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Magnetorheological fluid (MRF) is a kind of smart materials with rheological behavior
change by means of external magnetic field application, which has been widely adopted in
many complex systems of different technical fields. In this work, the state-of-the-art MRF
based devices are reviewed according to structural configurations reported from 2018 to
2020. Based on the rheological characteristic, the MRF has a variety of operational modes,
such as flow mode, shear mode, squeeze mode and pinch mode, and has unique
advantages in some special practical applications. With reference to these operational
modes, improved engineering mechanical devices with MRF are summarized, including
brakes, clutches, dampers, and mounts proposed over these 3 years. Furthermore, some
new medical devices using the MRF are also investigated, such as surgical assistive
devices and artificial limbs. In particular, some outstanding advances on the structural
innovations and application superiority of these devices are introduced in detail. Finally, an
overview of the significant issues that occur in the MRF based devices is reported, and the
developing trends for the devices using the MRF are discussed.

Keywords: magnetorheological fluid, magnetorheological fluid-based devices, structural configuration,

magnetorheological fluid brakes, magnetorheological fluid clutch, magnetorheological fluid damper,
magnetorheological medical devices

INTRODUCTION

Magnetorheological fluid (MRF), as a kind of smart materials, has been widely studied by scholars
due to its controllable rheological properties in a few milliseconds (Jackson et al., 2018; Fu et al., 2020;
Zheng et al., 2020). In the technical fields of vibration isolation (Rossi et al., 2018; Phu and Choi,
2019), energy absorption (Ahamed et al., 2016; Yoon J.-Y. et al., 2020), and actuation control (Hong
et al, 2019; Zhang L. et al., 2019) et al., MRF has a unique advantage as the main part of the
manipulation or regulation mechanism. Therefore, MRF based devices have great potential in
structural optimization and innovative development and show outstanding performance in
engineering (Hu et al., 2019; Yuan et al., 2019; Zhou et al., 2020) and medical fields (El Wahed, 2020).

MREF based devices are mainly based on four operational modes of MRF, including flow mode,
shear mode, squeeze mode and pinch mode, which show different performance in various practical
application requirements (Elsaady et al., 2020a). Using the above four operational modes, widely
studied engineering mechanical devices mainly involve brake, clutch, damper, and mount etc.
(Ahamed et al, 2018). Because the MRF can generate a reliable and stable magnetorheological
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FIGURE 1 | Classification of MRF based devices with proportions
according to the referred literatures.

phenomenon with fast response and strong controllability in the
magnetic field environment (Juan et al, 2011), MRF based
devices generally have a low failure rate and high regulating
ability. However, with the change of the production environment
and the improvement of application requirements, these MRF
based devices have gradually exposed some defects, such as weak
magnetic field (Lee et al, 2018), unstable MRF because of
overheated electromagnetic coils (Wang et al, 2019b),
settlement of MRF in the idle state (Bastola et al., 2019),
leakage of MRF (Tu et al, 2019), and an overall large and
bulky devices volume (Li J. H. et al., 2018). Therefore, in view
of the various problems in practical applications, many scholars
have proposed different improvements and optimization
methods based on traditional structures, which has greatly
enhanced the performance of the MRF based devices.
Furthermore, different from the above application types, the
MREF has been further developed, and has in recent years become
an important part of the haptic feedback system (Song et al.,
2018b) and artificial limbs (Pandit et al., 2018) in the medical
field. In the haptic feedback system based on the MRF, using the
controlled rheological characteristics, a resistance environment
similar to the real sense of touch is generated and transmitted to
the operator, which is widely applied to the teleoperated catheter
operating system (Song et al, 2018a) or intelligent haptic
interface devices (Topcu et al, 2018). Moreover, in some
medical auxiliary and customized devices, such as prostheses
(Jing et al., 2018; Zhou and Liu, 2020), rehabilitation protection
devices (Zhou et al., 2020), and skeletons (Veronneau et al., 2018),
the MRF has been widely studied for advantages of adjustable
stiffness and easy structure integration. Based on these specific
applications, novel product structures and design methods are

Structural Configuration of MR Fluid-Based-Devices

proposed using the MRF, which fully reflects the irreplaceable
role of the smart material in many advanced technologies.

Having thus described some basic concepts and providing a
broad categorization, some typical MRF based devices are
investigated in engineering and medical applications from
2018 to 2020. In this work, 104 academic articles from these
3 years are used as a reference, reporting on the novel structure
configurations, design purposes, and advantages of MRF based
devices. Based on the above classification introduction, the
proportions of different development directions are shown in
Figure 1. Furthermore, some drawbacks of the MREF filled devices
are also summarized. After a discussion, conclusions, and outline,
prospects for the development of MRF based devices are
presented.

MAGNETORHEOLOGICAL FLUID BRAKES
IN ENGINEERING APPLICATIONS

A brake is a device with the function of making moving parts (or
moving machinery) slow down, stop or maintain the stopped
state, which is widely used in lifting transportation equipment,
mining equipment, construction engineering equipment, and
marine ship equipment. Increasing brake torque, eliminating
hysteresis time, optimizing device volume and weight, and
reducing energy consumption are the main directions of
developing new MRF brakes (Bazargan-Lari, 2019; Zhu et al,
2019). Some MRF brakes reported from 2018 to 2020 are
summarized in Table 1.

In 2018, a radial multi-pole-and-layer MRF brake with higher
torque and torque density was proposed, shown in Figure 2A
(Wuetal., 2018). In this design, two superposition magnetic fields
are generated by inner and outer coils with 12 magnetic poles, and
four media layers of MRF are located in these coils. The braking
characteristics of the device are significantly improved, but the
added coils increase the overall weight and energy consumption.
Furthermore, an MRF brake was designed with a multi-drum
architecture, shown in Figure 2B (Qin et al., 2018). The device is
compact and light-weight, generating four gaps of MRF, which
increases the shear area but also requires higher manufacturing
accuracy. In order to enhance the braking torque, except the
above structural changes, a configuration of an MRF brake with
three coils on each side of the brake housing was designed, shown
in Figure 2C (Nguyen et al, 2019). The device provides better
braking performance than a traditional single side-coil MRF
brake. However, the device is also unable to avoid the defects
of being heavy, having high energy consumption, and
temperature interference. Different from the above design
solution, an MRF brake was proposed to avoid meaningless
loss, where permanent magnets were used to attract MRF into
a neighboring gap, shown in Figure 3A (Shamieh and Sedaghati,
2018). Through eliminating contact of the MRF and rotor, power
loss due to the zero-field viscous torque is decreased. On the other
hand, in the braking state of the device, the effective shear area of
MREF is small and the braking torque is limited. Moreover, an
elastomeric baffle device with MRF was proposed and applied for
the electronic joystick machine shown in Figure 3B (Elliott and
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TABLE 1 | Novel MRF brakes in 2018-2020.

No. References Type

1 Zhu and Geng (2018) Brake with shear and differential pressure mode
2 Wu et al. (2018) Multi-pole-and-layer type brake with shear mode
3 Qin et al. (2018) Multi-drum type brake with shear mode

4 Nguyen et al. (2019) Multi-coil type brake with shear mode

5 Shamieh and Sedaghati Permanent magnets and coil type brake with
(2018) shear mode

6 Eliott and Buckner (2018)  Piston type brake with shear mode

7 Zhu et al. (2019) Disc-and-drum type brake with shear mode

8 Dai et al. (2019) Rotary micro brake with shear mode

9 Qin et al. (2019) Multi drum type brake with shear mode

10  Wang et al. (2019a) Disc type brake with squeeze and shear mode

iR Wang and Bi (2020)

12 Zhang D. et al. (2020) Disc type brake with shear mode

Disc type brake with squeeze and shear mode

Structural Configuration of MR Fluid-Based-Devices

Improved method

Simulating Wankel engine configuration to realize intelligent brake quickly

Using two layers structure with six pairs of coils to improve magnetic field strength
Adding the number of layers in the drum to increase the working area of MRF.
Adopting three coils on each side of the brake housing to improve magnetic field
strength

Using permanent magnets to absorb MRF to reduce the energy loss caused by zero
field viscosity

Combining MRF and baffle with simple structure to control the electronic joystick
Optimizing structure size and verifying phenomenon of shear thinning in high speed
Combining with turbine generator with compact structure

Designing a hollowed casing structure to fill with actuator

Using squeeze-shear mode and water-cooling way simultaneously to improve the
brake performance

Adopting an automatic squeeze and shear mode to improve the torque output
Coupling multiple brakes to conduct the torsional forward of snake-like robot
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FIGURE 2 | (A) Multi-pole-and-layer MRF brake (Wu et al., 2018). (B) Multi-drum MRF brake (Qin et al., 2018). (C) Multiple side-coil MRF brake (Nguyen et al.,

Buckner, 2018). The device provides controllable resistance to
axial motion of the center shaft and has the advantages of
reducing cost and complexity.

In 2019, a micro-brake was proposed to regulate a miniature
turbine generator based on MR fluid and MR grease, respectively,
shown in Figure 4A (Huang et al., 2018; Dai et al., 2019). In the
simple device, an electromagnetic coil fills internal space, and low

permeability materials are used to maximize the magnetic field
density. The brake can improve enough resistance when the
turbine generator is working at high wind speeds. Similar to a
compact structure, a novel hollowed multi-drum MRF brake was
proposed to deal with the magnetic hysteresis, shown in
Figure 4B (Qin et al, 2019). The device has a multi-drum
mode, and a hollowed casing filled with actuator provides the
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FIGURE 3 | (A) MRF brake without zero-field viscous torque (Shamieh and Sedaghati, 2018). (B) Elastomeric baffle MRF device (Elliott and Buckner, 2018).
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FIGURE 4 | (A) Rotary micro-brake (Dai et al., 2019). (B) Multi-drum MRF brake (Qin et al., 2019). (C) High-torque squeezing MRF brake (Wang et al., 2019a). (D)
MRF brake with squeeze-shear mode (Wang and Bi, 2020). (E) Snake like robot with MRF actuators (Zhang D. et al., 2020).
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important reference of the composite structure. But these
compact structures tend to increase the MRF temperature and
cause the braking torque to decrease. Then, a squeezing brake was
presented to reduce the effect of temperature on MRF, shown in
Figure 4C (Wang et al., 2019a). In this device, several flumes are
designed to dissipate the heat of MRF and brake disc, the

water-cooling method effectively improves the working time
and maintains high brake torque. However, the flumes increase
the size of the brake and require the addition of water
circulation equipment. Furthermore, in 2020, an MRF brake
under squeeze-shear mode was designed, in which a squeezing
bolt was presented to produce compressive force for transmission
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TABLE 2 | Novel MRF clutches in 2018-2020.

No. References Type

1 Fernandezetal. (2018)  Drum type clutch with shear mode

2 Wang W. D. et al.
(2019)

3 Wu et al. (2019)

Disc type clutch with shear mode

Muilti hollow disc type clutch with shear
mode

Multi disc type clutch with shear mode
Valve type clutch with flow mode

4 Kikuchi et al. (2020)
5 Olszak et al. (2019)

Structural Configuration of MR Fluid-Based-Devices

Improved method

Using a steel cylinder moved in and out the clutch device to adjust magnetic field of permanent
magnet.
Providing a human-robot interaction MRF clutch and optimizing structure sizes

Designing a complex transmission disc with a plurality of magnetic conductive columns and
flumes for cooling liquid

Presenting a multi-clutch coupling scheme

Simulating the structure of electric pump and replacing oil fluid with MRF to realize the power
transmission control

6 Yang and Chen (2019)  Drum type clutch with shear mode

Proposing a wedge-shaped clearance between the inner and outer cylinders for uniform

distribution of magnetic field

7 Wang X. et al. (2019)  Conical type clutch with shear and
squeeze mode

Disc type clutch with shear and squeeze
mode

Disc type clutch with shear mode

8 Xiong et al. (2019)

9 Binyet and Chang
(2020)

10 Pilon et al. (2020) Disc type clutch with shear mode

performance, and a magnetic vane was set to ensure that a
magnetic flux crosses both sides of the rotor, shown in
Figure 4D (Wang and Bi, 2020). Utilizing the combined mode,
the MRF device generated higher torque compared to those
without compression. Moreover, an MRF brake with adaptive
stiffness control was applied to a snake-like robot shown in
Figure 4E (Zhang D. et al., 2020). Although this device has
only the most basic brake structure, a number of MRF brakes
are assembled head to tail, that is, the brake can also be regarded as
an actuator. By flexibly controlling the output torque of each joint
MREF brake, the twisting motion of the snake-like robot can be
realized. Since the motion of each joint is different, the actuators
with MRF need to be controlled, separately.

MAGNETORHEOLOGICAL FLUID
CLUTCHES IN ENGINEERING
APPLICATIONS

A clutch is a commonly used mechanism in transmission or
actuation equipment and can separate or engage motion
components at any time (Tian et al.,, 2018; Wang W. D. et al,,
2019). As a special power switch, a high-quality clutch has some
basic requirements such as a smooth joint, rapid and complete
separation, a small sized exterior profile, good wear resistance,
adequate heat dissipation capacity, is easy to operate, and is labor
saving. Aiming to realize the above working performance, new
clutches based on MRF have been extensively studied and have
unique advantages in many engineering applications. Some MRF
clutches from 2018 to 2020 are summarized in Table 2.

In 2018, an MRF clutch was presented using permanent
magnets, which is covered by a steel cylinder (Fernandez et al,
2018). The steel cylinder is adjusted to move the clutch device in
and out and alters the intensity of the magnetic field around MRF
to vary transmitted torque. This method can quickly control the
magnetic field without changing the position of permanent
magnets. In 2019, an MRF transmission device was proposed

Adopting shape memory alloy to provide squeeze mode and improving torque output
performance

Adopting electrothermal shape memory alloy to provide squeeze mode and improving
transmission performance

Changing the position of permanent magnets to control the working mode of MRF and reducing
energy consumption

Designing a 3D screw flight made of MRF and improving the durability of device

for high-power applications, shown in Figure 5A (Wu et al,
2019). It can be seen from the schematic configuration that a
multi-hollow transmission disc was designed, and each single disc
has a plurality of magnetic conductive columns and flumes for
cooling liquid. The structure design with maximum output
torque of 1880Nm and slip power of 70kW has great
working performance. Because of the large working area of the
cooling liquid and MREF, the sealing requirements and production
costs for this device are high. Based on the coupled operation
mode, a multi-disc MRF clutch was presented, two of which are
fixed on the casing and shaft, shown in Figure 5B (Kikuchi et al.,
2020). Utilizing the clutch, a new actuator with flexible torque
control can be assembled for the haptic device. Moreover, a
hydrodynamic MRF clutch shown in Figure 5C was proposed,
where the centrifugal forces in the pump actuate MRF to flow
through the channel placed in the magnetic valve and the cross
over turbine (Olszak et al., 2019). Thus, the turbine torque is
controlled by regulating excited voltage of the electromagnetic
coil. On the other hand, there are higher restrictions on particle
size and precipitation characteristics of MRF in this device. In
addition, to address the problem of an uneven magnetic field, a
wedge clearance was designed in a drum type MRF transmission
device (Yang and Chen, 2019). The outer cylinder is connected
with the driving shaft, and the inner cylinder with an inclined
surface is connected with the driven shaft. MRF fills the wedge-
shaped clearance between the inner and outer cylinders. The
results show that when the wedge angle is about 1.074°, the
magnetic induction intensity in the working gap has the most
uniform distribution, which is conducive to a stable and accurate
torque output.

In order to maintain a stable working performance and to
improve transmission torque, a hybrid model combined with
MRF and shape memory alloy was proposed by Wang X. et al.
(2019) and Xiong et al. (2019) shown in Figure 6A. When the
temperature reaches a critical phase transition value, the
electrothermal shape memory spring outputs pressure and
pushes the friction disc to squeeze the active disc. The MRF
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clutch with MRF (Olszak et al., 2019).
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FIGURE 6 | (A) MRF and shape memory alloy combined clutch (Xiong et al., 2019). (B) MRF clutch-brake with permanent magnets (Binyet and Chang, 2020). (C)
MREF clutch with grooved drum (Pilon et al., 2020).

device adds the squeezing working mode with a compact  are placed in a casing that can axially slide, which allows a good
structure, but the operating time of this mode is limited by  shielding from the magnetic flux in the off mode. Permanent
temperature. In 2020, with the aim to reduce chattering, an  magnets are conducted to mechanically excite the device, offering
MREF clutch-brake was proposed, as shown in Figure 6B  simplicity and a reliable operation. However, the magnetic field
(Binyet and Chang, 2020). In this device, permanent magnets  gradient on the surface of permanent magnets is large and the
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magnetization of MRF is not uniform. In addition, MRF after
magnetization and the permanent magnets are magnetically
attractive, thus a large force is required to separate them. To
improve durability, a magnetic screw pump was studied to
promote fluid mixing within an MRF clutch, shown in
Figure 6C (Pilon et al., 2020). Instead of having solid flights,
the screw flights are made of 3D structures of MRF formed by the
concentration of the magnetic field lines around helical grooves.
From durability test results, the specific structure can increase
durability by up to 42% when compared to a standard MRF based
clutch.

MAGNETORHEOLOGICAL FLUID
DAMPERS AND MOUNTS IN ENGINEERING
APPLICATIONS

As a new type of mechanical device, MRF dampers and mounts
have the ability to provide variable damping (Xu et al., 2018b),
mitigate adverse vibration (Dong et al., 2018), and recycle kinetic
energy (Wang et al., 2018), and play a key role in many fields (Ha
etal, 2018; Lv et al., 2020). For different engineering applications,
the development of high-performance MRF dampers and mounts
has always been a research hotspot, such as adjusting local
structure size, optimizing internal magnetic field, and updating
configuration design.

In 2018, based on the concept of functional integration, an
MREF device was proposed with controllable damping, energy
recovery, and velocity self-sensing, shown in Figure 7A (Bai et al.,
2018). In this device, a damping mechanism with MRF generates
torque, which is then translated to a linear damping force via a
ball screw. Cooperating with a permanent magnet rotor and

generator stator, the ball screw converts the mechanical energy to
an electrical energy for storage or directly to power
electromagnetic coils. To reduce harmfulness from an
overshoot to a buffered object, an MRF energy absorber, as a
controllable damper, was presented and is shown in Figure 7B (Li
Z. Q. et al, 2018). In the device, a structure configuration of a
central drain hole is designed on the inner plate to share the drop
pressure of MRF and cannot be affected by the magnetic field.
However, the design forms a straight flow channel of MRF, which
limits the increase of the damping force. To have a better
vibration isolation effect, an MRF damper was designed by
utilizing multiple electromagnetic poles integrated in the
cylinder, shown in Figure 7C (Liu et al., 2018). In the MRF
damper, the magnetic flux density in the annular flow channel is
effectively increased compared with that of the traditional
channel, and the multi-pole structure could minimize the
dimension of the piston to improve the active area for a great
dynamic range of the damping force. Although the device reduces
the volume of the piston and MREF, it increases the size and
number of coils, and does not decrease the overall weight.
Furthermore, an internal bypass MRF shock absorber was
proposed for vibration control of high-speed, and is shown in
Figure 7D (Bai et al., 2019). The MRF device consists mainly of
the inner and outer coaxially arranged cylinders and one piston.
Five electromagnetic coils wound on the outer wall of the inner
cylinder increase work length of the fluid gap, and the decoupling
windings from the piston effectively improve the stroke of the
damper. As the inner cylinder is constrained mainly by the MRF
and piston, when the center of inner cylinder is shifted from the
axis of the device, the movement of the piston rod may be
affected, and the outer cylinder can be damaged. Moreover, to
optimize the response time of the damper, an MRF damper with a
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permanent magnet was proposed, and is shown in Figure 7E (Lee
and Choi, 2019). Using ferromagnetic and paramagnetic sidebars
shaped by a rectangular column, the step input of the damping
force is achieved by the structure design of the
magnetization area.

In 2019, an MRF damper, shown in Figure 8A, was proposed
for the lunar lander, which can absorb the impact energy from
complex landing surfaces (Wang C. et al., 2019). In the device, a
combined structure of master and bypass cylinders is designed,
where the master cylinder is connected with the piston rod to
receive the external impact; the bypass cylinder with coils adjusts
the flow viscosity of MRF to change damping. Thus, the MRF in
the damper has a definite flow circuit, and damping control is
reliable. Furthermore, an MRF damper with a pinch mode was
proposed, where a triangle-shaped nonmagnetic spacer is
designed to separate the magnetic core and to generate
undulating magnetic field lines, shown in Figure 8B (Lee
et al.,, 2019). Utilizing the magnetic field circuit, a pinch mode
is formed in the annular MRF damper, and the pinch effect is
verified in experiments. To realize a fast response, an MRF
damper was designed and is shown in Figure 8C (Yoon et al.,
2019; Yoon D. S. et al,, 2020). A soft magnetic composite is
selected as the core material and the inner surface of the housing
is machined with grooves. Through these improvements, the
eddy current effect on response time is reduced in the MRF
device. In addition, a bi-directional liquid spring damper with
MRF was presented and is shown in Figure 8D (Maus and
Gordaninejad, 2019). The device with a two-chamber design
has equal or dissimilar spring rates in compression and
rebound, and the spring rate can also be pre-set independently

in both compression and rebound. Because of the two-chamber
structure, the sealing area of MRF needs to be increased relatively.
Based on the combined operation mode, MRF dampers with an
inner and outer chamber damping units were presented (Deng H.
X. et al,, 2019; Huang et al., 2019). The inner chamber damping
unit is connected to a vibrating object, while the outer is
connected to a spring, and is shown in Figure 8E. Specifically,
the inner unit is set as the piston rod of the outer unit, and outer
coil is wound around the outer wall of the inner unit. The
combined operation mode effectively expands the control
range of the damping force and the stroke range of the piston
rod. However, as the damping force is regulated jointly by the
spring and MREF, the accurate output of the device is more
complicated.

In 2020, aiming to reduce the sedimentation of MRF, a damper
shown in Figure 9A was designed (Huang et al., 2020). In this
device, a permanent magnet is embedded in the piston to drive
particles back and forth, and a conductive strip is disposed to
monitor particle chains of MRF for a sedimentation amount. On
the other hand, the permanent magnet also enhances the
resistance of the piston during normal movement and
increases the energy consumption. To realize a huge range
change of the damping force, an MRF damper with a squeeze
and valve mode was presented, and is shown in Figure 9B (Ruan
etal., 2020). In this device, the piston has an internal channel that
divides MRF into three parts. With the movement of the piston,
MREF has squeeze and valve working modes at the same time.
Furthermore, a bypass MRF damper was proposed with a
serpentine flux valve type, and is shown in Figure 9C (Idris
et al,, 2020). The valve of MRF is connected to a cylinder in the
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same center axis but is not attached to the piston. So, the device
has a larger dynamic range and is less bulky than conventional
structures. Moreover, to reuse vibration energy and to simplify
the structure, a self-powered MRF damper was proposed for
washing machines (Bui et al., 2020). The device integrates an
energy-harvesting technology, where induced power from
induction coils is directly transmitted to excitation coils of the
damper to generate a corresponding damping force, as shown in
Figure 9D.

In addition, some other MRF dampers, mounts, and absorbers
with a vibration reduction effect have been studied and optimized
in key positions to effectively improve the working performance.
These MRF devices are also summarized for corresponding
improved methods, as shown in Table 3.

MAGNETORHEOLOGICAL FLUID BASED
DEVICES IN MEDICAL APPLICATIONS

With the development of remote surgery and robot-assisted
equipment, the MRF plays an increasingly important role in
the medical field. The MRF is mainly applied in two
aspects—tactile feedback devices and medical wearable
rehabilitation devices. The research results obtained between
2018 and 2020, are briefly summarized in Table 4.

Using MRF to simulate the feedback of different environments
and to provide operators with real tactile experience are currently
hot research topics. In 2018, for surgical robotic applications, a
force generator module with MRF was developed to provide
force-feedback information (Shokrollahi et al., 2020). The device,
shown in Figure 10A, is capable of rapidly re-producing forces

generated in tele-robotic bone biopsy procedures and provides a
wide range of force measurements. However, it is difficult to
simulate all the stress ranges only using MRF in the areas where
the hardness changes greatly between bone and soft tissue. In
2019, an MRF spherical actuator with haptic feedback was
proposed to the applications of joysticks (Chen D. P. et al,
2019). The actuator, shown in Figure 10B, has a special stator
that replaces the traditional single coil with eight separate coils
and magnetic circuits, which can achieve control of forces in
different interaction directions. Furthermore, an endovascular
catheterization system shown in Figure 10C was proposed, which
consists of a master device and a slave device (Yin et al., 2018; Guo
et al., 2019). In the slave device, the catheter moves in the blood
vessel and sends real resistance obtained by the sensor to the
master device. The master device uses MRF to simulate the
resistance, thus giving the remote physician a realistic sense
and improving the safety of surgery. This master device
provides an approximate damping environment, but in a
particular direction, the variation of damping is not very
differentiated. Similarly, to realize a certain stiffness and
damping properties of human tissue, a controllable tactile
device was designed, where MRF was immersed into porous
polyurethane foam and sealed by adhesive tape (Park et al., 2020).
The device, shown in Figure 10D, can capture several different
repulsive forces of human organs generated at an operating site in
minimally invasive surgery and can improve the real tactile
sensing of the remote doctor.

Moreover, MRF also has many new applications in medical
rehabilitation equipment. In 2018, a prosthetic knee with a novel
MREF brake was proposed, assisting humans to realize normal gait
movement (Mousavi and Sayyaadi, 2018). The MRF brake,
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TABLE 3 | Other MRF dampers, mounts and absorbers in 2018-2020.

No

1

~

(e BN OO

13
14

15
16
17

18
19

20
21

22

23

24

25
26

References
Xin et al. (2018)
Chen C. et al. (2018)

Urkucu and Keles (2018)
Deng et al. (2018)

Xu et al. (2018a)
Cheng et al. (2018)
Sassi et al. (2018)
Yang et al. (2019)

Ning et al. (2019)
Oh and Choi (2019)

Chen B. et al. (2019)
Zhang J. L. et al. (2019)

Christie et al. (2019a)
Ouyang et al. (2019)

Desai et al. (2019)
Han et al. (2019)
Qiang et al. (2019)

Deng L. et al. (2019)
Kim et al. (2020)

Kang et al. (2020)
Zhong et al. (2020)

Wei et al. (2020)

Zareie et al. (2019), Zareie and Zabihollah (2020),
Zareie et al. (2020)

Zhang X. J. et al. (2020)

Elsaady et al. (2020b)
Zhao et al. (2020)

Type

Piston type damper with shear-flow
mode
Piston type damper with flow mode

Mount with flow mode

Non-piston type damper with shear
mode

Piston type damper with flow mode
Piston type damper with flow mode
Piston type damper with flow mode
Piston type damper with flow mode

Rotor type damper with shear mode
Piston type damper with flow mode

Two-dimensional plate type damper
with shear mode
Disc type damper with shear mode

Disc type damper with shear mode
Piston type damper with flow mode

Piston type damper with flow mode
Piston type damper with flow mode
Disc type damper with shear mode

Combined dampers with shear mode
Piston type damper with shear mode

Piston type damper with flow mode
Integrated shock absorber with flow
and shear mode

Blade valve type damper with flow
mode

SMA MRF type damper with flow mode

Piston type damper with squeeze
mode

Piston type damper with flow mode
Piston type damper with flow mode

Structural Configuration of MR Fluid-Based-Devices

Improved method

Presenting a double-ended damping structure to reduce the random
vibration of pipeline

Converting wasted mechanical energy into useful electrical energy to
power damper itself

Comparing two decoupled plates with slots and holes in MR mount
Replacing piston with a suspension rod and realizing unlimited work
stroke

Utilizing two dis-springs to re-left itself

Using meandering magnetic circuit to improve damping performance
Placing excitation current and magnetic field outside the damper
Adding an aluminum slider to reduce the unbalance of damper rod and
avoid magnetic leakage

Proposing a variable admittance concept

Comparing two different dampers, with and without orifice holes in the
piston

Optimizing structure design parameters

Utilizing the coil with trapezoidal cross section to improve magnetic field
distribution

Optimizing structure design parameters

Adopting multi-stage parallel coil structure to realize various magnetic
field variations

Optimizing magnetic field of twin-tube structure

Investigating different pole length and different number of magnetic cores
Using ultrasonic field to reduce the angular momentum losses of device
without magnetic field

Assembling drum-type damper and disc-type damper

Utilizing ferromagnetic and paramagnetic materials to adjust damping
coefficient

Optimizing structure design parameters

Combining inerter, damper and spiral spring to realize adjustable
inertance and damping characteristics

Combining blade and two MR valves with parallel plate damping channel
in compact structure

Proposing a structural control element for high performance of control
system

Integrating the characteristics of pumping hydraulic damper and MR
valve with squeeze mode

Optimizing magnetic field distribution

Integrating four axial fan-shaped magnetic poles on magnetic core to
enhance output performance

TABLE 4 | Main applications of MRF in the medical field in 2018-2020.

No

= © 0N O~ WN =

o

shown in Figure 11A, has a T-shaped drum with an arc form
surface boundary, which can meet the requirements for flexible
variation of the braking torque. To enhance the rehabilitation of
the human shoulder and upper limb, a multi-freedom MRF based
damper with a ball-and-socket structure was proposed (Wahed

References

Shokrollahi et al. (2020)
Chen D. P. et al. (2019)

Guo et al. (2019)

Park et al. (2020)

Mousavi and Sayyaadi (2018)
Wahed and Balkhoyor (2018)

Chen Z. P. et al. (2018), Chen et al. (2019a, 2019b)

Oba et al. (2019)
Christie et al. (2019b)
Zahedi et al. (2020)

Application

Robotic bone biopsy device with haptic feedback
Muilti-direction spherical actuator for haptic applications
Endovascular catheterization system with haptic force feedback
Simulated human tissues with controllable tactile forces

MRF brake with drum of arc form surface for prosthetic knee
Prosthetic joints with MRF damper of ball-and-socket structure

Microneedle arrays for minimally invasive surgery, transdermal drug delivery and smart wearable equipment

Semi-active ankle-foot orthosis with MRF link mechanism
Prosthetic leg with MRF damper of T-shaped drum
Soft exoskeleton with MRF damper to suppress pathological tremor

and Balkhoyor, 2018; Wahed and Wang, 2019). The new damper
shown in Figure 11B can effectively simulate the motion of
human joints and provides a rehabilitation training environment.
Further, the device can refine the design of damping forces in
different directions to realize the control of damping variation in
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multi-directions. Furthermore, using a drawing lithography
approach, some MRF microneedles were fabricated for
minimally invasive surgery, transdermal drug delivery, and
smart wearable equipment (Chen Z. P. et al,, 2018; Chen et al.
2019a; Chen et al,, 2019b). In a gradient magnetic field, the MRF
is magnetized and generates fusiform patterns, which results in
different forms of microneedle arrays after heating and
solidifying, as shown in Figure 10C. The MRF microneedles
are cheaper and simpler to produce than traditional precision
machining. With the aim to prevent paralysis and gait

abnormalities affecting human ankle joints, a semi-active
ankle-foot orthosis with an MRF link mechanism was
designed (Oba et al,, 2019). The MRF device, combined with a
compression spring, can mitigate foot slap and toe drag during
different phases of movement, as shown in Figure 11D. Similarly,
for movement recovery, an MRF variable stiffness leg was
designed to improve energy efficiency and gait stability
(Christie et al., 2019b). The device, shown in Figure 11E, is
housed in the lower leg section, whose output shaft is linked to the
upper leg section. When the coil current is zero, the leg has a soft
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single spring stiffness, while huge damping torque is achieved
under a large input current. Therefore, the device has a relatively
wide range of damping variation. Moreover, based on the assistive
technologies, a novel soft exoskeleton with MRF damper was
proposed to suppress pathological tremor (Zahedi et al., 2020).
The MRF damper connected with a flexible elliptic spring can
assist in suppressing tremor of the wrist joint in 3 ° of freedom
with varying intensity, as shown in Figure 11F. This device
prevents wrist tremor with a less constrained area on the hand
surface, which thus reduces the suppression effect of a small
amplitude tremor.

CONCLUSION AND PROSPECTIVE

According to different structure configurations, MRF based
devices reported from 2018 to 2020 are investigated in this
work, including MRF brakes, MRF clutches, MRF dampers
and mounts for engineering applications, and other new
devices for medical applications. In terms of the literature
presented above, improvement methods are mainly
concentrated in the following ways: Use of multiple coils or
magnetic poles to enhance magnetic field strength; Improving
the combination of braking structure and active structure to
increase the effective contact area of MRF; Replacing the coil with
a permanent magnet, or adjusting the size and position of the
permanent magnet to improve working performance; Optimizing
the magnetic circuit to improve the utilization ratio of the
magnetic field; Changing the position of the magnetic field in
the working process to avoid settling of MRF or reducing the zero
field viscosity. There have been many successful applications that
have come from these improvements, but some problems still
need to be addressed. By adding coils and magnetic poles, the
volume and weight of devices can be larger, which is not easy to
disassemble and cost may also be increased. Furthermore, when
the working area of MRF is enlarged, the wear is relatively
enhanced and the working temperature is also increased, so
the rheological property is decreased. By adopting a bypass or
extension structure, the output range of devices is extended, but
the response time and maximum output force needs to be
balanced. In addition, when the MRF is applied in haptic
devices, it is still limited to simulating the feedback forces that
are in different directions at the same time or one direction with
large variation gradient.

In light of the practical application requirements, some
development directions are proposed for MRF based devices.
The combination of working modes in a limited volume may play
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