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Nowadays, the power conversion efficiency of organometallic mixed halide perovskite
solar cells (PSCs) is beyond 25%. To fabricate highly efficient and stable PSCs, the
performance of metal oxide charge transport layers (CTLs) is one of the key factors.
The CTLs are employed in PSCs to separate the electrons and holes generated in
the perovskite active layer, suppressing the charge recombination rate so that the
charge collection efficiency can be increased at their respective electrodes. In general,
engineering of metal oxide electron transport layers (ETLs) is found to be dominated
in the research community to boost the performance of PSCs due to the resilient
features of ETLs such as excellent electronic properties, high resistance to thermal
temperature and moisture, ensuring good device stability as well as their high versatility
in material preparation. The metal oxide hole transport layers in PSCs are recently
intensively studied. The performance of PSCs is found to be very promising by using
optimized hole transport materials. This review concisely discusses the evolution of
some prevalent metal oxide charge transport materials (CTMs) including TiO2, SnO2,
and NiOx, which are able to yield high-performance PSCs. The article begins with
introducing the development trend of PSCs using different types of CTLs, pointing
out the important criteria for metal oxides being effective CTLs, and then a variety of
preparation methods for CTLs as employed by the community for high-performance
PSCs are discussed. Finally, the challenges and prospects for future research direction
toward scalable metal oxide CTM-based PSCs are delineated.

Keywords: metal oxides, electron transport layers, hole transport layers, cost-effective, stability, perovskite solar
cells

INTRODUCTION

In the 21st century, we are living in an energy-driven world. Sustainability in energy generation is
one of the most challenging issues to satisfy the ever-increasing energy demands. Solar energy is
readily available in nature, which exhibits a great potential to address the global energy challenge.
However, the widespread use of solar energy requires the development of cost-effective and high-
performance photovoltaics (PVs) for efficient energy conversion from solar to electric energy. The
emergence of organometallic mixed halide perovskite solar cells (PSCs) resulted in an important
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breakthrough in PV technology. The recently announced record
power conversion efficiency (PCE) values of single-junction
PSCs and perovskite-based monolithic tandem devices are
25.5 and 29.5%, respectively (The National Renewable Energy
Laboratory [NREL], 2021), which outperform other thin-film
PV technologies (e.g., CIGS and CdTe) and are comparable
to well-established solar technologies such as crystalline silicon
photovoltaics (PCE ∼26.1%). Such impressive device efficiency
of PSCs is owing to inherent perovskite properties such as large
absorption coefficients, adjustable bandgaps, low exciton binding
energy, large carrier diffusion lengths, and high charge mobilities
(Xing et al., 2013; Wang et al., 2015). However, a number of
challenges such as device long-term stability, hysteresis effect,
toxicity of lead, and scalable difficulties still remain in the
community (Djurišić et al., 2016; Djurišić et al., 2017; Li et al.,
2018; Li et al., 2020). In general, five major areas are being
investigated to come up with possible solutions for the problems
mentioned above. They include (i) perovskite composition and
crystal structure (Luo and Daoud, 2016; Mitchell et al., 2017),
(ii) engineering of perovskite growth methods (Ng et al., 2015,
2018; Babayigit et al., 2018; Shen et al., 2018; Hu et al., 2020a),
(iii) optimization of carrier transport materials and interfaces
(Liu et al., 2017; Hu et al., 2020b,c; Wang et al., 2021), (iv)
device architectures (Hanmandlu et al., 2018; Ren et al., 2018;
Maxim et al., 2020; Shalenov et al., 2020), and (v) encapsulation
(Dong et al., 2016; Fu et al., 2019; Emami et al., 2020). Some
comprehensive review papers on those topics have also been
published (Jiang et al., 2018; Sajid et al., 2018; Ouyang et al., 2019;
Hanmandlu et al., 2020; Hu et al., 2020a; Zhou et al., 2020).

This article aims to highlight the development of the
predominant metal oxides—TiO2, SnO2, and NiOx—using the
charge transporting layers (CTLs) in PSCs. Special attentions are
placed on these three types of metal oxides as the state-of-the-art
PSCs with record-breaking efficiencies are usually associated with
these metal oxide CTLs. A brief review on representative research
works on PSCs has been done, indicating the highest achievable
PCE for different CTL-based PSCs at different stages of time.
The important criteria in selecting metal oxides as CTLs are
emphasized. Varieties of effective preparation methods for metal
oxide CTLs have been summarized, and their advantages and
shortcomings in terms of processing conditions and possibility
of future large-scale manufacturing are discussed. This work
will provide a direct insight into the PV community for further
optimizing of CTLs, which will be one of the critical steps for
approaching practical PSCs in the commercial market.

THE EFFICIENCY EVOLUTION OF PSCS
USING DIFFERENT METAL OXIDE CTLS

Starting from 2009, the group of Miyasaka demonstrated the
photovoltaic properties of using perovskite in the dye-sensitized
solar cell by employing mesoporous TiO2, exhibiting a PCE
of 3.8% (Kojima et al., 2009). In early 2012, the group
of Park reported a PCE of 9.7% of PSCs by introducing
a sub-micrometer-thick layer of TiO2 and solid-state hole
transporting materials (HTMs) (Kim et al., 2012). In the

same year, a PCE more than 10% was reported by the
group of Snaith (Lee et al., 2012). In 2013, the group of
Grätzel demonstrated high-performance PSCs fabricated by the
sequential deposition method with a certified PCE of 14.1%
(Burschka et al., 2013). In the following years, the group of Seok
reported a dramatical improvement in the device performance
of PSCs by using different engineering approaches such as
solvent engineering (certified as 16.20%) (Jeon et al., 2014),
compositional engineering (certified as 17.9%) (Jeon et al.,
2015), and intramolecular exchange (20.1% certified PCE) (Yang
et al., 2015c). In 2016, the group of Grätzel reported the use
of triple cations in perovskite materials, yielding good device
reproducibility and improved device stability, leading to a high
PCE of 21.1% (Saliba et al., 2016). Nowadays, the highest certified
PCE as reported in literature for PSCs based on TiO2 electron-
transporting layer (ETL) is 24.64% (Jeong et al., 2020). The
TiO2-based ETLs are popular to be used since the early stage
of PSCs owing to its high versatility of preparation techniques
as well as attributing to the evolution of the architecture from
the dye-sensitized solar cells. The representative research works
using TiO2 as the ETL in PSCs with their achieved PCEs are
summarized in Figure 1 as indicated in solid circles. Along
with such a tremendous improvement in device performance,
a compact layer of tin oxide (SnO2) has been demonstrated as
an alternative for ETL. First, Ma et al., 2017 reported a high-
temperature processing compact SnO2 ETL prepared by the
conversion of SnCl2·2H2O precursor to SnO2 using a sol-gel
method for CH3NH3PbI3-based PSCs, showing a PCE of 7.43%
(Dong et al., 2015). The group of Dai and Kuang also reported
a high-temperature processing SnO2 mesoporous ETL and as-
synthesized colloidal solution, respectively, followed by TiCl4
surface treatment for CH3NH3PbI3-based PSCs, exhibiting an
improvement in their champion device efficiency of 10.18 (Li
et al., 2015) and 14.69% (Rao et al., 2015), respectively. However,
at that time, the PCEs of SnO2-based PSCs are still lower than
those of TiO2-based PSCs due to the introduction of a large
amount of trap states during the high-temperature processing
(Ke et al., 2015). The important breakthrough in achieving
high device efficiency for SnO2-based PSCs was from 2015. The
group of Fang firstly introduced low-temperature processing for
preparing SnO2 compact layer based on the sol-gel method using
SnCl2·2H2O as the precursor to achieve a high PCE of 17.21% for
CH3NH3PbI3-based PSCs (Ke et al., 2015). Then, the group of
You reported a PCE of 20.54% (certified as 19.9%), which was a
record-high value in 2016 for (FAPbI3)X (MAPbBr3)1−X-based
PSCs with a low-temperature processing SnO2 ETL prepared
from commercially available SnO2 colloid solution (Jiang et al.,
2016). In the same year, the group of Hagfeldt demonstrated a
low-temperature chemical bath deposition for preparing SnO2
compact layer as ETL used in Cs-containing mixed halide-based
PSCs, yielding a stabilized PCE of 20.7% (Anaraki et al., 2016).
In 2017, the group of You updated the champion PCE to 21.6%
(certified as 20.9%) using low-temperature processing SnO2 in
(FAPbI3)1−X (MAPbBr3)-based PSCs (Jiang et al., 2017). The
representative research works using SnO2 as the ETL in PSCs
with their achieved PCEs are summarized in Figure 1 as indicated
in solid squares. On the other hand, metal oxides based on NiOx
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FIGURE 1 | The evolution of perovskite solar cell using various metal oxide charge transport layers.

have been commonly used as HTMs for PSCs. In 2014, Tian
et al. (2014) firstly introduced the p-type NiO mesoporous for
perovskite-sensitized solar cells, achieving a PCE of 1.5%. The
group of Ahmadi demonstrated NiOx/Ni double layer as HTL
deposited by the sputtering process in a planar n-i-p structure
for PSCs, yielding a PCE of 7.28% (Abdollahi Nejand et al., 2015).
In 2015, the group of Han employed a 10–20 nm NiO compact
layer along with mesoporous Al2O3 scaffold as HTM in p-i-n-
based PSCs, obtaining a promising efficiency of 13.5% (Chen
et al., 2015a). The group of Wang reported using NiOx HTM
in mesoporous n-i-p-based PSCs with a further enhanced PCE
to 15.03% (Cao et al., 2015). Li et al. (2017) applied sputtered
NiOx for planar PSCs, which exhibit a champion PCE of 18.5%.
Furthermore, introduction of dopants, commonly Li (Qiu et al.,
2017), Co (Natu et al., 2012), Mg (Chen et al., 2015b), Cu
(Chen et al., 2018), Cs (Singh et al., 2020), etc., in NiOx can
further enhance the charge transport properties due to improved
carrier conductivity as well as better energy level alignment
across the interface of perovskite and HTL. The group of He
and Lei doped NiOx with Cs and Cu, yielding a PCE of 19.35
(Chen et al., 2017) and 20.5% (Yue et al., 2017) for planar
p-i-n-based PSCs, respectively. Recently, a latest high PCE of

21.6% was achieved for NiOx-based PSCs in a p-i-n structure
after passivating the perovskite/ETL by using CdxZn1−xSeyS1−y
quantum dots (Chen et al., 2020). The representative works for
NiOx-based PSCs are summarized in Figure 1 and indicated in
solid triangles.

THE CRITERIA OF EFFECTIVE METAL
OXIDE CTLS

The appropriate energy band alignment between CTLs and the
perovskite absorbing layer is one of the fundamental criteria to
ensure efficient charge extraction in PSCs. The conduction band
minimum (CBM) of ETL is slightly lower than the conduction
band of the perovskite, while the valence band maximum
(VBM) of HTL is slighly higher than the valence band of
the pervoskite so that the CTLs can extract the corresponding
charge carriers readily. Meanwhile, the energy barrier between
the VBM of ETL and perovskite (and barrier between CBM of
HTL and perovskite) is sufficiently large to block the counter
carriers generated from the perovskite layer, suppressing the
opportunity of charge recombination within the devices. The
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built-in potential (Vbi) can be influecend by the types of CTMs
and the interfacial quality between the CTL and perovskite (Lin
et al., 2017; Shin et al., 2019). The larger Vbi of devices enables
PSCs to have a stronger ability to separate charges and transport
and collect photo-generated carriers, yielding a higher VOC.
A variety of research works have demonstrated that minimizing
the interfacial charge recombination between CTL and perovskite
layer can effectively enhance the VOC of PSCs (Jung et al., 2019;
Kaneko et al., 2019; Aidarkhanov et al., 2020). Carrier mobility
is another critical factor affecting the charge transport properties.
Carrier mobility should be high to avoid charge accumulation at
the interfaces of CTL/perovskite. The bandgap of CTMs should
be wide and possess small refractive indexes so that the amount
of visible light penetrating through the CTL to the perovskite
absorber layer in the PSCs can be maximized.

The morphology of CTLs should be controlled well in PSCs.
The underlying ETL or HTL will determine the morphology
of the perovskite film deposited on the top of CTLs for n-i-
p or p-i-n device structures, respectively. It is known that the
optimized morphology of the CTL-coated substrate can assist
in the crystallization of the subsequent depositing perovskite
layer and improve the perovskite film coverage on the CTL,
inhibiting the formation of pinholes to prevent the introduction
of undesired shunt paths in PSCs (Ng et al., 2016; Wang et al.,
2019). Furthermore, the interfacial quality between the CTL
and perovskite, which is of significant importance to determine
the PCE and stability of PSCs, is strongly influenced by the
surface morphology of CTLs. Intensive research works have
exhibited different strategies to passivate the defects, which
likely concentrate at material interfaces to suppress charge
recombination and hysteresis effect (Shao and Loi, 2020).
Meanwhile, the interface between the CTL and conductive
electrode should also be optimized for forming of a good ohmic
contact for PSCs (Babaei et al., 2020; Tseng et al., 2020).

It is noteworthy that metal oxide materials used as CTLs
should be insensitive to ultraviolet light and possess very low
photocatalytic effect in order to maintain a long-term stability of
PSCs operating under strong sunlight. Metal oxide CTLs, unlike
organic materials such as the commonly used PEDOT:PSS HTL,
are usually not hygroscopic, which are more robust to moisture,
allowing them to be the protection layers and preventing the
perovskite active layer from degradation in the humid ambient
air. Nowadays, metal oxide CTLs have shown their outstanding
chemical stability, which is one of the essential factors for
achieving long-lifetime PSCs for future commercialization (You
et al., 2016; Lei et al., 2019; Singh et al., 2019; Thambidurai et al.,
2020). Figure 2 indicates the general properties of three different
CTMs as discussed in this work.

PREPARATION METHODS FOR METAL
OXIDE CTLS

Solution–Process Methods
The solution process is a commonly used method for depositing
a wide range of metal oxides in thin films and different

FIGURE 2 | Schematic illustrations of the energy bandgap of metal oxide
charge transport materials and their carrier mobility (Jiang et al., 2018; Napari
et al., 2020) in the bulk materials.

nanostructures. This method is cost-effective and vacuum-
free and allows low-temperature processing. In general, most
of the metal oxide CTLs employed in PSCs are deposited
by spin-coating processes. Other common solution techniques
include sol-gel methods (Wojciechowski et al., 2014; Zhu et al.,
2014; Ke et al., 2015), sono-chemical (Rashad et al., 2014),
chemical precipitation (Ghosh et al., 2006), spray pyrolysis
(Yue et al., 2017), chemical combustion (Jung et al., 2015),
chemical bath deposition (Xia et al., 2008), etc. A number
of comprehensive reviews on solution-processed metal oxide
CTLs for application in solar cells have been published
in the community (Jiang et al., 2017; Cao et al., 2018;
Elseman et al., 2020b).

Atomic Layer Deposition
Atomic layer deposition (ALD) is another method to
prepare metal oxide CTLs with the film thickness precisely
controlled at the atomic scale with excellent uniformity
(Meng et al., 2011). Plenty of works have previously
exhibited that ALD method is capable of forming high-
quality metal oxides for PSC applications (Dong et al.,
2014; Kim et al., 2016; Wang et al., 2016). The highest
PCE of PSCs with metal oxide CTLs (using SnO2) formed
by ALD was over 20%, along with a high VOC of 1.23 V
(Correa-Baena et al., 2017).

Mechanosynthesis for Low-Dimensional
Metal Oxides
Preparation of metal oxides by physical grinding methods has
been used in organic solar cells and PSCs (Huang et al., 2012;
Singh et al., 2018). The grinding process is clean, has low cost,
and has high yield for mass production, which can produce high-
level-purity and high-level-crystallinity metal oxide nanoparticles
with controllable size and shape while keeping their intrinsic
properties (Elseman et al., 2016; Singh et al., 2018). Grinding
is a high-energy wet milling process where three-dimensional
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TABLE 1 | Classification of some common preparation methods for charge transport layers (CTLs) in terms of cost and processing temperatures.

Method Temperature (◦C) Cost Example of CTLs References

Sol-gel Low/high High/low TiO2, SnO2, NiOx Wojciechowski et al., 2014; Zhu et al., 2014; Ke
et al., 2015

Atomic layer deposition Low High SnO2, TiO2 Tilley et al., 2014; Baena et al., 2015

Thermal decomposition High (≥400) High NiOx Zhang et al., 2008

Hydrothermal Low Low NiO, TiO2 Sajid et al., 2019; Elseman et al., 2020c

Sono-chemical Low High NiOx Rashad et al., 2014

Chemical precipitation Low High NiOx Ghosh et al., 2006

Chemical combustion Low Low Ni2O3 Elseman et al., 2020a

Chemical combustion Low (≤150) Low NiOx Jung et al., 2015

Thermal evaporation High (≥400) High NiOx , TiO2 Khan et al., 2018; Kim et al., 2020

Electrodeposition High (≥500) Low TiO2 Su et al., 2015

E-beam evaporation Low Low SnO2 Ma et al., 2017

Pulsed laser deposition High (≥400) High NiOx Wang et al., 2012

Sputtering Low High NiOx , TiO2 Wang et al., 2014; Yang et al., 2015b

Spray-pyrolysis High (≥400) Low NiOx Yue et al., 2017

Chemical bath deposition Low (≤150) Low NiO, TiO2, SnO2 Xia et al., 2008; Dou et al., 2011; Wu et al., 2018

Ball-milling Low (≤150) Low TiO2, SnO2, NiO Singh et al., 2018; Singh et al., 2019; Singh et al.,
2020

materials are broken down into lower-dimensional materials
such as nanoparticles, nanorods, nanobelts, nanosheets, and
nanofibers via controlling the milling conditions (solvents,
temperature, and milling period) (Ibrahem et al., 2014; Ding
et al., 2017). This method has been recently demonstrated for
preparing TiO2, SnO2, and NiOx CTLs in PSCs (Singh et al.,
2018, 2019, 2020). The as-prepared metal oxide nanomaterials
can form a compact CTL in PSCs by low-temperature processing
methods such as spin-coating the nanomaterial dispersion
solution (Singh et al., 2018), which allows the fabrication
of devices on flexible substrates or preparation of metal
oxides on top of the perovskite layer without introduction of
thermal degradation.

Other Deposition Methods
There are other effective deposition methods to prepare the
metal oxides for PSCs. Electrodeposition (ED) is one of cost-
effective and scalable deposition processes with controllable film
thickness. The group of Wei employed the technique of ED
to prepare an ultrathin film of TiO2 layer, yielding the PSC
with a PCE of 13.6% (Su et al., 2015). In addition, other
Physical vapor deposition (PVD) methods have been used to
deposit the metal oxide CTLs such as magnetron sputtering
(Yang et al., 2015a), pulsed layer deposition (Yang et al., 2016),
and e-beam evaporation (Ma et al., 2017). The metal oxide
CTL deposition route can be evaluated based on the cost and
temperature. PVD and chemical vapor deposition (CVD) routes
are regarded as high-cost methods due to their high-power
consumption during the deposition process. There are a variety
of deposition methods classified under CVD and PVD, such
as thermal evaporation, pulsed laser deposition, DC and RF
sputtering, plasma-enhanced CVD, metal-organic CVD, and low-
pressure CVD. Compared to the techniques of PVD and CVD,
chemical solution deposition is cheaper and more accessible. The

chemical solution deposition process is classified into different
types such as chemical bath deposition, spin-coating, dip coating,
screen printing, and spray pyrolysis. The common deposition
routes for metal oxide CTLs are classified in terms of the cost
and the required temperature for processing, which are shown
in Table 1.

PERSPECTIVE

The stability of PSCs can be enhanced by incorporating metal
oxide CTLs for both ETL and HTL in the same device.
However, nowadays, device stability remains a challenge since
the majority of PSCs employ metal oxide CTL as either ETL
or HTL while using organic or fullerene-based materials as the
counter-CTL. For PSCs with all-inorganic CTLs, the processing
temperatures of the metal oxide layer, which is located above
the perovskite, usually should be below 100◦C to prevent
the thermal decomposition of the perovskite absorber. Spin-
coating of a dispersion solution containing pre-synthesized
metal oxide nanostructures on top of the perovskite is one
of the possible techniques to yield metal oxide CTL at a
low temperature. Considering the commercial standards for
practical PSCs, the preparation methods for metal oxide CTLs
should be cost-effective and compatible with low-processing
temperature for flexible substrates as well as scalable for
large solar modules. The mechanical flexibility of metal oxide
CTLs should be also carefully investigated together with the
perovskite absorber and flexible substrates during the blending
process. Meanwhile, the interfacial engineering between the
perovskite absorber and the CTL should be considered as
well to modify the interface properties and passivate the
defects, which is an important strategy to enhance device
efficiency and stability.
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