
Characteristics of Passive Films
Formed on As-Cast Ti–6Al-4V in
Hank’s Solution Before and After
Transpassivation
Guo Yi1, Xinxin Liu2, Chuanbo Zheng1,3*, Hongyue Zhang1, Cheng Xu1, Yu-Wei Cui2 and
Shuan Liu3

1School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, China, 2School of
Science, Jiangsu University of Science and Technology, Zhenjiang, China, 3Key Laboratory of Marine Materials and Related
Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials
Technologies and Engineering, Chinese Academy of Sciences, Ningbo, China

In this work, the characteristics of passive films formed on as-cast Ti-6Al-4V before and
after transpassivation by electrochemical methods will be studied. A simulated body fluid of
Hank’s solution was used as the electrolyte in this work. According to the potentiodynamic
polarization test, the passivation range, transpassive range, and repassivation range of as-
cast Ti-6Al-4V were obtained. Afterward, the potentiostatic polarization was employed to
passivate the Ti-6Al-4V in both passivation and repassivation ranges. Electrochemical
impedance spectroscopy (EIS) was used to analyze the characteristics of formed passive
films. Different electrochemical behavior of as-cast Ti–6Al-4V is found in passivation and
repassivation ranges. The passivation current density of the sample in the repassivation
range is significantly larger than that in the passivation range. Meanwhile, the growth rate of
passive film in the repassivation range is also greater than that in the passivation range.
Although the sample shows a higher charge transfer impedance in the repassivation range,
metastable pitting corrosion is also observed, indicating the formation of the unstable
passive film. Such results advance the understanding of as-cast Ti-6Al-4V polarized under
different potentials for potential biomedical applications.
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INTRODUCTION

Titanium (Ti) and its alloys are widely used in a wide variety of industrial applications, such as
biomedical, marine, and chemical industries, due to their fascinating properties, including high
specific strength, excellent corrosion resistance, and good biocompatibility (Lu et al., 2009; Rabadia
et al., 2019a; Zhang and Chen, 2019; Chen et al., 2020a; Liu et al., 2020). Primarily, Ti alloys can be
classified as α-type Ti alloys (Zhang and Attar, 2016; Chen et al., 2017b; Zheng et al., 2019; Chen
et al., 2020b), (α+β)-type Ti alloys (Kang and Yang, 2019; Montiel et al., 2020; Semenova et al., 2020),
β-type Ti alloys (Zhang et al., 2011; Wang et al., 2016; Wang et al., 2018a; Rabadia et al., 2019b; S. Liu
et al., 2020), and Ti-based composites (Zhang and Xu, 2004; Zhang et al., 2006; Lu et al., 2009; Yang
et al., 2020a; Yang et al., 2020b). Among the commercial Ti materials, Ti–6Al–4V alloy has received
considerable attention owing to good fatigue resistance, strength, and corrosion resistance (Bai et al.,
2017; Dai et al., 2017; Zhao et al., 2018). However, Ti–6Al–4V still has some intrinsic disadvantages.
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For example, Ti–6Al–4V exhibits a relatively low hardness of
290–375 HV (Zhang et al., 2020b). The low wear resistance of
Ti–6Al–4V may easily cause the seizure in service (Stolyarov
et al., 2004). Furthermore, although Ti–6Al–4V exhibits good
corrosion resistance in the corrosive environment, a complex
corrosive environment always degrades the corrosion resistance
of Ti–6Al–4V due to the presence of halogen ions, hydrogen ions,
hydroxyl ions, and also other functional groups (Hanawa, 2004;
Chen and Thouas, 2015; Yu et al., 2015; Qin et al., 2019). Such
species degrade the passive film formed on Ti–6Al–4V and
thereby the corrosion resistance. Therefore, surface
modifications are frequently employed to produce the barrier
layer on Ti–6Al–4V before it is applicated.

So far, there are a variety of surface modification methods for
improving the surface properties of metallic materials, such as
laser processing (Balla et al., 2010; Chai et al., 2017; Chai et al.,
2018; Xiang et al., 2020), microarc oxidation (Wang et al., 2018b;
Dehghanghadikolaei et al., 2019; Yang et al., 2020b), thermal
spraying (Jaeggi et al., 2011; Chen et al., 2019a; Chen et al.,
2019b), friction stir processing (Wang et al., 2015; Wang et al.,
2017; Zhang et al., 2019c), ion implantation (Rautray et al., 2011;
Qin et al., 2017), and so on. Among these methods, anodic
oxidation is a costly method that applies an anodic potential
on the metallic sample in the solution. Afterward, a compact and
protective oxide film can be produced after the anodic oxidation
process (Liu et al., 2004). Such a protective oxide film enhances
the surface properties of Ti and Ti alloys. Therefore, anodic
oxidation is a good method to synthesize different types of oxide
films on metallic materials. The primary advantage of anodic
oxidation is the good adhesion and bonding between the oxide
film and Ti substrate. Hence, the anodic oxidized Ti and Ti alloys
can be well-employed in the aerospace and biomedical industry
(Aladjem, 1973; Babilas et al., 2016; Yang et al., 2020c).

The thickness of the produced oxide film on Ti and Ti alloys is
determined by the applied anodic potential (Liu et al., 2004).
Generally, the thickness of oxide film is almost linearly dependent
on the applied potential, obeying the relationship of d � αU ,
where d is the thickness of produced oxide film and U is the
applied potential. α is a constant, which is within a range of
1.5–3 nm V−1, depending on the chemical compositions of Ti
electrodes and solution (Liu et al., 2004). However, such an
empirical formula may be not accurate since the transpassive
behavior and the repassivation are always found in the
potentiodynamic polarization curve of Ti and Ti alloys above
the applied potential of about 1–1.5 V (Narayanan and Seshadri,
2008; Qin et al., 2019; Seo and Lee, 2019). The transpassive
behavior of Ti and Ti alloys results from the oxygen evolution
reaction (Kong andWu, 2007). Water is decomposed into H2 and
O2 during this reaction, leading to the imperfection of the passive
films formed on Ti and Ti alloys. Therefore, is this equation
appropriate for Ti and Ti alloys in all passivation range? Or is the
passivation film produced at the higher potential certainly better
than that produced at lower potential? Such questions are still
unclear. However, the information regarding the passive films
produced before and after transpassive behavior is significantly
important to the further understanding of the passivation
behavior of Ti and Ti alloys and their wider applications.

Therefore, in this work, as-cast Ti–6Al–4V is selected as the
experimental alloy. According to the potentiodynamic polarization
curve, the first passivation range and the repassivation range can be
obtained. Subsequently, the oxide films are produced at the
different passivation range and are investigated based on their
semiconductive properties and impedances. Hence,
electrochemical measurements are primarily used and the
formation mechanism of oxide film on Ti–6Al–4V.

EXPERIMENTAL

Material Preparation and Microstructural
Characterization
As-cast Ti–6Al–4V alloy was prepared via vacuum arc remelting
three times to ensure uniformity. The compositions of the
experimental alloy were 5.94 wt% Al, 4.28 wt% V, and the
balance of Ti. The sample was ground and polished to a
mirror surface finish. Afterward, the polished sample was
etched in a mixed solution of HF, HNO3, and H2O for about
15 s (1:2:7 in vol%). The microstructure of the etched sample was
examined by an optical microscope (OM, OLYMPUS PMG3).
The phase constituent of the polished sample was analyzed by an
X-ray diffraction (XRD) diffractometer (Empyrean, PANalytical)
with Co-Kα radiation. During the XRD test, the following
parameters were used: the scanning range was between 30°

and 100°, and the scanning rate was 0.03°/s. Jade 6.5 software
was used to analyze the obtained XRD data.

Electrochemical Measurements
The specimens with a size of 10 × 10 × 10 mm3 were employed for
electrochemical measurements. The exposure area of the specimen
was about 100 mm2. Hank’s solution is used as the electrolyte and
composed of 0.35 g/L NaHCO3, 0.140 gL−1 CaCl2, 0.098 gL−1

MgSO4, 0.4 gL−1 KCl, 0.06 gL−1 KH2PO4, 8 gL−1 NaCl,
0.048 gL−1 Na2HPO4, 1 gL−1 C6H12O6, and 0.011 gL−1

C19H14O5SNa. The pH of Hank’s solution is adjusted to 7.35 by
diluted HCl and NaOH. A three-electrode-system electrochemical
workstation (CHI660E, Chenhua) was employed for characterizing
the corrosion behavior of as-cast Ti-6Al-4V. Ti-6Al-4V was
employed as the working electrode, a platinum sheet was used
as the counter electrode, and a saturated calomel electrode (SCE)
was used as the reference electrode. The open-circuit potential
(OCP) test for 1800 s was conducted before the electrochemical
impedance spectroscopy (EIS) test and potentiodynamic
polarization test. Subsequently, a potentiodynamic polarization
test was conducted in a sweeping range of −0.25–+2 V (vs.
OCP) at a sweeping step of 0.2 mV/s. According to the
potentiodynamic polarization test, the passivation range,
transpassive range, and repassivation range were obtained.
Therefore, the potentiostatic polarization was employed to
passivate the Ti-6Al-4V samples at the potentials of 0.1 VSCE,
0.3 VSCE, 0.5 VSCE, 0.7 VSCE, 0.9 VSCE, 2.1 VSCE, 2.3 VSCE,
2.5 VSCE, 2.7 VSCE, and 2.9 VSCE. Then, EIS was conducted to
acquire effective capacitance at 1 kHz (Guan et al., 2018).
Subsequently, Mott-Schottky tests were done at the frequency of
1 kHz, sweeping the potential from film formation potential to ‒
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1.0 V (vs. OCP) with a step of 10 mV/s. All potentials reported
were against SCE in this work. Each test was repeated three times to
ensure the data reproducibility. The software ZsimpWin 3.30 was
used to analyze the EIS data and the software Cview 2.6 was used to
analyze the potentiodynamic polarization data.

RESULTS AND DISCUSSION

Microstructural Features
Figure 1 shows the XRD pattern of the Ti-6Al-4V sample. Since Ti-
6Al-4V is a dual-phase Ti alloy ((α+β)-type Ti alloy), the peaks of
both α-Ti and β-Ti are observed. V is a β-stabilizer for Ti alloys
(Chen et al., 2020a). Due to the small content of V in the sample,
only a weak peak of β-Ti is observed in the XRD pattern. According
to the integrated area method (Zhang et al., 2003;Chen et al., 2018a;
Sang et al., 2019), the volume fraction of α-Ti is calculated to be 95%
and β-Ti is 5%. Generally, (α+β)-type Ti alloys contain a certain
fraction of β phase (about 5–30 vol%) (Lei et al., 2017). Therefore,
(α+β)-type Ti alloys are heat treatable due to the second phase in the

metal matrix (Chen et al., 2015b; Zhang et al., 2017; Sabban et al.,
2019). Figure 2 is the optical image of the microstructure of Ti-6Al-
4V. It can be observed that the primary β grains have a size over
several hundred microns. β-Ti is distributed on the boundaries of
primary β grains. In the inner part of primary β grains, a
considerable number of α-Ti laths are found. Such a
Widmanstätten microstructure is produced due to the
transformation of β → α at a relatively low speed. Similar
microstructures can be frequently found in the hexagonal close-
packedmetallicmaterials, such as Zr alloys and other Ti alloys (Chen
et al., 2018b; Chen et al., 2018c; Yang et al., 2019; Yang et al., 2020a).

Potentiodynamic Polarization Test
Figure 3 shows the potentiodynamic polarization curve of the sample
in Hank’s solution at 37°C. Typically, the sample is passivated after the
anodic activation zone as an indication of nearly constant passivation
current density. Such a typical electrochemical behavior is frequently
observed in valve metals (Qin et al., 2019). After fitting the
potentiodynamic polarization curve, it shows that the corrosion
potential of as-cast Ti-6Al-4V in Hank’s solution at 37°C is
-0.405 ± 0.027 VSCE. The corrosion potential indicates the energy
needed for corrosion reaction of a specific alloy in a specific corrosive
environment (Chen et al., 2017a). The corrosion current density of as-
cast Ti-6Al-4V is 0.031 ± 0.008 μA cm−2. The corrosion current
density illustrates the spontaneous corrosion rate of a specific alloy
at the corrosion potential (Chen et al., 2017a). The data of both
corrosion potential and corrosion current density fall in the outcomes
in the literature, indicating the reliability of the potentiodynamic
polarization test in this work. As seen from Figure 3, when the
applied anodic potential exceeds a certain value, the passivation
current density keeps almost constant as the applied anodic
potential increases (Qin et al., 2017; Zhang et al., 2019a; Zhang
et al., 2019b). The passivation current density is nearly constant
from the potential of 0 VSCE to 1.2 VSCE. For Ti and Ti alloys,
transpassive behavior is often observed (Narayanan and Seshadri,
2008; Qin et al., 2019; Seo and Lee, 2019). In this work, the
transpassivation range is observed from 1.2 VSCE to 1.5 VSCE. The

FIGURE 1 | X-ray diffraction pattern of as-cast Ti-6Al-4V used in
this work.

FIGURE 2 | Optical image of the microstructure of as-cast Ti-6Al-4V.

FIGURE 3 | Potentiodynamic polarization curve of as-cast Ti-6Al-4V in
Hank’s solution at 37°C.
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current density rapidly increases with increasing the applied potential.
When the applied potential reaches 1.5 VSCE, the repassivation
behavior of Ti-6Al-4V takes place. The passivation current density
of Ti-6Al-4V slowly increases with increasing the applied potential in
the repassivation range. Meanwhile, another feature can be observed.
In the passivation range, the potentiodynamic polarization curve is
significantly smooth. However, in the repassivation range, the
potentiodynamic polarization curve is not smooth but has several
stabs. Such stabs are indicative of metastable pitting corrosion
(Frankel, 1998). Such a finding indicates the passivation of Ti-6Al-
4V is imperfect in the repassivation range. According to the results of
potentiodynamic polarization tests, the film formation potentials for
potentiostatic polarization tests are selected at 0.1–0.9 VSCE and
2.1∼2.9 VSCE in the following.

Potentiostatic Polarization Tests
It has been widely reported that the current density of the sample
decreases quickly within the first 30 s and then slowly decreases to
a nearly stable value due to the formation of the passive film (Gai
et al., 2018). Therefore, the growth kinetics of passive film follows
the Macdonald model (Lakatos-Varsányi et al., 1998), which can
be expressed as the following equation:

log i � logA − n log t, (1)

where i is the current density, t is the passive time, and A and n are
constants. The value of n can be used to indicate the growth rate of
the passive film. Figure 4 reveals the double-log plots of current-
time of as-cast Ti-6Al-4V in the potentiostatic polarization tests in
the passivation range and repassivation range in Hank’s solution at
37°C, respectively. It can be found that the double-log plots of
current-time are basically linear and the current density of the
sample at high potential is always greater than that at low potential.
Basically, n in Eq. (1) tending to be −1 illustrates that the growth
process is primarily determined by the electrical field to generate a
compact and protective passive film (Galvele et al., 1990). In
Figure 4A, the values of n are −0.857, −0.912, −0.877, −0.859,
and −0.935 for the double-log plots of current-time obtained at
0.1 VSCE, 0.3 VSCE, 0.5 VSCE, 0.7 VSCE, and 0.9 VSCE. In Figure 4B,
the values of n are −0.816, −0.834, −0.835, −0.788, and −0.713 for
the double-log plots of current-time obtained at 2.1 VSCE, 2.3 VSCE,
2.5 VSCE, 2.7 VSCE, and 2.9 VSCE. Based on these results, the passive
films formed at the passivation range have higher quality than those
formed at the repassivation range. Meanwhile, similar to the results
presented in Figure 3, the curves obtained at the passivation range
(0.1∼0.9 VSCE) are smooth. By contrast, the curves obtained at the
passivation range are not smooth. Some features of metastable
pitting corrosion are found. In particular, at the applied potential of
2.9 VSCE, the metastable pitting corrosion is significantly obvious.
The pitting corrosion results from the rupture of passive films form
on the Ti and Ti alloys. If the rupture of passive films is healed by the
passivation ability of alloys, the pitting corrosion is defined as the
metastable pitting corrosion. If the rupture of passive films is not
healed, the pitting corrosion is stable pitting corrosion. Generally,
such stabs in the curves of current density (including Figures 3, 4)
indicate the rupture and healing of passive film (Dai et al., 2016a;
Dai et al., 2016b; Qin et al., 2018). The higher applied anodic
potential provides a higher capability to adsorb the anions,
including halide ions (Basame and White, 2000). The halide ions
are well known as one of the factors to trigger the metastable pitting
corrosion, even stable pitting corrosion for the passive metals.
Therefore, lots of metastable pitting corrosion phenomena are

FIGURE 4 | Double-log plots of current-time of as-cast Ti-6Al-4V in the
potentiostatic polarization tests under different file formation potentials in
Hank’s solution at 37°C, (A) the curves obtained under 0.1-0.9 V and (B) the
curves obtained under 2.1-2.9 V.

FIGURE 5 |Quasi-steady passivation current densities of as-cast Ti-6Al-
4V in potentiostatic polarization tests under different applied potentials in
Hank’s solution at 37°C.
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observed under high potential. Such a phenomenon is always
associated with the sudden increase and subsequent decrease in
the current density. This finding reflects the low quality of passive
film formed on the sample at the applied potential of 2.9 VSCE.

After 1800 s potentiostatic polarization tests in Hank’s solution at
37°C, the passivation current densities of the samples almost reach
stability. The quasi-steady passivation current densities of samples are
shown in Figure 5. It can be found that the quasi-steady passivation
current densities of samples gradually increase from 0.276 μA cm−2 to
0.425 μA cm−2 in the passivation range. In comparison, the quasi-
steady passivation current densities of samples significantly increase to
1.682 μA cm−2–3.985 μA cm−2 in the repassivation range, which is
increased by an order of magnitude. The quasi-steady passivation
current densities could elucidate the migration of ions at a specific
potential (Chen et al., 2017b; Guan et al., 2018). Although the alloy can
be regarded as the stable passivation state in the current situation, the
quasi-steady passivation current density illustrates the balance of the
formation and dissolution of the passive film. According to Faraday’s
law, higher quasi-steady passivation current density is related to the
smaller impedance of passive film (Vautrin-Ul et al., 2007). Therefore,
such a finding may specify that the quality of passive films formed on
as-cast Ti-6Al-4V in the repassivation range is not as good as that
formed on as-cast Ti-6Al-4V in the passivation range.

Electrochemical Impedance Spectroscopy
To further investigate the electrochemical system at the metal/
solution interfaces, EIS was conducted on the samples polarized
under different potentials in Hank’s solution at 37°C. Figure 6
shows the EIS results of the samples on which the potentiostatic
polarization tests were conducted at 0.1∼0.9 VSCE, including the

Nyquist diagram, Bode plot, and equivalent circuit diagram.
Figure 6A is the Nyquist plots. All Nyquist plots have only one
capacitor arc, which has a very large radius. The radius of the
capacitor arc increases with increasing the film formation potential.
From the Bode plots (Figures 6B, C), it is hard to distinguish the
difference among the five samples. By fitting the EIS data using the
equivalent circuit diagram in Figure 6D, the impedance
information of passive films formed on the samples at different
potentials can be obtained. In this equivalent circuit diagram
(Figure 6D), Rs and Rct correspond to the solution resistance
and charge transfer resistance, respectively. Because of the
influence of the surface roughness, the constant phase element
(CPE) is used (Chen et al., 2018d; Liang et al., 2018; Yang et al.,
2018). n is the parameter of CPE. For n � 1, CPE is regarded as an
ideal capacitor, whereas CPE is nonideal when 0.5 < n < 1 (Zhang
et al., 2020a). The fitted results of EIS are listed in Table 1.χ2 is the
sum of the square of the difference between theoretical and
experimental points, which is lower than 0.007, indicating a
good quality of the fitting in this experiment. These results
show that the values of Rs for all tests are almost the same.
However, there is a significant distinction in the values of Rct.
For the sample on which the potentiostatic polarization test was
conducted at 0.1 VSCE, the value of Rct is 1.86 ± 0.10MΩ cm2. The
values of Rct increase with the increasing film formation potential.
When the film formation potential is 0.9 VSCE, the value of Rct

reaches 4.35 ± 1.21MΩ cm2. Rct indicates the impedance of
electrons from the metal to the solution. Therefore, the higher
value of Rct illustrates the higher protectiveness of passive film.
Such a result is consistent with the outcome in the other works
(Shibata and Zhu, 1994).

FIGURE 6 | Electrochemical impedance spectroscopy of as-cast Ti-6Al-4V under different film formation potentials in passivation range in Hank’s solution at 37°C,
(A) Nyquist plots, (B) Bode impedance plots, (C) Bode phase diagram and (D) equivalent circuit.
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EIS was also conducted in the repassivation range in order to
understand the electrochemical system at the metal/solution
interfaces after transpassivation. Figure 7 shows the Nyquist
diagram, Bode plot, and the equivalent circuit diagram used
for the samples on which the potentiostatic polarization tests
were conducted at 2.1∼2.9 VSCE. The impedance of passive film
formed in the range of 2.1∼2.9 VSCE (Figure 7A) is significantly
larger than that in the range of 0.1∼0.9 VSCE (Figure 6A). Such a
result is in line with the outcomes in the literature that the
thickness of the passive film formed on Ti and Ti alloys
increases with increasing the applied anodic potential (Al-
Mayouf et al., 2004; Guan et al., 2018). The Bode phase angle
plot in Figure 7C is also different from that in Figure 6C. In
Figure 6C, the curve from 102 Hz to 10−2 Hz is a wide plateau. In
comparison, the curve from 102 Hz to 10−2 Hz has dual dumps in
Figure 7C. Such a finding illustrates that the passive film formed
on the samples in the repassivation range may have a bilayer
structure, namely, the inner barrier layer and outer porous layer

(Aziz-Kerrzo et al., 2001). Table 2 lists the fitting results of EIS in
Figure 7. Different equivalent circuits are used for fitting EIS of
different-structured passive films. Therefore, for this EIS, a
R(Q(R(QR)) equivalent circuit diagram is used to highlight the
outer porous layer on the polarized sample. Rs, Rct, and CPE have
the same meaning as Figure 6. Rf is the film resistance, which
illustrates the diffusion resistance in the defects of the outer
porous layer (Zhang et al., 2020a). χ2 is lower than 0.0007,
which also indicates a good quality of the fitting. Apparently,
Rf is significantly lower than Rct. Therefore, the corrosion
resistance (as well as the impedance of passive film) of the
polarized sample strongly depends on the value of Rct. The
value of Rct for the sample polarized at 2.1 VSCE is 7.691 ±
1.203MΩ cm2, which is nearly two times that for the sample
polarized at 0.9 VSCE. Such a finding demonstrates that the
impedance of passive film formed on the as-cast Ti-6Al-4V
increases with increasing the applied potential regardless of the
occurrence of transpassive behavior. With the continuous

TABLE 1 | Fitting results of electrochemical impedance spectra for as-cast Ti–6Al–4V after OCP tests in Hank’s solutions at 37°C. Rs means solution resistance, Rct indicates
charge transfer resistance, CPE describes charge transfer capacitance, n is the exponent of CPE, and χ2 is the sum of the square of the difference between theoretical
and experimental points.

Potential (VSCE) Rs (Ω·cm2) n Rct (MΩ·cm2) CPE ×
10−5 (F·cm−2)

χ2

0.1 18.01 ± 0.89 0.8654 ± 0.072 1.86 ± 0.10 2.24 ± 0.12 3.03 × 10−3

0.3 17.64 ± 0.72 0.8601 ± 0.090 2.76 ± 0.30 1.87 ± 0.57 1.14 × 10−3

0.5 16.70 ± 0.86 0.9049 ± 0.008 3.34 ± 0.03 1.92 ± 0.02 6.37 × 10−3

0.7 19.18 ± 0.80 0.9081 ± 0.003 3.26 ± 1.10 2.12 ± 0.43 1.53 × 10−3

0.9 18.94 ± 1.20 0.8997 ± 0.005 4.35 ± 1.21 2.01 ± 0.05 2.75 × 10−3

FIGURE 7 | Electrochemical impedance spectroscopy of as-cast Ti-6Al-4V under different film formation potentials in the repassivation range in Hank’s solution at
37°C, (A) Nyquist plots, (B) Bode impedance plots, (C) Bode phase diagram and (D) equivalent circuit.
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increase in the applied potential, the value of Rct reaches 27.143 ±
2.74 MΩ cm2 for the sample polarized at 2.9 VSCE. Therefore, the
passive film formed on the sample polarized at 2.9 VSCE has the
best protectiveness in all samples used in this work.

Growth of Passive Films
According to the anodic oxidation theory, the thickness of the
passive film is almost linearly dependent on the applied potential
(Liu et al., 2004). Therefore, the thicknesses of passive films (LSS)
formed on samples polarized at different passivation ranges were
calculated by the following equation:

LSS � εε0A
Ceff

, (2)

where ε is the relative dielectric constant (60 for TiO2 (Gai et al.,
2018)), ε0 is the vacuum dielectric constant (8.85× 10–14 F cm−1),A is
the area of Ti electrode, and Ceff is the effective capacitance. By
processing the EIS data using ZsimpWin software, the capacitance vs.
frequency curves of the polarized samples could be obtained. The
capacitance at 1 kHz was selected as effective capacitance (Guan et al.,
2018). Based on the calculation using Eq. 1, the thicknesses of passive
films formed on samples polarized at different passivation ranges are
shown in Figure 8. Figure 8A shows the thicknesses of passive films
formed on samples polarized in the passivation range. The thicknesses
of passive films basically obey the linear relationship with the film
formation potential, which is consistent with the anodic oxidation
theory. As seen from the fitting result, the slope of the fitted line is 3.30
nm/VSCE. This result means that the passive film has an increase of
3.30 nm per VSCE. The thicknesses of passive films also obey the linear
relationship with the film formation potential in the repassivation
range. However, the slope of the fitted line in Figure 8B is different
from that inFigure 8A. The passive film grows at a growth rate of 3.84
nm/VSCE in the repassivation range, which is higher than that in the
passivation range. Therefore, one can conclude that the as-cast Ti-6Al-
4V has distinct passive film growth rates in different passivation range.

Possible Film Formation Mechanism Before
and After Transpassivation
As is well known, the quality of formed passive films determines
the corrosion resistance of passive metals in corrosive environments
(Chen et al., 2015a; Chen et al., 2016). The criterion for the quality of
passive films may be varied in line with different purposes (Lu et al.,
2008; Zhang et al., 2019b). In this work, an apparent transpassivation

range is found before the passivation range and repassivation range.
Both passivation current densities and quasi-steady passivation
current densities of the samples in the potentiodynamic
polarization and potentiostatic polarization significantly increase in
the repassivation range as compared to those in the passivation range
(Figures 3, 5). The passivation current densities illustrate the ionic
migration in the passive films formed on the samples at the given
potentials, namely, the exchange of substances between the sample
and corrosive environment (Huang and Blackwood, 2005).
Therefore, it can be confirmed that the higher film formation
potential results in a higher film growth rate and a higher film
dissolution rate (Figure 5). Although the passive films formed under
higher applied potentials show a higher impedance, the higher
passivation current densities of the samples also indicate the
higher corrosion rates under the given applied potentials.
Therefore, two questions can be divided hereafter. The as-cast Ti-
6Al-4Vmay have a higher corrosion rate at a higher applied potential,
hence it can not be applied as an electrode (or other equivalents)
under a high potential. However, the passive film formed under the
high potential has high impedance. Therefore, the polarized as-cast
Ti-6Al-4V can be used as the workpiece (or part) in a corrosive
environment without applied potential (such as the human body).
Such a polarized as-cast Ti-6Al-4V would possess superior corrosion
resistance due to the high-impedance passive film.

The applied potential provides the higher driving force to
adsorb the negative ions in the electrolyte and also increases the
electric field in the passive film (DespiĆ et al., 1988). Within the
adsorbed negative ions, OH− or O2- forms TiO2 (Zhang et al.,
2020b). As such, the thickness of passive film always increases
with increasing applied potential. However, the higher applied
potential also would adsorbmore ingress ions (such as halide ions).
Such ingress ions would trigger the localized breakdown of passive
film (Zhang et al., 2018), which is observed in the samples polarized
at 2.9 VSCE (Figure 5). According to the point defect model, the
pitting corrosion or metastable pitting corrosion results from the
condensation of cation vacancies catalyzed by aggressive ions
(Macdonald, 2011). Based on the existing data, the density of
oxygen vacancies in the passive films formed on Ti-6Al-4V
decreases with increasing applied potential (Jia et al., 2016; Gai
et al., 2018). Hence, to achieve the condensation of oxygen
vacancies, a high electric field in the passive film is required. As
discussed above, the sample polarized under higher applied
potential shows higher steady-state passivation current density.
Such a phenomenon also demonstrates a higher electric field in the
passive film. The higher electric field directly results in the high

TABLE 2 | Fitting results of electrochemical impedance spectra for as-cast Ti–6Al–4V after OCP tests in Hank’s solutions at 37°C. Rs means solution resistance, Rf is film
resistance,Rct indicates charge transfer resistance, CPE1 andCPE2 describe film capacitance and charge transfer capacitance, n1 and n2 are the exponents of CPE1 and
CPE2, and χ2 is the sum of the square of the difference between theoretical and experimental points.

Potential
(VSCE)

Rs

(Ω·cm2)
Rf

(kΩ·cm2)
n1 CPE1 × 10−6

(F·cm−2)
Rct

(MΩ·cm2)
CPE2 × 10−5

(F·cm−2)
n2 χ2

2.1 15.05 ± 1.28 6.191 ± 0.50 0.8018 ± 0.050 7.19 ± 0.84 7.691 ± 1.20 2.109 ± 0.08 0.9266 ± 0.052 5.71× 10−4

2.3 16.03 ± 1.12 6.728 ± 0.02 0.8306 ± 0.061 7.15 ± 0.52 14.587 ± 1.11 2.425 ± 0.65 0.8316 ± 0.104 3.47× 10−4

2.5 13.26 ± 2.55 7.495 ± 0.52 0.7919 ± 0.098 5.66 ± 0.32 18.337 ± 1.72 2.972 ± 0.04 0.9409 ± 0.060 4.08× 10−4

2.7 15.66 ± 1.83 7.570 ± 0.20 0.8608 ± 0.088 6.30 ± 0.69 24.580 ± 2.86 3.449 ± 0.86 0.9084 ± 0.037 6.11× 10−4

2.9 14.19 ± 0.20 8.027 ± 0.06 0.7717 ± 0.006 7.33 ± 0.05 27.143 ± 2.74 2.226 ± 0.08 0.9805 ± 0.012 3.73× 10−4
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diffusion coefficient of oxygen vacancies (Lu et al., 2009; Guan
et al., 2018). The flux of oxygen vacancies is the function of the
density of oxygen vacancies and their diffusion coefficient. A high
flux of oxygen vacancies could result in the condensation of cation
vacancies. Due to observed high possibility of metastable pitting
corrosion under high applied potential (repassivation range), one
can conclude that the applied potential is decisive for the localized
destruction of the passive film.

CONCLUSION

In this work, the electrochemical behavior of as-cast Ti-6Al-4V in
Hank’s solution at 37 °C before and after transpassivation was
investigated. After carefully analyzing the microstructure of as-
cast Ti-6Al-4V, the potentiodynamic polarization test was

conducted to confirm the passivation and repassivation ranges.
By investigating the electrochemical impedance spectroscopy of
the samples polarized in passivation and repassivation ranges,
characteristics of passive films formed on as-cast Ti-6Al-4V are
further understood. Some key conclusions are drawn as follows.

(1) In the potentiodynamic polarization test, the passivation
range is observed from 0 VSCE to 1.2 VSCE for the sample.
Subsequently, the transpassivation behavior of the sample is
found from 1.2 VSCE to 1.5 VSCE. Afterward, the repassivation
range is observed from 1.5 VSCE to the end of the test.

(2) Potentiostatic polarization tests were conducted at
0.1∼0.9 VSCE and 2.1∼2.9 VSCE to produce passive films on
the samples. The growth kinetics of the passive film follows the
Macdonald model. With increasing the film formation
potential, the quasi-steady passivation current densities of
as-cast Ti-6Al-4V increase. Metastable pitting corrosion is
observed under the applied potentials of 2.7 VSCE and 2.9 VSCE.

(3) Electrochemical impedance spectroscopy examinations were
carried out on the potentiostatic polarized samples. The
results show that the thickness of the passive film as well
as the charge transfer of the samples increases with increasing
the applied potential. The formed passive films before and
after transpassivation have different growth rates, which are
calculated as 3.30 nm/VSCE and 3.84 nm/VSCE in the
passivation range and repassivation range.

(4) Based on the result of this work, one can conclude that the
passive film formed under high applied potential has better
protectiveness. Therefore, although the transpassivation
behavior may destroy the passive film to some extent, the
passive film formed under higher applied potential still has
higher impedance. However, the higher applied potential also
provides the higher driving force to adsorb the aggressive
ions in the electrolyte and also increases the electric field in
the passive film. Therefore, metastable pitting corrosion is
observed at the high applied potential.
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