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Early detection of timber damage is essential for the safety of timber structures. In recent
decades, wave-based approaches have shown great potential for structural damage
assessment. Current damage assessment accuracy based on sensing signals in the time
domain is highly affected by the varied boundary conditions and environmental factors in
practical applications. In this research, a novel piezoceramic-based sensing technology
combined with a visual domain network was developed to quantitatively evaluate timber
damage conditions. Numerical and experimental studies reveal the stress wave
propagation properties in different cases of timber crack depths. Through the
spectrogram visualization process, all sensing signals in the time domain were
transferred to images which contain both time and frequency features of signals
collected from different crack conditions. A deep neural network (DNN) was adopted
for image training, testing, and classification. The classification results show high efficiency
and accuracy for identifying crack conditions for timber structures. The proposed
technology can be further integrated with a fielding sensing system to provide real-time
monitoring of timber damage in field applications.

Keywords: timber beam crack, stress wave–based sensing, piezoelectric transducer, computer vision, deep neural
network

INTRODUCTION

Timber structures have been increasingly utilized in building construction due to their excellent
seismic performance and environmental friendliness, which mean flexible building function,
especially with the improvement of engineering wood products (Cao et al., 2019; Chen et al.,
2020; Sun et al., 2020). A variety of novel structural systems have been designed and built into
landmarks. Wood cracking is an inevitable issue for timber structures because of the variation of
temperature and humidity (Li et al., 2013; Dietsch and Winter 2018). Wood cracks could cause
potential safety hazards and increase maintenance costs. Therefore, a reliable crack detection
technology for extensive in-service and newly constructed timber structures is of great
importance to ensure the safety of timber structures.

Existing approaches for timber cracks detection mainly include resistance drilling measurement
and scanning image technique (Wei et al., 2011; Brites et al., 2012; Tannert et al., 2014; Kloiber et al.,
2015; Zhang et al., 2015; Mol et al., 2020). Drilling measurement is a conventional method to assess
the internal condition of timber members (Mol et al., 2020). However, this method is semi-
destructive, and the results are highly affected by the test personnel. The scanning image method
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utilizes different levels of absorbance between crack and health
wood for external waves, such as microwaves (Baradit et al.,
2009), X-rays (Wei et al., 2011; Pease et al., 2012; Sandak et al.,
2015a), and infrared rays (Sandak et al., 2010; Sandak et al.,
2015b), to obtain visualized information of the scanning section.
However, this method is a qualitative assessment and limited to
relatively high cost for real projects.

Compared to the existing wave-based inspection technology,
the stress wave shows potential for timber crack detection since
stress wave–based inspection is easy to perform with portable
devices for in situ assessment. According to frequency bands,
stress wave–based approaches can be divided into acoustic
tomography (low frequency) (Dackermann et al., 2014a;
Riggio et al., 2014; EI-Hadad, 2017) and ultrasonic echo
method (high frequency exceeds 20 kHz) (Puaad et al., 2014;
Koca et al., 2018; Linke et al., 2019). The detection principles,
equipment, and applications have been well demonstrated in the
literature (Dackermann et al., 2014b; Krause et al., 2015).
Conventional data processing for stress wave–based crack
detection measures the change of wave velocity in timber
structures. However, wave velocity is highly affected by various
factors, such as moisture content, wood species, and orientation
of growth rings. All mentioned factors bring uncertainties to
detection results. Furthermore, wave velocity is normally
obtained by the measurement of time-of-flight of the time-
domain probing signal. The influences of damage on the
frequency domain of the probing signal cannot be investigated
(Lee and Shin, 2002).

For obtaining frequency features to achieve high accuracy in
damage identification, time–frequency technologies have been
widely applied in radar signal recognition (Ahmad et al., 2020),
equipment fault detection (Ulloa and Barbieri, 2018), and non-
destructive testing (Obuchowski et al., 2014; Dorafshan and
Azari, 2020; Li et al., 2020). Gong et al. (Gong et al., 2020)
proposed an algorithm for the automatic extraction of the stress
wave reflection period based on image processing to measure the
different lengths of buried metal piles in soil. Le et al. (Li et al.,
2020) adopted time–frequency analysis to extract the
instantaneous frequency of a vehicle–bridge interaction system
and evaluated the bridge’ state. Hui et al. (Bao et al., 2018) used
the deep learning neural network to identify different time-series
images of signal faults in bridge health monitoring. However,
there is still no study using time–frequency analysis combined
with visual domain networks to detect the timber cracks.

In this paper, the authors propose a novel piezoceramic-based
sensing technology combined with the vision classification
algorithm for timber crack detection. The proposed visual
domain method replaces the conventional way (i.e., damage
index) of quantifying the variation of the stress wave signal in
the time domain. The received stress wave signal was transformed
into spectrograms using the short-time Fourier transform
(STFT). Then, the dataset of each case with the label of crack
depths was fed into a deep learning network for classification.
Numerical simulation was performed to illustrate the stress wave
propagation properties when passing through timber cracks in
different depth cases. A series of experimental investigations,
including a total of three timber beam specimens with seven crack

depth conditions in each, were conducted to validate the
feasibility and accuracy of the proposed technology.

METHODOLOGY

The proposed approach consists of three major steps, as detailed
in Figure 1: 1) data pre-processing by conducting joint
time–frequency analysis; 2) data augmentation for expanding
the dataset and simulating environmental uncertainties in
operation; and 3) deep neural network (DNN) training for
crack depth classification. Spectrograms of different crack
depths are obtained in data pre-processing using the short-
time Fourier transform (STFT). Three data augmentation
methods include adding white noise to wave data in the time
series, adding Gaussian noise to the spectrum, and jittering
spectrums, which will not change the main characteristics of
signals from the statistical perspective (Tanner, 2014). After data
augmentation, seven spectrum image datasets with the label of
crack depths are fed into the proposed DNN to train a model and
consequently identify damage severity.

Stress Wave–Based Sensing Technology
Using Piezoelectric Transducers
Piezoelectric materials, such as lead zirconate titanate (PZT), have
attracted increasing attention in real-time monitoring of
structural damage for their high stability, small size, great
linearity, and piezoelectric effects (Yang et al., 2018; Yuan
et al., 2020). The feasibility, applicability, and reliability of
PZT sensors have been widely validated in the past decade
(Dansheng et al., 2016; Zhang et al., 2018a; Zhang et al.,
2018b; Han et al., 2019). PZT-based detection mainly includes
stress wave sensing and electro-mechanical impedance (EMI)
method (Huo et al., 2017; Zhang et al., 2021), while the high-cost
equipment requirement impedes practical applications of the
EMI method. Furthermore, because of the larger range of
perception and the indirect and the direct piezoelectricity of
the PZT material, stress wave sensing is adopted in this
research, in which PZT-based transducers can function as
both actuators and sensors.

In this study, a pair of PZT patches (an actuator and a sensor)
is mounted on the timber surface to generate and detect stress
waves, respectively. Figure 2 shows the stress wave propagation
mechanism when a crack occurs on timber. The propagation
property is affected by the internal condition in the wave path.
The existence of cracks in the timber beam could transform the
propagation path and wave pattern. When a crack is present,
stress waves will reflect and diffract at the damage interface,
causing the energy drop-down on the other side of the crack. In
Figure 2, it is obvious that the stress wave energy attenuates due
to reflection and diffraction at crack interfaces.

Generation of Spectrum Image Data
The time-series signal received by piezoelectric transducers only
contains information of the time domain, which does not
consider the influence of cracks on frequency components.
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FIGURE 1 | Pipeline of the proposed detection method.

FIGURE 2 | Stress wave propagation properties on the crack surface: (A) overall view; (B) wavefront details.

FIGURE 3 | Generation process of image data.
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Thus, time–frequency analysis including both time and frequency
information of the received signal is utilized in this research to
obtain spectrum images of the received signal.

In this generation process of image data, time series from tests
are transformed into frequency spectrums by using short-time
Fourier transform (STFT). For an original discrete signal
sequence x(n), a pre-determined window function is used to
divide the time series into many segments, and it is assumed the
signal is pseudo-stationary over a short interval, and then Fourier
transform is carried out on each window length (Bendory et al.,
2017; Rashid and Louis, 2020). The transform process of STFT is
shown in Figure 3. Both time- and frequency-domain
characteristics of timber cracks are contained in STFT
spectrums; thus, more damage features can be learned in the
training process of the neural network. The calculation of STFT is
shown in the following equation:

F(mΔt, f ) � ∑ x(n)g(n −mΔt)e−jωn (1)

where F(mΔt, f ) is a two-dimensional complex matrix
representing STFT results, g(n) is the length of the window
function (chosen as the Hamming window), and Δt is the hop
size in samples between successive discrete Fourier transforms.

Process of Classification Training
STFT spectrum images contain multi-domain feature
information of each damage case. Since the DNN has
validated significant performance in the classification of
images (Shukla and Piratla, 2020), the timber crack detection
is conducted using a transferred DNN. The AlexNet network is
transferred in this study to imitate the human decision-making
process for a deep understanding of the characteristics of STFT
spectrums in different crack conditions. The AlexNet network
consists of eight layers, including five convolution (Conv) layers
and three fully connected (FC) layers (Krizhevsky et al., 2012), as
shown in Figure 4.

As shown in Figure 4, damage spectrums are firstly
normalized to the size of 227 × 227 × 3 pixels in the input
layer, and then 96 kernels are used to extract edge features in the
first convolutional layer. The feature map obtained from the
former convolutional layer is then put into the ReLU layer and is

mapped non-linearly using activation function (i.e., rectified
linear unit, ReLU). The ReLU layer’s output then gets into the
pooling layer, in which salient features are extracted by the max-
pooling algorithm. These steps are repeatedly conducted in the
following four convolutional layers with different kernels and
padding sizes. With the increase of convolutional layers, the
extracted feature number is significantly increased. After that,
feature maps are connected to FC layers. The dropout layer can
avoid the occurrence of overfitting. The classification results can
be obtained in the output layer using softmax function to
normalize possibility in each class.

NUMERICAL STUDY

Model Setup
Numerical simulations were performed in Abaqus. The
mechanical properties of timber were set as orthotropic, and
detailed constants are listed in Table 1. The parameter E
represents the elastic modulus, G is the shear modulus, and µ
is Poisson’s ratio. The indexes L, R, and T represent the
longitudinal direction, radial direction, and tangential
direction, respectively.

The material properties of PZT patches were adopted values in
official documents of Abaqus1. The dielectric constant,
engineering constants, and piezoelectric coupling matrix are
listed in Table 2.

The interfaces between timber and PZT patches were set as the
connection type of tie. The solid element C3D8R was adopted for
the timber beam, and the solid element C3D8E with piezoelectric
effects was used for PZT patches. The excitation signal was
produced by setting different electrical potentials at the top
and bottom surfaces of PZT patches. In particular, the
electrical potential at the bottom surface was set as zero, and
at the top surface, ten voltages with a pre-determined amplitude
were set. The excitation load is a one-cycle sine wave with a
frequency of 190 kHz.

FIGURE 4 | Architecture of the AlexNet network.

1http://wufengyun.com:888/books/exa/default.htm(n.d.).
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The implicit dynamic solver was used with a time period of
0.0001 s, and the time iteration was 1e-7. Figure 5 shows
specimen dimensions and PZT locations in the established
model. Figure 6 depicts a three-dimensional propagation path
of stress waves.

Effects of the Crack on Stress Wave
Propagation
To investigate the effect of cracks on stress wave propagation,
four crack depths were performed. Figure 7 shows wavefronts of
four damage cases in the 220th iteration step. Reflections are
observed at the left and side boundaries, and wavefronts show the
same pattern before passing through cracks, which means
incident waves into the crack interface have same properties
and differences as received signals that are only caused by cracks.

Figure 8 shows strain contours when stress waves are passing
through the crack interface in the 400th iteration step. Reflection
waves caused by the crack are obvious in all damage cases. The
transmission wave is only observed at the crack depth of 4 mm,
which indicates wave velocity decays when the stress wave passes
through cracks.

After passing through cracks, the characteristics of stress
waves show extreme differences (as depicted in Figure 9). At
the same time in the 470th iteration step, the wavefronts
drop down rapidly with the increase of crack depths,
representing the attenuation of wave velocities. At the
same position of the transmission wave, the stress wave
intensity reduces significantly with the increase of crack
depths.

EXPERIMENTAL VERIFICATION

Laboratory Test Specimen
Three timber specimens (pine wood) with the same dimensions
(300 mm × 100 mm × 50 mm) were prepared at the State Key
Laboratory of Tongji University. For simulating timber cracks,
2-mm-width cracks within seven different depths, listed in
Table 3, were cut off on the top surface perpendicular to the

TABLE 1 | Mechanical properties of the timber material used in Abaqus.

Density
(g/cm3)

Moisture
content

(%)

EL ER ET GLR GLT GTR μLR μLT μRT

/MPa

0.39 12 11,583 896 496 758 690 39 0.37 0.47 0.43

TABLE 2 | Material properties of PZT patches used in Abaqus.

Engineering constants (GPa) Piezoelectric coupling matrix (m/volt) ×E-10

E1 60.61 d311 −2.74
E2 60.61 d322 −2.74
E3 48.31 d333 5.93
v12 0.289 d112 7.41
v13 0.512 d223 7.41

Dielectric matrix (farad/meter)×E-08
v23 0.512
G12 23.5 D11 1.505
G13 23 D22 1.505
G23 23 D33 1.301

Note: numbers 1, 2, 3 refers to the direction. Direction 1 represents the length direction of PZT patch, direction 2 refers to the width direction of PZT patch, and direction 3 refers to the
thickness direction of PZT patch.

FIGURE 5 | Assembly model.

FIGURE 6 | Three-dimensional propagation path of the stress wave.
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grain direction. Two PZT patches were mounted at predetermined
locations using adhesive (Comix super glue B2695), and the
distance is 50mm from two adjacent ends of the timber
specimen, as shown in Figure 10. The dimensions of PZT
patches are 10mm, 10mm, and 2 mm in length, width, and
depth, respectively.

Experimental Setup
The experimental apparatus includes timber specimens, a
data acquisition system, and a monitoring visualization
system, as depicted in Figure 11. Timber specimens are

fixed by two fixtures for simulating the boundary
conditions in real cases. On the top surface of specimens,
two PZT patches were used for transmitting and receiving
signals. One PZT patch, excited by a one-cycle sine wave with
a frequency of 190 kHz, is connected to the acquisition system
with 2 MS/s sampling frequency. The data acquisition system
consists of an acquisition card (NI USB 6366) and a signal
power amplifier (Trek model 2100HF). The other PZT
connected to the acquisition system is used to receive
stress waves and displace the signal response in the
visualization system.

FIGURE 7 | Strain contours of the stress wave in the 220th iteration step: (A) crack depth of 0 mm; (B) crack depth of 4 mm; (C) crack depth of 10 mm; (D) crack
depth of 20 mm; (E) stress wave intensity.

FIGURE 8 | Strain contours of the stress wave in the 400th iteration step: (A) crack depth of 0 mm; (B) crack depth of 4 mm; (C) crack depth of 10 mm; (D) crack
depth of 20 mm; (E) stress wave intensity.
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RESULTS AND DISCUSSION

Time-Domain Signal Collection
The time-domain probing signals for three specimens are shown in
Figure 12. The time duration of each specimen is 0.5 ms. A general
trend of all the test specimens shows two significant wave packets in
time response. The first wave packet is the signal directly received
from the probing signal, and the second wave packet is the signal
received from boundary reflections. The signal amplitudes decrease
with the increase of crack depth in the first wave packet. The second
wave packet has no similar trend due to the multi-boundary
reflection effects. Because of the large material dispersion of
timber, time-domain signals are very difficult to process and
classify the damage cases. Thus, time–frequency spectrums in
terms of images are established from each time-domain signal
for training the developed DNN.

Data Training Process
Since original signals from tests are limited to training neural
networks, three data augmentation methods are used to expand
datasets in both the time domain and the frequency domain.
Gaussian noises with certain signal-to-noise ratios were added to
raw data, and all raw data were transformed into frequency
spectrums by STFT. In addition, salt and pepper noises were
added into spectrum images of original signals, and spectrum
images were jittered into 8 channels and 16 channels, respectively.
Each original signal was expanded to 27 images after data
augmentation. Spectrums from different specimens but for the
same crack depth were mixed into a separate dataset. A total of
567 images were obtained in this research, as shown in Figure 13.

Classification Results
Visual domain network–based image identification for the
spectrum dataset was conducted. Seven datasets with 567
images are mixed and fed into the transferred AlexNet
network. The learning rate is set as 0.0001, and a total of 200
epochs are set. In each epoch, images are randomly split into the
training set and validation set. As shown in Figure 14, the
training dataset accounts for 70% of the total images, and the
validation dataset accounts for 30%. As shown in Figure 15, the

FIGURE 9 | Strain contours of the stress wave in the 470th iteration step: (A) crack depth of 0 mm; (B) crack depth of 4 mm; (C) crack depth of 10 mm; (D) crack
depth of 20 mm; (E) stress wave intensity.

TABLE 3 | Seven cases of crack condition.

Case 1 2 3 4 5 6 7

Crack depth (mm) 0 2 4 6 8 10 20
Crack width (mm) 2 2 2 2 2 2 2

FIGURE 10 | Timber specimens: (A) side view; (B) top view of PZT configuration.
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FIGURE 11 | Experimental apparatus.

FIGURE 12 | Received signals: (A) specimen 1; (B) specimen 2; (C) specimen 3.
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predicted accuracy rapidly increases with the addition of
iterations. When the number of iterations exceeds 2,000, the
prediction accuracy approaches a constant value of 95.83%.

Figure 16 illustrates the confusion matrix regarding the
classification accuracy of the validation dataset. The average
accuracy rate is 95.8%. The crack depth of 8 mm has the
highest accuracy of 100%. The crack depths of 0 mm, 2 mm,
4 mm, and 10 mmhave the same accuracy with a 4.3% probability
of wrong predictions, and the crack depth of 20 mm has a lower
accuracy of 91.7%.

Discussions
The classification results from the transferred DNN show the
feasibility of the proposed technology to identify timber crack
severity. Compared with traditional signal processing of the

stress wave method, the proposed method based on STFT
spectrums and computer vision technique shows the
advantage in generality and the extensibility of the dataset.
However, adopting this approach in field applications still
faces a few challenges. In particular, four aspects should be
considered in the future work: 1) The detection accuracy is
highly limited to the size of the training dataset, which
requires continuously expending the current dataset to
improve the stability and adaptability of the developed
DNN-based classification. 2) Only timber beam elements
are investigated in the experimental study, whereas the
boundary conditions and dimensional features may be
different from other timber structural components, such as
columns, wood slab, and timber connections. All mentioned
factors may influence the reflection pattern of stress waves. 3)
The performance of the proposed method in identifying
cracks in propagation is not clear. Therefore, one possible
solution is to collect stress wave signals over the whole
loading process and then divide these raw data and their
corresponding STFT spectrums into different stages
according to crack propagating severity and then use the
computer vision approach to identify crack propagation. 4)
The form of sensor used in this research is surface-mounted
patches, whose performance is easily affected by
environmental variations and service life. Proper sensor
protection should be considered to ensure its long-time
service for structural health monitoring of timber structures.

CONCLUSIONS

This research proposes a novel piezoceramic-based sensing
technology combined with visual domain networks for
timber crack detection. Surface-mounted piezoelectric
transducers were utilized to transmit and receive stress waves
in both numerical simulations and experiments. The numerical
and experimental results reveal the wave propagation properties
in different cases of crack depths. A total of 567 images were
reconstructed by transferring the time-domain signal to
time–frequency spectrums. Respective labels from the dataset
were trained through the transferred DNN, and the predicted

FIGURE 13 | Process of data augmentation.

FIGURE 14 | Distribution of training and validation datasets.
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outputs show an average accuracy of 95.8% for crack condition
identification. The proposed technology has great potential for

achieving real-time monitoring of timber damage in
engineering projects when expanding the training samples
from in situ timber damage cases.
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