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A relevant application of transformation elastodynamics has shown that flexural waves in a
Kirchhoff-Love plate can be diverted and channeled to cloak a region of the ambient space.
To achieve the goal, an orthotropic meta-structural plate should be employed. However, the
corresponding mathematical transformation leads to the presence of an unwanted strong
compressive prestress, likely beyond the buckling threshold of the structure, with a set of in-
plane body forces to warrant equilibrium. In addition, the plate must possess, at the same
time, high bending stiffnesses, but a null twisting rigidity. With the aim of estimating the
performance of cloaks modelled with approximate parameters, an in-house finite element
code, based on a subparametric technique, is implemented to deal with the cloaking of
transient waves in orthotropic thin plates. The tool allows us to explore the sensitivity of
specific stiffness parameters that may be difficult to match in a real cloak design. In addition,
the finite element code is extended to investigate a meta-plate interacting with a Winkler
foundation, to confirm how the subgrade modulus should transform in the cloak region.
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INTRODUCTION

State of the Art and Research Challenges
The control of elastic waves to cloak a region of the ambient space has been shown achievable by
transformation elastodynamics, which provides the mechanical properties of the material
surrounding the region (Milton et al., 2006; Brun et al., 2009; Norris and Shuvalov, 2011). A
relevant application of this broad area is the control of transverse waves in plates, for which solutions
have been proposed mainly based on two approaches: a “passive” one, where the features of the cloak
are achieved by a given microstructure (Farhat et al., 2009a; Farhat et al., 2009b; Brun et al., 2014;
Colquitt et al., 2014; Climente et al., 2016; Zareei and Alam, 2017; Liu and Zhu, 2019; Misseroni et al.,
2019) and an “active” one, in which tunable quantities depending on the actual mechanical input are
employed for the same goal (see e.g., Futhazar et al., 2015; O’Neill et al., 2015; Chen et al., 2016; Ning
et al., 2020). Experiments have been also proposed to validate some of the previous theoretical
proposals (Stenger et al., 2012; Misseroni et al., 2016; Darabi et al., 2018; Misseroni et al., 2019). Most
of these investigations show that this technique can be feasible and likely to be employed in
centimetre-size real-life systems with wave frequencies in the order of a few kHz.
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Within the set of attempts based on the “passive” approach,
Colquitt et al. (2014) proposed a transformation to conceive a
Kirchhoff-Love plate theory for cloaking flexural waves. The
resulting governing equations for the thin plate in the
transformed domain involve the presence of variable (in
space) bending and torsional stiffnesses, and density, in
addition to the presence of in-plane body forces and
prestresses in the plate. In the same paper, the general
framework was specialised to the case of a square cloak
composed of four trapezoidal elements (see Figure 1)
embedded in an isotropic, homogeneous domain. For this
geometry, a set of relationships was established to provide
explicit expressions of the quantities concerned in each part of
the cloak. The broadband effectiveness of the meta-material plate
cloak was then assessed by means of numerical tests.

The features of the suggested meta-structure can be
summarised as follows:

(1) the cloak is locally an orthotropic thin plate with principal
directions varying point-to-point. These directions obey the
geometric symmetries of the domain (see, e.g., trapezoid
displayed in Figure 1B, where the principal directions are
sketched with thin lines). In the same figure, the increase of
the out-of-alignment of the local principal system with the
axis of symmetry towards the diagonals of the cloak can be
noticed;

(2) by investigating how the stiffnesses of the plate in the
orthotropic principal system depend on the position and
thinking to construct the plate with a homogeneous material,
it turns out that the thickness of the plate must assure an
increase in bending stiffness along the direction parallel to
the inner boundary of the cloak moving away the axis of
symmetry of each trapezoid and a decrease of the bending
stiffness along the “radial” direction moving towards the
centre of the cloak. These two requirements are apparently in
contradiction, but they must be addressed in an effective
design;

(3) the twisting stiffness in the principal system of orthotropy
vanishes at each point of the domain;

(4) the mass density of the cloak is not constant and varies with
the Jacobian of the transformation; in particular, this
quantity decreases by approaching the inner boundary of
the cloak;

(5) in-plane body forces and prestresses in the interior of the
domain as well as forces per unit length applied along the
diagonals of the cloak are necessary to warrant equilibrium.
The predicted prestress is compressive in a large part of the
domain with values that are likely to exceed the buckling
threshold for the thin structure.

The set of listed properties demonstrates that the design and
engineering of an effective cloak for flexural waves based on

FIGURE 1 | Sketch of a square meta-structural cloak studied by Colquitt et al. (2014): (A) initial, undeformed domain C0 where the plate is isotropic and
homogeneous; (B) transformed domain C where the four trapezoids composing the cloak are numbered. The principal directions of orthotropy are represented with thin
lines (the local axes at a generic point P are labelled x and y as depicted). The perimeter of trapezoid C(1) is marked with a dashed red line.
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transformation elastodynamics of Kirchhoff-Love plates is an
exceptional challenge. Actually, the presence of severe
compressive prestresses leads to the conclusion that it is
impossible to construct a stable, ideal cloak. Therefore, an
approach based on carefully considered approximations are
required to achieve the goal. In the experimental test
conducted by Misseroni et al. (2016), for instance, the design
of the approximated cloak has focused mainly on the match of
bending stiffnesses along the directions of orthotropy.

Moving from the points raised in the just edited list, the goal of
the paper is four-fold:

(1) the first aim is to design and implement a fully open in-house
FE code, based on a subparametric technique, to simulate
transient wave propagation in locally orthotropic Kirchhoff-
Love plates;

(2) the numerical tool is then exploited to assess the performance
of meta-structural square cloaks designed by assuming
reasonable approximations (prestress free, local twisting
stiffness as limited as possible, cross sections of the plate
ensuring the required local bending stiffnesses, non-constant
mass density);

(3) the same tool is employed to investigate the role of certain
stiffness parameters, i.e., twisting and coupling bending
stiffnesses;

(4) in addition, a non-secondary purpose of the paper is to
propose an extension of the theory to encompass
interaction of the cloak with an elastic substrate modelled
with a Winkler foundation and assess its effectiveness.

Background
The definition of the flexural cloak is based on a transformation,
say χ, that maps a two-dimensional subdomain C0 ⊂ K occupied
by a homogeneous, isotropic Kirchhoff-Love plate, to the domain
C where the meta-plate is to be constructed,
i.e., χk : C0 → C, x0K → xk � χk(x0K).1 The map is such that the
transformed equation in the latter is still the governing
equation for flexural waves supported by a Kirchhoff-Love
plate. In our case, C0 is a square deprived of a tiny hole H0 in
the centre (Figure 1A) that is mapped to a collection of four
trapezoids C(i) (i � 1, . . . , 4) (Figure 1B), such that C � ∪ C(i).
The length of one side of the external boundary of both C0 and C is
equal to 2L whereas that of H0 is equal to 2εa, where ε is a small
parameter.2

In both configurations, the exterior domain K∖C0 � K∖C is
occupied by the initial, homogeneous structure that possesses
constant thickness H, mass density per unit volume ρ0 and
bending stiffness D0 � EH3/[12(1 − ]2)], where E is the

Young’s modulus of the material and ν its Poisson’s ratio.
When free-standing, the governing equation of the plate under
harmonic vibrations takes the form

D0∇4
0w + σ0 €w � 0, (1)

where w(x0K , t) is the transverse displacement, ∇4
0 is the

biharmonic operator in C0 and σ0 � ρ0H is the mass density
per unit area. For the relevant case of a plate resting on a
homogeneous substrate modelled as a bed of independent
linear springs (Winkler model), a term k0W is to be added on
the left-hand side of Eq. 1, where k0W is the subgrade coefficient.
We emphasise that in Eq. 1, D0 and σ0 are independent of the
position.

The function χk(x0K ) is assumed to be invertible, a requisite
that is met if its evaluation in the inner boundary of the cloak is
non-singular as in the case under study, After having recalled that
uppercase indices refer to points belonging to C0 and that a
comma indicates partial differentiation, the gradient of the
transformation xi,K , its Jacobian J(xp) � det xi,K and the tensor3

gij(xp) � xi,Pxj,P/J
are instrumental in defining the properties of the cloak as shown
by Colquitt et al. (2014).

In order to have a complete overview on the established theory
of meta-plate cloaks, we remind that the local governing equation
of a Kirchhoff-Love plate takes the form (Timoshenko and
Woinowsky-Krieger, 1959; Lekhnitskii et al., 1968)

mij,ij + nijw,ij − siw,i � σ €w, (2)

where σ is the mass density per unit area, mij represents the set of
moments per unit length whilst nij and si denote membrane
forces and in-plane body forces per unit length, respectively, in
equilibrium through fulfillment of the condition

nij,j + si � 0. (3)

The next step is to substitute the constitutive equations that
connect mij to the generalised curvature w,kl as
mij � −Dijkl(xp)w,kl , where Dijkl is the stiffness tensor which
may depend on the position. The substitution in Eq. 2 yields

Dijklw,ijkl + 2Dijkl,iw,jkl + (Dijkl,ij − nkl)w,kl + slw,l � −σ €w, (4)

an equation used by Colquitt et al. (2014) to identify the different
terms corresponding to the transformation and confirm that the
flexural displacement of a Kirchhoff-Love plate under an
arbitrary coordinate mapping may be interpreted as a
generalised plate.

The identification of terms shows that the stiffness tensor of
the transformed plate corresponds to

Dijkl(xp) � D0Jgijgkl, (5)

the in-plane body forces to

1Uppercase and lowercase indices, both ranging between 1 and 2, are referred to
reference and transformed domains, respectively, whereas a 0 in either super- or
sub-script position indicates that the quantity concerned is evaluated in the
reference configuration.
2ϵ plays the role of regularisation parameter for the construction of a near cloak
(Kohn et al., 2008) in which the material properties at the inner boundary of the
cloak are not singular. 3The summation over the repeated index is implied throughout the paper.
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sl(xp) � D0[grs(Jgql,q),r],s
, (6)

and the transformed density per unit area turns out to be
σ(xp) � ρ0H/J.

When the Winkler foundation is involved, the subgrade
coefficient transforms similarly to the density, i.e.,

kW(xp) � k0W/J , (7)

a quantity that is now dependent on the position.
Focusing now on the square cloak transformation sketched in

Figure 1 and, in particular, on trapezoid C(1),
χ(1)(x0KeK) � (αx01 + c)e1 + (αx02 + cx02/x

0
1)e2,

x(1)i,K � ⎛⎜⎝ α 0
x2αc

x1(c − x1)
x1α
x1 − c

⎞⎟⎠,

and J(1) � x1α2/(x1 − c), where

α � b/L
1 − εa/L

, c � a − εa
1 − εa/L

,

and {e1, e2} is the orthonormal basis associated with both co-
ordinate systems Ox01x

0
2 and Ox1x2; a is the half-length of the side

of the square hole to be cloaked and b � L − a is the “cloak
thickness”. This information defines the six independent
components of the stiffness tensor Dijkl , the prestress nij and
the in-plane body forces si in the four subdomains. For trapezoid
C(1), all these quantities are reported in Appendix A. For the other
parts of the cloak, they can be easily inferred by taking into
account the relevant symmetries. Note that α is dimensionless
while [c] �[L].

For the same trapezoid C(1), to reach the orthotropic principal
directions at a point P, the angle θ(x1, x2) (anticlockwise in the
domain x2 > 0, see Figure 1B) is now introduced. In particular,
this angle identifies the principal axis x (respectively y) moving
from x1 (respectively x2). Its value is

θ � 1
4
arccos[ − Q

Q + 2(D1111 − D2222)(D2221 − D1112)], (8)

where

Q � (D1111 + D2222 − 2D1122 − 4D1212)(D1112 + D2221). (9)

In the new local system Pxy, the constitutive relationships
assume the form

mxx � −Dxxxxw,xx − Dxxyyw,yy, myy � −Dxxyyw,xx − Dyyyyw,yy,

mxy � −Dxyxyw,xy,

(10)

where the new stiffness moduli contained therein are provided in
terms of Dijkl in Appendix A.

Interestingly, as shown by Colquitt et al. (2014), the twisting
stiffness Dxyxy brought about by the transformation vanishes in
all points of the transformed domain. This is a particular

feature of the cloak under investigation that must be
properly addressed in a meaningful design. It is worth
recalling that in an isotropic plate with compact cross
section, Dxyxy � D0(1 − ]).

The cloak is subjected to traction-free boundary
conditions in the inner free boundary and to continuity
conditions at the interface between itself and the outer
homogeneous plate.

NUMERICAL MODEL AND
IMPLEMENTATION IN A IN-HOUSE FINITE
ELEMENT CODE
With the aim of performing numerical simulations via the Finite
Element Method (FEM) of the transient dynamic behaviour of a
square cloak, a weak form of the governing equations is now
obtained. The formulation can be derived by multiplying Eq. 4 by
the test function v(x1, x2) and using the Galerkin method
(Zienkiewicz and Taylor, 2005; Reddy, 1993). After the
application of the divergence theorem to the generic sub-
domain Ω of the entire plate and use of the equilibrium Eq. 3,
the final expression becomes

∫
Ω

v,ijDijklw,kl dΩ − ∫
Ω

v,lnklw,k dΩ

+ ∫
Ω

σv €wdΩ + ∫
Ω

kWvw dΩ − ∫
Γ

{mn̂v,n̂ − v(tn̂ +mn̂ŝ , ŝ)} ds
+ ∫

Γ

{nn̂ŝvw,n̂ + nn̂vw,ŝ} ds � 0, ∀v ∈ H2
0(Ω), (11)

where the term involving kW is now taken into account. In
expression Eq. 11, (·),n̂ and (·),ŝ are the directional derivatives
along the normal unit vector n̂ and tangent unit vector ŝ of the
boundary Γ of Ω; mn̂, mn̂ŝ are the bending and twisting moments
per unit length along Γ, respectively, whereas nn̂, nn̂ŝ describe the
in-plane internal actions along the normal and tangent unit
vectors; tn̂ is the specific shear force on the boundary and
H2

0(Ω) is the suitable Sobolev space. It should be noted that in
the standard procedure leading to the weak form Eq. 11, the
terms Dijkl,i and Dijkl,ij naturally disappear by integrating by part.
The analysed plate is composed of various subdomains with
different stiffness properties represented by the terms Dijkl : the
uncloaked region K∖C possesses a homogeneous stiffness D0

whereas the cloak is described by the parameters Dijkl given in
Eq. 5.

Geometric and analytical approximations are performed to
achieve the discretised formulation by dividing the entire domain
into a finite subset of elements, i.e., Ω ≈ ∪ne

e�1 Ωe, where ne is the
number of the elements, and substituting unknown and test
functions with the linear combinations

w(x1,x2,t)�Np(x1,x2,t)up(t), v(x1,x2,t)�Nq(x1,x2,t)vq, (12)

respectively, where Nk(x1, x2, t), k � {p, q}, are shape functions
defined on the spatial domain Ωe and indices p, q range within a
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suitable interval as specified later. For each Finite Element, the
final discretised formulation can be written as

∑np
p�1

∑nq
q�1

vq{∫
Ωe

Nq,ijDijklNp,klupdΩ + ∫
Ωe

σNqNp €updΩ

+ ∫
Ωe

kWNqNpupdΩ − ∫
Γe

[mn̂Nq,n̂ − Nq(tn̂ +mn̂ŝ , ŝ)]ds}
� 0, ∀vq, (13)

where np and nq are the number of the shape functions that
discretise w and v, respectively, and all the terms related to the in-
plane prestress have been neglected.

A parametric representation is implemented in the code: the
shape functions are defined in the local coordinate system Oξη of
the master element Ω̂e � {(ξ, η)4R2 : −1≤ ξ ≤ 1,−1≤ η≤ 1},
which is mapped into each element of the mesh using
appropriate coordinate transformations. Since an isoparametric
representation is not possible for thin-plate elements unless a
previous distortion of the mesh (see for example Petera and
Pittman, 1994), a subparametric representation has been adopted,
so the bilinear shape functions that are used for the
transformation of the master element are different from the
hermitian ones used for the analytical approximation of the
unknown.

The structured mesh employed in the numerical analyses is
composed of quadrangular elements with four nodes in the
corner of each element whose generalised displacements are

{w(k) w(k)
,ξ w(k)

,η w(k)
,ξη }, k � 1, 2, 3, 4, (14)

leading to (np � nq �) 16 degrees of freedom for the element
(Imbert, 1979; Petyt, 1990; Reddy, 1993; Zienkiewicz and Taylor,
2005).

Finally, after substitution and integration of the
aforementioned shape functions in Eq. 1 and the assembly
operation over all the Finite Elements of the mesh, the set of
algebraic equations used for the spatial approximation of this
problem can be written as

M €u(t) + Ku(t) � f (t), (15)

where M and K are the mass matrix and the stiffness matrix,
respectively; u(t) is the vector of the degrees of freedom whereas
f (t) is the vector of generalised external loads.

The approximation in the time domain is performed with
the single-step time-integration algorithm Generalized-α
method (Chung and Hulbert, 1993; Chung and Hulbert,
1994) which is an evolution of the well-known Newmark
method that is frequently used for transient dynamical
analysis in mechanics (see Imbert, 1979; Hughes, 1987;
Petyt, 1990; Zienkiewicz and Taylor, 2005). According to
this method, Eq. 15 is written as

M €u(tn) + C _u(tn) + Ku(tn) � f (tn), (16)

where a generic damping matrix C comes into play and the time-
domain discretisation

T � {0, t1, t2, . . . , tn, . . . , tN � Tmax}, tn+1 � tn + Δtn, (17)

is performed with respect to the time-domain T � [0, Tmax].
The Taylor’s expansions of the solution u(tn+1) ≡ un+1 and its

first time derivative _u(tn+1) ≡ _un+1 are given by

un+1 � un + Δtn _un + (1 − θ2)Δt
2
n

2
€un + θ2

Δt2n
2

€un+1,

_un+1 � _un + (1 − θ1)Δtn €un + θ1Δtn €un+1,
(18)

where θ1 and θ2 are positive real parameters that define the
integration scheme. Eq. 18 are substituted into Eq. 16
calculated in the intermediate time value
tn+1−αf � (1 − αf )tn+1 + αf tn, thus obtaining

M[(1 − αm)€un+1 + αm €un]+C[(1 − αf ) _un+1

+ αf _un]+K[(1 − αf )un+1 + αfun] � f n+1−αf , (19)

where αf and αm are two additional parameters that will be
specified later. The following implicit scheme can be used to
achieve the solution €un+1, namely

€un+1 � A−1[f n+1−αf − Kun − (C + K(1 − αf )Δtn) _un − (Mαm

+ C(1 − αf )(1 − θ1)Δtn + K(1 − αf )(1 − θ2)Δt
2
n

2
)€un],

(20)

where A � [M(1 − αm) + C(1 − αf )θ1Δtn + K(1 − αf )θ2Δt2n2 ].
Equations 18 and 20 are employed to calculate the complete
solution at each time step tn.

The Generalized-α method is completely described by the four
parameters αm, αf , θ1, θ2 that define the stability and the
convergence properties of the time-integration scheme. They
can be written as a function of the asymptotic spectral radius
ρ∞ ∈ [0, 1]which is related to the numerical damping in the high-
frequency limit as

αm � 2ρ∞ − 1
ρ∞ + 1

, αf � ρ∞
ρ∞ + 1

, θ1 � 1
2
− αm + αf ,

θ2 � 1
2
(1 − αm + αf )2. (21)

It is worth mentioning that Eq. 15 can be profitably employed
to perform time-harmonic simulations once a harmonic form for
u(t) and f (t) is introduced.

The mass matrix can generally be computed in different ways:
the consistent mass matrixMC is obtained directly from the weak
Eq. 13, so the inertia contribution is assigned to each node via the
shape function; the lumped mass matrix ML is a diagonal matrix
obtained condensing the mass of each element in its nodes via
equilibrium. In the ensuing simulations we considered a mixed
mass matrix M � (1 − αl)MC + αlML, where αl ∈ [0, 1] [see
Hughes (1987) and Zienkiewicz and Taylor (2005)].
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We implemented this numerical model in a Finite Element
code, written using the software Matlab. The program deals with
anisotropic and inhomogeneous thin elastic plates with different
possible shapes of the domain and various kind of boundary and
loading conditions. Using this code, it is also possible to perform
static and modal analyses.

NUMERICAL SIMULATIONS AND
PERFORMANCE OF THE CLOAK

Using the code described above, we studied the transient
propagation of flexural waves in a simply-supported square
plate in which a square hole is cloaked with respect to out-of-
plane vibration generated by a point force varying sinusoidally.
With reference to Figure 2, the homogeneous plate in C0 is a
steel one (E � 210 GPa, ] � 0.3, ρ0 � 7, 800 kg/m) with thickness
H � 1 mm and bending stiffness D0 � 19.23 Nm. The outer side
of the cloak is such that L � 0.75 m while a � 0.1923 m,
b � 0.5577 m and εa � 0.025 m.4 When a Winkler-like soil
comes into play in the analysis, the stiffness of the elastic
substratum is represented by k0W � 0.5 · 106 N/m, qualitatively
corresponding to that of a silicone material (Bigoni et al., 2008;
Gei, 2008).

The boundary conditions on the outer perimeter are those of a
simply supported plate, namely null transversal displacement
w|zK � 0, null rotation w,ŝ|zK � 0 and null bending moment
mn̂|zK � 0. The distance between the centre of the plate and
the centre of the cloaked square hole is equal to 2.5 m. A
harmonic transversal point force F(t) � F cos(ωt) is applied at
the centre of the plate where we assumed F � 100 N and ω varying
from 50 to 600 rad/s. The information of the point load is
contained in the vector load f (t) in the right-hand-side of
Eqs. 15 and 16.

The mesh that we used for the transient analysis is composed
of (ne �) 83,340 quadrangular elements with 335,864 total
degrees of freedom; the elements are rectangular and regular
outside the area of the cloak whereas the mesh is refined and
composed of trapezoidal elements inside the area of the cloak.
Each trapezoid of the cloak C(i) is composed of 1,080 Finite
Elements.

We performed a transient dynamical analysis with the
Generalized-α method (see above) for which we chose ρ∞ � 1
to neglect numerical damping, therefore the method reduced to a
second order and unconditionally stable algorithmwith αm � αf �
θ1 � θ2 � 1/2, which is equivalent to the constant-average
acceleration method (Reddy, 1993). This choice of the
parameters of the numerical algorithm leads to a stable
scheme for any time interval, so we considered a time domain
T � [0, 200 ms] with Δtn � 1 ms. We assumed homogeneous
initial condition, so u(t � 0) � u0 � 0 and _u(t � 0) � _u0 � 0.
The initial value of €u0 (necessary in the first step) has been
calculated assuming the initial condition on u0 and _u0 and solving
Eq. 16 for t � 0. In the time-domain integration we neglected the

FIGURE 2 | A) Geometry of the studied plate where it is visible the point where the time-varying force is enforced (dimensions in m) and the sections considered in
Figure 4; (B) detail of the mesh, the external boundary of the cloak is marked with a dashed red line.

4With this set of parameters, it turns out that for the trapezoid C(1) the stiffnesses
for the four representative points sketched in Figure 1B are displayed in Table 3.
The minimum value D1111 is achieved along the whole inner boundary whereas the
maximum D2222 is at point D.
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contribution of the damping matrix, i.e., C � 0, and we assumed
αl � 0.5.

The performance of the cloak is now assessed with reference to
the following case studies:

(1) a cloak possessing all properties of the Theoretical
Transformation Without Prestress (TTWP) is analysed
first. As recalled in the Introduction, the prestress is ruled
out as it is not realistic to assume the distribution of initial
stress nij and in-plane body forces foreseen by the
transformation. For this cloak, however, the local twisting
stiffness Dxyxy vanishes in the whole domain C;

(2) a cloak possessing all properties of the TTWP–but with a
different amount of torsional stiffness Dxyxy to evaluate the
influence of this parameter–is investigated. This case is
significant as every constructed meta-plate cloak would be
equipped with a certain amount of twisting stiffness;

(3) same as 2), but with the goal of estimating the role of the
coupling bending stiffness Dxxyy ;

(4) a cloak with the properties predicted by the TTWP is then
studied, but resting on a substrate modelled as a Winkler
foundation whose position-dependent subgrade modulus
obeys relationship Eq. 7.

For all case studies, the displacement maps and the other
relevant quantities that are illustrated are computed at a time t
compatible with a propagation of the wavefront located
downline of the region of the cloak, but not significantly
disturbed by secondary waves reflected at the boundary of
the plate.

Performance of the Cloak
The displacement map of a TTWP cloak computed at t � 155 ms
for ω � 300 rad/s is displayed in Figure 3B, to be compared with
that reported in Figure 3A for a plate with an uncloaked hole. In
the latter diagram, a wake is evident just on the right-hand side of
the hole as well as a perturbed wave pattern on the left-hand side
due to reflection caused by the hole. Those two features have been
eliminated by the cloak that is able to regularise the wavefront
emerging from the device into the expected circular pattern and
minimise back scattering. A cloak following the transformation
with prestress (Eqs. 5 and 6) would have produced a circular
wavefront matching that of a homogeneous plate as presented by
Colquitt et al. (2014).

In order to appraise more in detail the quality of the cloaking,
Figure 4 reports the out-of-plane displacement w for the four
sections sketched in Figure 2; the first three sections are
transverse with respect to the propagation of the wave, at a
distance from the centre of the hole of 1.25 m (Section no. 1),
1.75 m (Section no. 2) and 3 m (Section no. 3); the fourth one
runs longitudinally from a point at 0.25 m just outside the right-
hand boundary of the cloak to the external side of the plate. In
all plots, the red line, which describes the displacements of the
TTWP cloak, follows quite well the dashed line representing the
response of the square, hole-less, homogeneous plate K.
Figure 4D shows that the approximate cloak is able to
reproduce quite satisfactorily the phase of the wave of the
homogeneous plate/perfect cloak at points in the region just
after the cloaked region, to confirm the remark on Figure 3B
that the TTWP cloak is able to reconstruct the circular
wavefront.

In order to measure quantitatively the quality of the cloak we
adopt the index (Colquitt et al., 2014)

Q �
∫
ς

∣∣∣∣∣∣wFE(r) − wHom(r)
∣∣∣∣∣∣2 dr

∫
ς

∣∣∣∣∣wHom(r) 2 dr,| (22)

that is computed along the relevant section ς that is described by
the co-ordinate r. Perfection corresponds toQ � 0. In Eq. 22, wFE

are the displacements computed by the numerical model for the
non-homogeneous case under investigation andwHom corresponds
to the solution for the homogeneous plate. With reference to the
four sections displayed in Figure 4, it turns out that the quality
indices are those reported in Table 1, showing that the cloaked
solutions are in average 5.95 times more effective than the
uncloaked ones, therefore a good result is in any case obtained.

The effect of an amount of twisting stiffness on the
displacement map of a cloak TTWP is displayed in Figure 5
where several increasing values of the parameter Dxyxy are
analysed. The plot on the far left is the one reported in
Figure 3B. The detrimental effect of this parameter is readily
observed. A quality factor can also be computed for the displayed
cases. For Section no. 2, Q increases from 0.1241 (second panel)
to 1.348 (far right panel) showing a constant worsening in the
response of the meta-plate. In Appendix B, a strategy to minimise
the twisting stiffness of a fibre-composite micro-structured plate
is illustrated.

FIGURE 3 | Displacement map w (in m) computed numerically at
t � 155 ms for ω � 300 rad/s: (A) uncloaked square hole; (B) performance of
a cloak obtained through the Theoretical Transformation Without Prestress
(TTWP). The square-shaped white contour sketched in (B) indicates the
external boundary of the cloak.
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A similar analysis can be reiterated for the coupling stiffness
Dxxyy . This term plays an unexpected important role as revealed
by the simulations reported in Figure 6 where TTWP meta-
plates are implemented, but possessing a Dxxyy whose point-wise

value corresponds to 90, 50, and 10% of the theoretical one.
Unexpected because, on the one hand, in a rational
microstructured plate design where the principal bending
stiffnesses Dxxxx and Dyyyy are matched first, the coupling
term simply results as an outcome of the choices made
previously; on the other hand, the mathematical
transformation generally predicts values of this parameter
that are remarkably larger than those that can be reasonably
reachable for an orthotropic plate (see Appendix B, where the
list of theoretical stiffnesses are reported for two selected cases).
The three panels displayed in the figure clearly demonstrate the
relevance of the coupling bending stiffness in assuring an
accurate behaviour of the cloak.

FIGURE4 |Displacementmapw (in m) computed at t � 155 ms forω � 300 rad/s along the four Sections sketched in Figure 2. Comparison between solutions for
a cloaked (TTWP–red line) and an uncloaked (blue line) hole. The dashed line represents the response of a homogeneous plate without the hole.

TABLE 1 | Quality index for the four sections reported in Figure 4.

Section no. Qcl Quncl

1 0.0340 0.1149
2 0.0296 0.1701
3 0.0270 0.1389
4 0.0329 0.3071
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The last picture of this subsection (Figure 7) refers to a TTWP
cloak subjected to point-loads pulsating at different ω, to show
that the approximate model is behaving well for a quite broad
range of frequencies. The time of computation t differs from one
picture to the other in order to compare a similar displacement
pattern. For all displayed cases, the meta-plate is able to
reconstruct satisfactorily the circular wavefront.

Flexural Cloaks on Winkler Substrates
In real applications, cloaks are likely grounded to a substrate
which also provides the support of the object to hide. The

cloaking features of a plate resting on a Winkler foundation is
analysed in Figure 8 for ω � 300 rad/s at t � 145 ms. In part b),
the TTWP cloak rests on a bed of springs whose subgrade
modulus is constant (kW � k0W). This assumption clearly
worsens the performance of the device with respect to the
uncloaked hole case (Figure 8A). Conversely, the position
dependent stiffness kW(xp), whose value in C follows Eq. 7,
guarantees a satisfactory behaviour of the device, as it can be
noted that the wavefront reconstructs correctly after the
transformed domain. Similarly to the simply-supported plate,
solutions along two sections (i.e. no. 2 and no. 4 in Figure 2A) are

FIGURE 5 | Displacement map w (in m) computed numerically at t � 155 ms for ω � 300 rad/s carried out for increasing twisting stiffness Dxyxy . The detrimental
effect on the cloaking performance of an increase in this parameter is clearly evident.

FIGURE 6 | Displacement map w (in m) computed numerically at t � 140 ms for ω � 300 rad/s carried out for decreasing coupling bending stiffness Dxxyy . DTTWP
xxyy

indicates the value of the variable predicted by the theoretical transformation. The damaging effect on the cloaking performance of a decrease in this parameter is clearly
evident.
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studied in Figure 9. The quality index for the two sections are
Qcl

2 � 0.0134, Quncl
2 � 0.1719 and Qcl

4 � 0.0164, Quncl
4 � 0.3304,

respectively. Again, the behaviour of the perfect cloak, both in
phase and amplitude, is captured remarkably well by the
approximate one with position dependent subgrade modulus.
This shows that a correct design of a flexural cloak resting on a

substrate requires the presence of a variable subgrade modulus
that follows the provision of the theoretical transformation.

As a final remark of this section, one must note that the
employed geometrical, elastic and loading conditions correspond
to a chosen prototype geometry, but the scale of the dimensions,
and the load intensity and frequency can be changed to obtain an

FIGURE 7 | Displacement maps w (in m) computed numerically at frequencies 100, 200, 300 and 400 rad/s (at different times t in order to compare a similar
displacement pattern) for a TTWP cloak.

FIGURE 8 | Displacement maps w (in m) computed numerically at t � 145 ms for ω � 300 rad/s. (A) Uncloaked square hole where the plate rests on a Winkler
foundation with k0W � 0.5 · 106 N/m; (B) hole cloaked by a plate obtained through the TTWP resting on a Winkler foundation with a constant kW � k0W ; (C) same as (B),
but with a position-dependent subgrade module whose value follows Eq. 7. The square-shaped white contour indicates the external boundary of the cloak.
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identical behaviour on a different scaled structure subjected to
different load conditions.

CONCLUDING REMARKS

The engineering of a meta-structural cloak for elastic flexural
waves based on transformation elastodynamics is an exceptional
challenge which theoretically would require the implementation
of unfeasible compressive prestresses and in-plane body forces to
warrant equilibrium. Therefore, reasonable assumptions should
be adopted that are however grounded on the following main
points: 1) the meta-plate has a locally orthotropic response with
2) an almost vanishing twisting stiffness, 3) spatially-varying
bending stiffnesses and 4) density. In addition, the structure
invariably would interact with a substrate.

With the aim of dealing with a fully open simulation tool, a FE code
is developed and implemented with the specific purpose of studying
transient wave propagation in locally orthotropic Kirchhoff-Love plates.
A subparametric technique is adopted for spatial discretization, whereas
the approximation in the time domain is performedwith the single-step
time-integration algorithm Generalized-α method.

The performance of a prototype meta-plate square cloak based
on the approximate assumption of null prestress is then assessed
parametrically by focusing specially on the role of the twisting
stiffness and the coupling bending stiffness. The reason is that
while the local principal bending rigidities can be matched quite
easily in a microstructured plate, for those two parameters the
process is much more difficult.

The simulations show that for an effective cloaking response,
the twisting stiffness should be lower than 10% of the bending one
for the homogeneous plate, while for the coupling bending
stiffness a departure of 10% from the theoretical value already
worsens with some evidence the performance of the meta-plate.

A second contribution of this work consists in the extension of
the general theory of thin-plate cloaks to comprise interaction of
the meta-structure with an elastic substrate via Winkler-
foundation model. The conclusion is that the subgrade
modulus transforms similarly to the mass density of the plate.
The numerical simulations confirm this finding and clearly show
that a constant modulus beneath the cloak jeopardizes
dramatically the functionality of the structure.

The FE tool can be further expanded to embed inelastic
responses of plate and substrate, thus enabling simulations of
approximate supported meta-plates subjected to transient waves
arising from seismic shocks.
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FIGURE 9 | Displacement mapw (in m) computed at t � 145 ms for ω � 300 rad/s along Sections no. 2 (A) and no. 4 (B) in Figure 2 for a plate resting on aWinkler
foundation with k0W � 0.5 · 106 N/m. Comparison between solutions for a cloaked hole (TTWP with position-dependent subgrade module (see Eq. 7 and Figure 8) –red
line) and an uncloaked one (constant subgrade module–blue line). The dashed line represents the response of a homogeneous plate without the hole.
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Appendix A: Material Parameters and Pre-
Stress for the Cloak

The six independent flexural stiffnesses for trapezoid C(1) of the
cloak are

D(1)
1111 � α2(1 − c

x1
)D0, D(1)

2222 �
α2(c2x22 + x41)2
(x1 − c)3x51

D0,

D(1)
2211 � α2(c2x22 + x41)

(x1 − c)x31 D0,

D(1)
1212 �

α2c2x22
(x1 − c)x31D

0, D(1)
1112 � −α2c

x2
x21
D0,

D(1)
2212 � −α

2cx2(c2x22 + x41)
(x1 − c)2x41

D0.

The remaining components can be deduced from the major
and minor symmetries of Dijkl . The membrane forces and in-
plane body forces are

n(1)11 � 2α2c
x21(x1 − c)D

0, n(1)22 � −2α
2c(x41 + 8cx22x1 − 3c2x22)

x41(x1 − c)3 D0,

n(1)12 � 2α2cx2(3x1 − 2c)
(x1 − c)2x31

D0, s(1)1 � 0, s(1)2 � 24α2cx2
(x1 − c)3x21

D0.

Stiffnesses transform locally as follows:

Dxxxx � D1111 cos
4θ + 2(D1122 + 2D1212) sin2θ cos2θ + D2222 sin

4θ

+ 2(D1112 cos
2θ + D2221 sin

2θ) sin2θ,
Dyyyy � D1111 sin

4θ + 2(D1122 + 2D1212) sin2θ cos2θ + D2222 cos
4θ

− 2(D1112 sin
2θ + D2221 cos

2θ) sin2θ,
D1 � D1122 + (D1111 + D2222 − 2(D1122 + 2D1212)) sin2θ cos2θ

+ (D2221 − D1112) cos2θ sin2θ,
Dxyxy � D1212 + (D1111 + D2222 − 2(D1122 + 2D1212)) sin2θ cos2θ

+ (D2221 − D1112) cos2θ sin2θ.

Appendix B: An Example of a Micro-
Structured Plate Cloak

A design based on a micro-structured meta-plate is here
proposed with the aim of matching locally the principal
bending stiffnesses Dxxxx and Dyyyy , and limiting the
twisting stiffness Dxyxy . The exercise is conducted by
assuming a high-performance fibre-reinforced material
whose epoxy matrix (shortened as “ep”; material
parameters: Eep � 3.4 GPa, ]ep � 0.3, ρep � 1, 200 kg/m) is
stiffened by long boron fibres (shortened as “B”; material
parameters: EB � 380 GPa, ]B � 0.13, ρB � 2, 600 kg/m) (Kaw,
2006; Mroz, 2011). The meta-plate is such that the cross
section orthogonal to axis x is compact (and corresponds
to the “core”, indicated with “c”) with its thickness matching
the height H and fibres aligned along axis x. That orthogonal

to axis y features a set of tiny rectangular appendices, in the
number of n over a length equal to H, on both the outer sides
called “teeth” (shortened as “t”). The total height of core and
teeth is Hy (Figure 10). The reason of selecting rectangular
appendices lies in the stringent requirement of limiting the
twisting stiffness. The slenderness of the teeth may lead to
instability on the side of the plate in compression, however
this issue is not further addressed here. Fibres are here aligned
along axis y only in the teeth. Along both directions, fibres are
locally measured out (their volume fractions are spatially-
varying design variables that are however capped at 0.8) to
allow the relevant cross section to reach the needed bending
stiffness.

In the spirit of the Kirchhoff-Love theory for plates, the core
material is subjected to a plane-stress state, therefore the linear
elastic constitutive equations read

σxx � Ec1

1 − ]cxy]cyx
εxx +

]cxyEc2

1 − ]cxy]cyx
εyy,

σyy � Ec2

1 − ]cxy]cyx
εyy +

]cxyEc2

1 − ]cxy]cyx
εxx,

τxy � Gccxy, (23)

whereas the teeth undergo a uniaxial stress (i.e., σtyy � Etεyy).
All constitutive parameters of the composite in both core
and teeth follow the rule of mixtures applied to composite
materials,5, however more sophisticated models [e.g., Halpin-Tsai
model, Halpin and Kardos (1976)] can be adopted for their
estimation.

The effective stiffnesses Dclk
ijkl appearing in the cloak moment/

curvature constitutive equations (cf. Eq. 10)

mxx � −Dclk
xxxxw,xx − Dclk

xxyyw,yy, myy � −Dclk
yyyyw,yy − Dclk

xxyyw,xx,

(24)mxy � −Dclk
xyxyw,xy

can be calculated by applying the standard methodology of
integrating locally stresses across the plate thickness. The
integration leads to

Dclk
xxxx � D0R

Ec1

Ec2
, Dclk

xxyy � D0R]cxy ,

Dclk
xyxy � Gc

H3

6
+ Gt

Hy − H

6
(H
n

)2

,

Dclk
yyyy � D0[R + (1 − ]2) Et

E
[(Hy

H
)3

− 1]], (25)

where R � (Ec2/E)(1 − ]2)/(1 − ]cxy]
c
yx).

With reference to the square transformation displayed in
Figure 1B, the properties of the two cross sections of the
micro-structured plate can be defined as follows:

5In particular, Ec1, ]cxy follow the weighted average (·)ξ � (·)BcξB + (·)epcξep, whereas
Ec2, Gc, and Gt obey the harmonic average 1/(·)ξ � cξB/(·)B + cξep/(·)ep, with
ξ ∈ {c, t}; ]cyx � ]cxyEc2/Ec1.
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1) the function ccB(x1, x2) is computed through Eq. 25 in
which Dxxxx(x1, x2) replaces the current entry on the
left-hand side of the equation. The resulting expression
is a cubic in the unknown. For the typical involved
parameter Dxxxx(x1, x2), there is always a solution in
the range 0< ccB ≤ 0.8;

2) Equation 25 can now be employed to compute Hy or
alternatively ctB(x1, x2)) in whichDyyyy(x1, x2) appears on the
left-hand side of the equation. In a practical case, the usual
choice is to set ctB � 0.8 and then Hy is to be calculated;

3) the teeth density n/H should be selected so that the
twisting stiffness can be estimated via Eq. 25.

Eventually, the coupling term Dclk
xxyy can be computed through

Eq 25.

The outcome of the design is shown in Tables 2 and 3 with
reference to two transformations whose parameters are
(both with L � 0.75 m): 1) a � 0.1 m, b � 0.65 m and
εa � 0.025 m, and 2) a � 0.1923 m, b � 0.5577 m and
εa � 0.025 m (i.e., the one studied in the numerical
simulations). It can be noted that in all control points
listed in the tables, the value of Dclk

xxyy is orders of
magnitude smaller than the theoretical one.

FIGURE 10 | Local micro-structure of the meta-plate for cloaking flexural
waves. The yellow (resp. pink) cross section provides the bending stiffness
Dxxxx (resp. Dyyyy ). Axes x and y correspond to the local principal directions of
orthotropy. The teeth density is n/H.

TABLE 2 | Microstructural parameters of the boron/epoxy cloak for the
transformation whose parameters are a � 0.1 m, b � 0.65 m, εa � 0.025 m,
L � 0.75 m.

Point

Theoretical
requirement

Design
parameters

Other cloak
parameters

Dyyyy/D0 Dxxxx/D0 cc
B ct

B Dclk
xxyy/D

0 Dclk
xyxy/D

0

(x1 , x2) [m] Dxxyy/D0 Hy/H

Aa 1.115 0.7207 0.4318 0.766 0.0059 0.0201
(0.75, 0) 0.897 — 1.23 — — —

Ba 71.385 0.1802 0.1006 0.796 0.0047 0.0186
(0.1, 0) 3.586 — 3.81 — — —

Cb 1.737 0.5565 0.3312 0.799 0.0054 0.0175
(0.425, 0.425) 0.983 — 1.32 — — —

Da 183.2 0.1802 0.1006 0.799 0.0047 0.0217
(0.1, 0.1) 5.74 — 5.19 — — —

The calculations are for n � 5.
aAt this point, the principal system of orthotropy is aligned with Ox1x2.
bAt this point, the principal directions of orthotropy are rotated of an angle θC � 0.343 rad
(19+632) with respect to Ox1x2.

TABLE 3 | Microstructural parameters of the boron/epoxy cloak for the
transformation whose parameters are a � 0.1923 m, b � 0.5577 m,
εa � 0.025 m, L � 0.75 m.

Point

Theoretical
requirement

Design
parameters

Other cloak
parameters

Dyyyy/D0 Dxxxx/D0 cc
B ct

B Dclk
xxyy/D

0 Dclk
xyxy/D

0

(x1 , x2) [m] Dxxyy/D0 Hy/H

Aa 1.300 0.455 0.269 0.770 0.0051 0.0158
(0.75, 0) 0.769 — 1.23 — — —

Ba 591.7 0.059 0.0263 0.799 0.0045 0.0261
(0.1923, 0) 5.92 — 7.66 — — —

Cb 3.370 0.260 0.150 0.787 0.0048 0.0143
(0.4712, 0.4712) 0.936 — 1.53 — — —

Da 1938 0.059 0.0263 0.799 0.0045 0.0342
(0.1923, 0.1923) 10.71 — 11.37 — — —

The calculations are for n � 5.
aAt this point, the principal system of orthotropy is aligned with Ox1x2.
bAt this point, the principal directions of orthotropy are rotated of an angle θC � 0.282 rad
(16+171) with respect to Ox1x2.
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