantities, we perform a

parametric analysis where we vary the direction of the force, the
radian frequency ω0 of the force and the effective gyricity Ω* of
the spinners. The behavior of the medium is evaluated
quantitatively by calculating the percentages of the energy
flows Wout

i passing through the boundaries zSi (i � 1, . . . , 4)
(see Figure 5) with respect to the energy input W in due to the
external source.

In Figure 8 we show how the energy introduced into the
system by the external oscillating force is divided into two parts,
propagating in opposite directions relative to the position of the
point force. In particular, the circles (squares) indicate the
percentages of the energy flowing to the right (left) of the
force with respect to the input energy flow. In Figure 8 it is
assumed that the force acts in the horizontal direction. The five
diagrams correspond toΩ* � 0, 0.25, 0.5, 0.75, 1; in each diagram,
several values of the frequency ω0 of the point force are
considered.

In Figure 9 the values of the effective gyricity and of the
frequency of the external source are identical to those
considered in Figure 8, but the outcomes are obtained by
applying a concentrated oscillating load acting in the vertical
direction. In both Figures 8, 9, when Ω* � 0 the incoming
energy is split into two equal contributions that propagate
to the left and to the right of the force, both along the
boundary and inside the bulk. Conversely, when Ω* ≠ 0 we

FIGURE 7 | Same as in Figure 6, but obtained from numerical simulations performed in Comsol Multiphysics.

TABLE 1 | Values of energy flows in the micro-structured lattice due to a horizontal
or vertical force, when the effective gyricity is either Ω* � 0 or Ω* � 1.

Ω* = 0 Ω* = 1

Horizontal force Vertical force Horizontal force Vertical force

W in 0.214 0.322 0.119 0.227
Wout

1 0.029 0.104 0.028 0.083
Wout

2 0.078 0.057 0.030 0.031
Wout

3 0.078 0.057 0.058 0.022
Wout

4 0.029 0.104 0.003 0.091∑4
i�1Wout

i 0.214 0.322 0.119 0.227
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observe a non-symmetrical distribution of energy in the system.
We also notice that even when Ω* ≠ 0 the symmetry in the
energy flow partition is retrieved for some specific values of the
frequency, that change with the value of the effective gyricity.
The crosses in both Figures 8, 9 represent the sums of the
energy flow components traveling inside the system with
respect to the input energy; it can be seen that, for every
case considered, there is balance between input and output
energy flows.

The insets in Figure 8 present the color maps of the
displacement fields, computed at given gyricities and
frequencies of the external force. In part (A), where Ω* � 0,

the wave pattern is clearly symmetric. When gyricity is
introduced, as in part (B), the symmetry of the displacement
field is broken, even if the frequency of the external force remains
the same. In part (C), the wave pattern for a frequency near the
intersection between the two sets of data is shown; in this case, the
energy is split into two approximately equal parts traveling to the
left and to the right of the load, but on each side the energy amounts
propagating into the bulk and on the boundary are different. Here, it
is apparent that the energy flowing into the bulk in the left-hand part
of the lattice is approximately equal to the amount of energy carried
in the right-hand part, where the energy is mainly concentrated on
the boundary.

FIGURE 8 | Percentages of energy flows propagating to the right (Wout
1 +Wout

2 ) and to the left (Wout
3 +Wout

4 ) of the point force with respect to the energy flow
produced by the external load (W in ), calculated for several values of effective gyricity Ω* and frequency ω0. The results in this figure correspond to a point force acting in
the horizontal direction. The insets illustrate the wave fields at specific frequencies ω0 and gyricities Ω*.
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In Figures 10, 11 we focus the attention on Rayleigh waves,
showing how the contributions of the energy flows corresponding to
surface waves traveling to the right (Wout

1 ) and to the left (Wout
4 ) of the

point load vary with the effective gyricity of the spinners and with the
frequency of the external force. In Figure 10 (Figure 11) the force acts
in the horizontal (vertical) direction. It is apparent that the direction of
the force, the gyricity and the frequency all influence the response of
the system and, in particular, the relative amount of total and surface
energy propagating to the left and to the right of the applied force.

The insets in Figure 10 illustrate, for different values of
gyricity and frequency of the excitation, the amplitudes of the
displacement components u(n1,0)1 and u(n1 ,0)2 of the lattice’s nodes
at the boundary and the displacement magnitude

∣∣∣∣u(n1 ,0)∣∣∣∣ � [(u(n1 ,0)1 )2 + (u(n1,0)2 )2]1/2. The symmetry of the
displacement field in the lattice without gyroscopic spinners,
shown in Figure 10A, is broken when gyricity is incorporated
into the system, as illustrated by the non-symmetric displacement
profiles of Figures 10B,E.

Now, we consider a special case, where the surface waves
propagating to the left of the point load exhibit a negligibly small
amplitude. This can be obtained by taking the effective gyricity
Ω* � 0.5, the frequency of the external force ω0 � 0.35 and
applying a horizontally-acting force (see also Figures 8, 10). The
displacement field for this choice of the parameters, presented in
Figure 12, clearly shows that the energy coming from the external
source propagates into the bulk and practically only to the right of the

FIGURE 9 | Same as in Figure 8, but for a vertically-acting point force.
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force along the boundary. A similar effect could also be achieved in the
resonant case ω0 � Ω*, but there the steady-state solution does not
exist (see Section 2.5.3). The energy flow partition for the system in
the neighborhood of ω0 � Ω* is investigated in Figure 8C, which
shows that the energy flux distributions vary rapidly in the vicinity of
ω0 � Ω*.

Another interesting case is represented by the scenario where
almost all the energy propagates along the boundary. This situation
is shown inFigure 13, whereΩ* � 1,ω0 � 0.9 and the point force acts
in the vertical direction (see also Figures 9, 11). From the displacement
field in this figure, it is apparent that most of the energy is localized at
the boundary of themedium.Moreover, in this case the discrete system
shows negligible preferential directionality (see also Figure 9E).

4 DISCUSSION

The diagrams of the displacement amplitude fields in Figures 6,
7, as well as the values of the energy flows in Table 1, show that
the gyricity is capable of breaking the symmetry in the energy
propagation of both Rayleigh and bulk waves propagating from
the external source. This is a consequence of the non-reciprocity
of the gyro-elastic lattice.2

FIGURE 10 | Energy flow percentages associated with Rayleigh waves traveling to the right and to the left of the point force, indicated by Wout
1 and Wout

4

respectively, for different values of effective gyricity and frequency of the external source. In these computations, the force acts in the horizontal direction. The insets show
the displacements of the points on the lattice boundary, calculated at the frequencies indicated by the arrows.

2A formal proof of the non-reciprocity of the gyroscopic medium has been
presented by Nieves et al. (2020).
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Examining the outcomes of the parametric analysis presented
in Section 3.3, in particular Figures 8, 9, it is apparent that the
distribution of energy in the system strongly depends on both the
effective gyricity Ω* of the spinners and the radian frequency ω0

of the external oscillating force. Generally, at low frequencies it is
easier to partition the energy flow into two significantly
different contributions, propagating in opposite directions.
Nonetheless, for any given value of the effective gyricity, it
is possible to find one or more values of ω0 at which the energy
is split into two equal parts. The lowest value of this frequency
increases as the effective gyricity is increased. Comparing
Figures 8, 9, we observe that the energy symmetry breaking
is more evident when the force acts in the horizontal direction.
Of course, for an inclined direction of the force, the response of
the system can be determined from the principle of

superposition by summing the effects due to the
horizontally- and vertically-acting forces, since the
considered problem is linear.

The investigation of the individual components of the energy
flows associated with Rayleigh waves, presented in Figures 10,
11 for a horizontally- and vertically-acting point force
respectively, reveals that the propagation of energy along the
boundary of the medium is affected significantly by the
direction of the force. In the case when Ω* � 0, the energy
flow along the boundary is the same in both directions and it
decreases (increases) as the frequency of the external source
acting in the horizontal (vertical) direction is increased. On the
other hand, when Ω* ≠ 0, the energy flowing to the right (left) is
larger than in the opposite direction if the direction of the force
is horizontal (vertical). Independently of the direction of the

FIGURE 11 | Same as in Figure 10, but for a vertically-acting point load.
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force, the difference between the energy flows in the two
opposite directions generally decreases as the frequency is
increased.

The parametric analysis discussed in Section 3.3 has been
helpful in identifying special cases, where Rayleigh waves
propagate only in one direction (see Figure 12) or where bulk
waves have very small amplitudes compared with those of surface
waves (see Figure 13).

The analytical formulation also made it possible to analyze
resonant regimes where the steady-state solution cannot be
reached (see Section 2.5.3).

The capability of the considered micro-structured system in
creating preferential directionality in the propagation of waves
can be exploited to design novel energy splitters, where the
desired amount of energy propagating in a specific prescribed
direction can be varied by changing the effective gyricity of the
spinners. The tunability of the proposed model is an essential tool,
that can be used inmany practical applications where it is required to
vary the output depending on the contingent needs. Important
examples include electronic instruments converting mechanical
energy into electric energy (and vice versa) and elastic filters that
can be utilized both for protection and energy harvesting.

FIGURE 12 | Displacement field of the lattice’s masses when Ω* � 0.5, ω0 � 0.35 and the point force acts in the horizontal direction.

FIGURE 13 | Displacement field of the lattice’s masses when Ω* � 1, ω0 � 0.9 and the point force acts in the vertical direction.
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