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Laser welding is an important manufacturing tool for a wide variety of polymer products
including consumer goods, automotive components and medical devices. The laser
process parameters and polymer properties have a significant impact on weld quality.
Due to higher heat density generated by the laser transmission welding (LTW) technique,
defining a set of suitable parameters for LTW of thermoplastics and composites can be
challenging. In this work the effect of carbon black along other control parameters has
been investigated for high speed welding using a laser source of 980 nm wavelength with
low line energy. In this work, the finite element method (FEM)-based software COMSOL
Multiphysics is used to create a 3D transient thermal model for LTW of isotactic
polypropylene (iPP) and its composites with carbon black (CB) of concentrations
ranging from 0.5wt% to 1.5wt%. The design of experiments based on Box-Behnken
design (BBD) is used to organize the simulation experiments and mathematical models are
developed based on multiple curvilinear regression analysis on the simulation findings.
Independent control variables include the laser power, welding speed, beam diameter, and
carbon black content in the absorbent polymer. The maximum weld temperature, weld
width, and weld depth within the transmissive and absorptive layers are considered as
dependent response variables. Furthermore, sensitivity analysis is carried out to investigate
the impact of carbon black along with other independent variables on the responses. The
welding feasibility check was performed on the basis of melt and degradation temperature
of the materials, and weld depths of transmissive and absorptive layers. It has been
observed that the composites containing 0.5wt% and 1wt% of CB can be welded
successfully with neat iPP. However, due to a degradation temperature problem,
composites having a larger proportion of CB (>1 wt%) appear to be more difficult to weld.

Keywords: carbon black, laser transmission welding, simulation, high speed laser processing, polypropylene
composite, low line energy
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INTRODUCTION

Laser processing technology has become well established, playing a
crucial role in solving several challenging manufacturing issues for
about 4 decades (Purtonen et al., 2014). Laser welding, for example,
is one of the processes that has emerging as a result of its unique
characteristics, such as thermal and power stability, immunity to
external interference, and suitability for joining two surfaces of
specific materials (De Pelsmaeker et al.,, 2018; Dave et al., 2021).
There are several types of laser welding categorized on the basis of
laser source (solid-state, gas, diode, fibre), temporal characteristics
(continuous, pulsed); material geometry, (butt, corner, edge, lap,
T-joint), laser-material interaction (direct, surface heating, through
transmission), and mode of laser beam delivery (contour,
simultaneous, quasi-simultaneous, masked) (Grewell et al., 2003;
Grewell and Benatar, 2007; Troughton, 2008; Tres, 2017; Dave
et al,, 2021). Laser transmission welding (LTW) is an innovative
technique due to its advantages as non-contamination, rapidity, a
high spatial resolution, with no vibration from tool (Dave et al.,
2021), (Borges, 2016), (Jones, 2013). LTW is the most common
technique used for polymers in lap geometry using continuous
laser diode by contour welding as shown in Figure 1.

The LTW in lap geometry involves two dissimilar materials: the
top layer (transmissive layer) is transparent or semi-transparent
which allows the laser beam propagation to the bottom layer
(absorptive layer) which is absorptive in nature and the energy
coming from the laser beam is absorbed and converted into heat.
The process has a key advantage that the majority of the laser energy
is delivered only at the interface where the weld is to be formed,
although some energy can be lost due to absorption and/or light
scattering in the transmissive layer. Due to close contact, the heat is
propagated by conduction into both layers, leading to melting and
bonding of the materials when the local temperature exceeds the
melting temperature (T > T,,). However, local temperatures in
excess of the degradation temperature of one or other of the
constituent materials can result in contamination of the weld
zone and poor joint characteristics.

LTW Simulations of PP/CB Composites

The necessary optical properties of the absorptive polymer
material typically arise from the inclusion of fillers such as carbon
nanotubes, graphene nanoparticles, fibres and, most commonly,
carbon black (CB) nanoparticles. These additives enhance the
absorption coefficient (Chen et al.,, 2011; Rodriguez-Vidal et al.,
2014; Wippo et al,, 2014). CB is also used as a compounding
component to increase the end product’s strength. It is a type of
spherical elemental carbon particle that has consolidated into
colloidal size aggregates and can be considered as an intermediate
matter that has a two-dimensional repeating pattern within each
layer. Carbon black particles with primary particle sizes of 20 and
60 nm and concentrations by weight are blended into the base
material during an extrusion process (Haberstroh and Liitzeler,
2001).

For modelling or analysing the performance of manufacturing
technology, numerical methods are widely used. Moreover,
analytical and numerical techniques are widely used to
simulate the laser transmission welding process. Many
researchers have reported the work for achieving the best
quality welds with the aid of simulations and furthermore
optimization of the process (Potente et al, 1999) (Kumar
et al,, 2019) (Labeas et al., 2010; Acherjee et al., 2011; Wang
et al., 2012; Nakhaei et al., 2013). Potente et al. (Potente et al.,
1999) analysed the heating phase in laser transmission welding of
polyamide (PA). In that work, the material properties are
assumed to be constant and the effect of heat convection
during the welding process was ignored. Also, a correction
factor is added in order to allow for the different temperature
profile in case of an absorbing part having a low absorption
coefficient. For achieving the best quality weld, the modelling of
optical laser transmission welding and analysis has been
considered as shown in Figure 2.

The modelling of thermal profile for LTW of two
thermoplastic parts of polypropylene (PP) has been carried
out in this research. The transmissive layer of an isotactic
polypropylene (iPP) is responsible for scattering and reflection
losses whereas most of the transmissive power is absorbed at the
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FIGURE 2 | Block diagram for modelling of optical laser transmission welding and analysis for achieving quality weld.

absorptive layer which contains wt% fraction of carbon black
(CB) filler, responsible for absorption which is converted
ultimately into heat source for welding. In this work, wt% of
CB in PP is the key parameter for changing the absorption
coefficient. Light scattering, reflection, and absorption occur in
materials, and these events alter the energy and spatial
distribution of the laser beam. The amount of energy
transferred between the components to be connected
determines the amount of melted volume. Furthermore, the
clamping mechanism or breakdown of the cohesiveness
between the filler and the matrix can induce deformations due
to high thermal energy. To avoid poor joint quality, a process
parameter optimization based on optical and thermal properties
of materials is required (Labeas et al., 2010). Good temperature
estimations can allow for a more accurate representation of how
individual materials behave during laser welding, as well as
identifying suitable process conditions. Acherjee et al
(Acherjee et al., 2012a), (Acherjee et al, 2012b) conducted a
computational study of the influence of carbon black on the
temperature field and weld profile during laser transmission
welding of polymers using polycarbonate as the work material.
That work was conducted for high line energy however, for low
line energy with high speed laser, the effect of carbon black on the
performance of laser transmission welding needs to be
investigated. Therefore, the present work has investigated the
influence of carbon black in detail.

Line energy in laser transmission welding is defined as the ratio of
laser power to the scan speed (Kumar et al., 2019; Gupta et al., 2018).
The line energy used in this study is in the range of 0.05-0.12 J/mm.
This range has been found to be effective for high-speed welding in
experimental trials carried out by the authors that will be reported
separately. The line energies used here are substantially lower than in
the reported research work of Acherjee et al., which are in the range
of 0.4-1.2 J/mm (Acherjee et al., 2012a). In real-time laser welding
process of polymer composites with given laser line energy, the
microstructure changes are expected in the material as presented by
Ghorbel et al. (Ghorbel et al., 2009). However this work involves the
analysis of thermal profile of the lap joint area carried out with the
aid of simulations utilising the heat transfer module of COMSOL
Multiphysics software and it doesn’t include the microstructure
changing during welding process. The current work is based on

industrial project where polypropylene (PP) is used as the base
material and also polypropylene is widely used worldwide polymer
for most of the applications in industries. PP is also preferred for
various properties due to its semi-crystalline nature, such as
mechanical thermal and chemical resistance etc. The modelling
approach has been developed in such a way that in future, the
suitability of laser welding of different polymer materials can also be
tested using their thermal properties.

In this paper, the details of properties used for numerical
modelling and investigations have been provided in section 2. In
section 3, the optical modelling of the laser beam has been discussed.
The light scattering decay and beam broadening effect due to
scattering has been considered in the model of the laser beam.
Moreover, it has been explained that how this beam is absorbed by
the absorptive layer with the aid of the Beer-Lambert law. It is
apparent that the volume term source and heat flux generated during
laser welding are the effects of absorption. In section 4, the model of
laser beam has been used to compute the temperature field evolution
during LTW. In order to understand the importance of the optical
properties of the material in the LTW, a parameter study is realized
on the absorption coefficient of the absorptive part by taking into
account the CB (wt%) in polymer matrix.

In section 5, the design of experiment has been presented in
detail. Box-Behnken design has been used as it has fewer design
points than central composite design (CCD) with the same number
of factors, and so can be less expensive to perform. The process
parameters are laser power (P), speed (S), diameter (D), CB in wt%
whereas the responses are considered as weld width (WW), weld
depth of absorptive layer (D), weld depth of transmissive layer (D)
and maximum weld temperature (T\.y)-

Finally, in section 6, the results have been discussed and the
values of process parameters have been investigated for defining
feasible laser transmission welding parameters. Finally,
conclusions and future work have been presented in section 7.

MATERIAL SELECTION AND GEOMETRY
PROPERTIES

All materials in the FE model, namely PP and its composite PP/
CB, are used in simulations as thermal-brick components with
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TABLE 1 | Thermophysical and optical properties of the PP used in simulations.

LTW Simulations of PP/CB Composites

PP with 1.0 wt% CB PP with 1.5 wt% CB

Property iPP PP with 0.5 wt% CB
Density = p [kg/m3] 900
Specific heat = ¢ [J/(kg.K|
P kg K] = { 1.921 +3(T = 251073 tor T< Ty 2.5411 + 1.4T = 251021 tr 75Ty T = (140 + 273) K
Thermal conductivity = k [W/(m.K)] 0.210 0.235 0.260 0.285
35 70 105

Absorption coefficient = Ac (1/mm) —
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FIGURE 3| llustration of surface or volume absorption of laser beam by
material.

only one temperature degree of freedom at constant pressure.
Table 1 shows the material parameters such as density (p),
thermal conductivity (k), and specific heat (c), these values
have been taken after consulting the literature (Petrovi¢ et al.,
1993; Wang et al,, 2014; Geiger et al., 2009). For the sake of
simplicity, the changes in material characteristics, with the
exception of specific heat, are assumed to be temperature
independent during the LTW process. The lap joint geometry
is used where only the overlapped area is considered for
simulations to reduce the computation time. The thickness of
each layer is L, = 2 mm whereas the overlapped widthis L, = 5
mm and length along the contour is L, = 10 mm.

MODELLING OF LASER BEAM

For most polymers in their natural state there is typically little or
no absorption at the wavelengths emitted by the diode lasers
commonly employed in welding machinery (wavelengths in the
range 800-980 nm approx.). Hence the polymers are considered
as transparent or sometimes semi-transparent due to the presence
of low level absorption and/or light scattering.

As light passes through a medium, it is absorbed according to
Lambert-Beer’s law, I (z) = Iy e where I, denotes the intensity
of the light and A, represents the absorption coefficient depends
on the intrinsic properties of the material, operating wavelength,
temperature and other parameters. Generally, A, can cover values
from zero (fully transparent) over a medium range (volume
absorber) up to 10*em™ (surface absorber) (Bonten and

Tiichert, 2002; Bachmann and Russek, 2003). The concept of
absorption in volume or surface is illustrated in the generalized
diagram shown in Figure 3. In this study, the laser wavelength is
fixed at 980 nm. The absorbed light in the material is converted to
heat, leading to a temperature increase, which may cause melting
or thermal degradation.

The laser beam power propagated through the transmissive
layer can be modelled in terms of Gaussian beam as (AkuéAsséko
et al., 2015)

| e’ o)
Py(1-R,) N\ (Een) 2(vi<z>+vé)>eDsz

Zn\/(oi (2) + Ug)\/(aj (2) +03)

P (x,y,2) =
o

where Py is the initial power of laser beam, R, is the reflection
coefficient. D is the scattering coefficient. oy is the beam standard
deviation in x and y-axis whereas o, and 0, are the functions of z,
refraction index of matrix, spherulites and nucleating agents/
pigments.

After considering the thickness of transmissive layer L,, the
equivalent volume heat source at absorber layer can be

modelled as

(x-x0)* (-x0)

Po(1 - Re)A. . z(oiuwé)*z(vixwé)) ol A
PR

27(02 (L) + o) (02 (L) + 03)

Q(x.2) =
(2

For moving laser source in LTW, scan speed is also included in
the model, therefore in (2),

xg= —(Ly+D)+Sxt

where D is the beam diameter in mm, S is the speed in mm/s and ¢
is the time in s. The scattering effect in the transmissive layer is
illustrated in Figure 4.

In present study, the following values are used: R. = 0.04,
D = 40y, 0x(L;) = 0,(L;) = cL, where c is constant used for
compensating the effect of broadening of beam due to scattering.

HEAT TRANSFER MODELLING OF HIGH
SPEED LTW OF PP AND PP/CB WITH LOW

LINE ENERGY

In real-time laser welding process of polymer composites, the
microstructure changes are expected in the material as presented
by Ghorbel et al. (Ghorbel et al., 2009). However in this work, the
analysis of thermal profile of the lap joint area was carried out
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FIGURE 4 | lllustration of beam intensity decay and broadening due to scattering from semi-transparent polypropylene layer (A) cross-sectional view of input beam
profile (B) cross-sectional view of transmitted beam including scattering effect, (C) 3D view and (D) 2D view on xz-plane.

with the aid of simulations utilising the heat transfer module of
COMSOL Multiphysics software. In order to calculate the
temperature field, the following assumptions have been made
(Acherjee et al., 2010):

1 The contacting welding materials of the PP and its composite
with CB were deemed to be in close proximity. During the LTW
process, isotropic thermophysical behavior has been considered.
2 The heat conduction of the PP and its composite with CB, as
well as free convection between the surfaces of the PP and its
composite with CB, were considered. The heating effects of
phase transitions were neglected.

3 The portion of the geometry where the temperature gets
higher than the melting temperature (T,,), has been
considered as the “weld zone.”

The thermophysical and optical properties used in the
simulation are provided in Table 1. The differential equation
for the three-dimensional model was considered to model the

heat transfer in the LTW process through COMSOL that defined
the temperature distribution within the body, and it follows the
energy conservation law.

The rate of internally generated heat within the body can be
represented by heat equation to model heat transfer in solids as
(Comsol, 2020)

pcg—];+pcu. VT +V.q=Q 3)

where the following material properties, fields, and sources: p (SI
unit: kg/m3) is the polymer density, ¢ (SI unit: J/(kgK)) is the
specific heat capacity at constant pressure, k (SI unit: W/(mK)) is
the thermal conductivity of the polymer and u (S unit: m/s) is the
velocity field defined by the translational motion subnode when
parts of the model are moving in the material frame and Q (SI
unit: 'W/m?) is the heat source. Moreover, the thermal
conductivity k describes the relationship between the heat flux
vector q and the temperature gradient VT ing = —kVT, which is
Fourier’s law of heat conduction.
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FIGURE 5 | (A) Schematics of the transmissive PP and absorptive PP with wt% CB with the lapped portion, (B) illustration of non-uniform mesh pattern used for the
geometrical model, (C) thermal profile (temperature) of (0, y, z) plane during LTW at t = 0.025 s, (d) thermal profile (temperature) of (x, y, 0) plane during LTW at t =
0.0127 s simulated for the absorptive layer of 0.5 wt% CB/PP for p = 100 W, speed = 1,200 mm/s.

Time=0.012667 s
mm

Surface: Temperature (degC)

To consider the heat transfer from boundaries to the ambient,
the net inward heat flux from surface-to-ambient radiation and
due to convective heat transfer, can be written as (Comsol (2020);
Heat Trans, 2020)

—-nq= h (T - Tamb) +eo (T4 - Tﬁmb) (4)

where ¢ is the surface emissivity, o is the Stefan-Boltzmann
constant, and T,y is the ambient temperature. The value of
surface emissivity is set as 0.97 for polypropylene whereas the
heat transfer coefficient (h) for the convective heat transfer part
has been considered as 10 W/(m*>K) (Wang et al., 2014). The
degradation temperature was used as 500°C (Esmizadeh et al.,
2020).

Only the lap joint area has been used for the simulation as
shown in Figure 5A. To reduce, computational time, a non-
uniform meshing was considered by keeping the mesh size to a
minimum near to the weld contour and using a relatively larger
mesh size approaching the external boundaries of the geometry,
as shown in Figure 5B. By varying the power (P), speed (S) of
laser beam with diameter of 2 mm, maximum weld temperature
was calculated. In addition, criteria was also set so that values of P
and S that generate temperatures less than the melting point
(140°C) and greater than the degradation temperature (500 C) are
not suitable as welding input parameters. The thermal profile
simulated for the absorptive layer of 0.5wt% CB/PP for p =
100 W, speed = 1,200 mm/s at (0, y, z) plane during LTW at t =

0.025 s is shown in Figure 5C. A thermal profile (temperature) of
(%, v, 0) plane during LTW at t = 0.0127 s is shown in Figure 5D.

Figures 6A, B shows the changing temperature along the
welding contour xz-plane at 0.0087 and 0.05 s, respectively. It can
be seen that the temperature gets increased initially and the then
slowly decreases and disperses. On the basis of the maximum
width covered by the thermal plot above melting point of PP
(140 C) the bond started to form at the weld interface when the
temperature reached at 140 C and eventually the weld width and
depth are calculated which is illustrated by Figures 6C, D. The
temperature increased rapidly along the x direction at the time of
laser interaction with material and dropped gradually after the
laser passes away from that point which is shown in Figure 6E.
The maximum temperature of the weld occurs in the absorptive
layer instead of instead of interface, which shows that this is
volume absorption and therefore the asymmetric thermal profile
can be seen along y-axis transverse to the welding direction
Figure 6C.

DESIGN OF EXPERIMENTS AND
EMPIRICAL MODELING

Low energy levels can cause a weak, and low-strength joint,
whereas excessive energy levels potentially lead to degradation
and vaporization, which also can result in poor joint quality. in.
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FIGURE 6 | Thermal profile (temperature) at (x, 0, z) plane during LTW at (A) t = 0.0087 s and (B) t = 0.05 s simulated for the absorptive layer of 1.0 wt% CB/PP for

p =120 W, speed = 1,200 mm/s with beam diameter 1.9 mm, (C) temperature curves evolution with time during LTW along z-axis at x = y = 0 used for the measurement
of weld depth for transmissive layer (Dy) and absorptive layer (D), (D) temperature curves evolution with time during LTW along y-axis at x = z = 0 used for the
measurement of weld width (WW) and (E) temperature versus time at x = -5, -4, -2, 0, 2, 4, and 5.

As a result, the energy provided to the surfaces for each process  simulation. Therefore, a validated numerical simulation tool
application must be optimized. This can be achieved either by ~ for the analysis and optimization of the LTW process
performing an essential number of experiments, which increases ~ parameters needs to be developed. The heat transfer module
the cost and the required development time of the desired  of COMSOL Multiphysics 5.6 software is utilized for numerical
product, or by a parametric investigation through numerical = model simulations developed for this optimisation study.

Frontiers in Materials | www.frontiersin.org 7 September 2021 | Volume 8 | Article 737689


https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles

Ali et al.

A three-level-four-factor Box-Behnken design (BBD) was
applied to determine the best combination of control variables
for good quality weld. Table 2 shows the ranges and levels of the
selected process control parameters, as well as the units, levels,
and notations studied in this study.

Empirical models are developed for simulation results in
Table 3 using multiple curvilinear regression analysis as
presented by Kim et al. (Kim et al, 2003). A functional
relationship between input and output variables is assumed as
the following:

v, = By (P)ﬂ“ (S)ﬁzi (D)ﬁsi (C)ﬁ‘”, 1<i<4 (5)

where y, is the output response i.e.,y, = WW,y, = Dr,y,; = D4
andy, = Ty and the s are a set of unknown parameters, called
regression coefficients. A regression equation of the following
form is obtained by taking common logarithm of (5),

TABLE 2 | Process Control parameters and their levels.

Parameter Notation Unit Levels

-1 0 1
Power P W 80 100 120
Speed S mm/s 1,000 1,200 1,400
Beam Diameter D mm 1.9 2 2.1
Carbon black content C wt% 0.5 1 1.5

LTW Simulations of PP/CB Composites

log y; = log B, + B log P+ f,;1ogS + B3, log D + B, logC  (6)
Y =bgi + b1 Xy +byXs + b3 X; + by X,y (7)

where

8. = 10%, j=0
i b, 0<j<4

(6)can be treated as a first-order regression model as illustrated in
(7). After running the regression analysis on (7) in Microsoft Excel,
the model equation for each response are obtained as in (5).

The developed empirical models for maximum temperature
(Tmay) during LTW, weld width (WW), weld depth in transparent
part (D), and weld depth in absorbing part (D), which can be
used for prediction within same design space, is given as follows:

WW = 3.983092 P0A4241 S*0A3369 D*O,ZOll CO.2783 (8)
DT =5.16259 P1.4814 8714474D72A2485Co,5105 (9)

D, = 1.139741 PO8%66 (§) 0821 (D)~ (C) 171 (10)
Tmux =2212.976 (P)0,847 (S)—0,62685 (D)—l.3693 (C)0.3943 (1 1)

ANOVA results for logWW, log Dr, log D4, and log T)y,ax are
provided in Table 4. The correlation between the actual and
anticipated values of T, (°C), WW (mm), D (mm), and D,
(mm) is shown in Figures 7A-D. These figures show that the
established models are appropriate, and the anticipated outcomes
are consistent with the actual data.

TABLE 3| Box-Behnken experimental design and response values for weld width (WW), weld depths in transmissive layer (Dy) and absorptive layer (Da), and maximum weld

temperature (Trnax)-

Order no Defining levels using BBD Actual values Response parameters
P S D C P S D Cc ww Dt Da Tmax
(mm) (mm) (mm) (°C)
1 -1 -1 0 0 80 1,000 2.0 1.0 2.20 0.0290 0.0570 467
2 -1 1 0 0 80 1,400 2.0 1.0 1.96 0.0170 0.0435 379
3 1 -1 0 0 120 1,000 2.0 1.0 2.56 0.0480 0.0800 660
4 1 1 0 0 120 1,400 2.0 1.0 2.34 0.0320 0.0610 534
5 0 0 -1 -1 100 1,200 1.9 0.5 1.88 0.0230 0.0710 400
6 0 0 -1 1 100 1,200 1.9 1.5 2.48 0.0370 0.0600 614
7 0 0 1 -1 100 1,200 2.1 0.5 1.80 0.0170 0.0630 350
8 0 0 1 1 100 1,200 21 1.5 2.46 0.0310 0.0520 533
9 -1 0 0 -1 80 1,200 2.0 0.5 1.58 0.0125 0.0560 309
10 -1 0 0 1 80 1,200 2.0 1.5 2.27 0.0250 0.0460 472
11 1 0 0 -1 120 1,200 2.0 0.5 2.04 0.0280 0.0780 435
12 1 0 0 1 120 1,200 2.0 1.5 2.60 0.0420 0.0660 669
13 0 -1 -1 0 100 1,000 1.9 1.0 2.43 0.0430 0.0735 605
14 0 -1 1 0 100 1,000 2.1 1.0 2.40 0.0350 0.0650 528
15 0 1 -1 0 100 1,400 1.9 1.0 2.20 0.0270 0.0555 491
16 0 1 1 0 100 1,400 2.1 1.0 2.14 0.0215 0.0485 429
17 -1 0 -1 0 80 1,200 1.9 1.0 2.10 0.0245 0.0520 448
18 -1 0 1 0 80 1,200 21 1.0 2.06 0.0195 0.0460 391
19 1 0 -1 0 120 1,200 1.9 1.0 2.44 0.0430 0.0735 632
20 1 0 1 0 120 1,200 21 1.0 242 0.0350 0.0650 550
21 0 -1 0 -1 100 1,000 2.0 0.5 2.00 0.0283 0.0783 423
22 0 -1 0 1 100 1,000 2.0 1.5 2.58 0.0420 0.0650 635
23 0 1 0 -1 100 1,400 2.0 0.5 1.69 0.0145 0.0590 337
24 0 1 0 1 100 1,400 2.0 1.5 2.36 0.0280 0.0480 521
25 0 0 0 0 100 1,200 2.0 1.0 2.28 0.0300 0.0590 504
26 0 0 0 0 100 1,200 2.0 1.0 2.28 0.0300 0.0590 504
27 0 0 0 0 100 1,200 2.0 1.0 2.28 0.0300 0.0590 504
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TABLE 4 | ANOVA results for logWWW, log Dr, log D4 and log Tax.

LTW Simulations of PP/CB Composites

Source log WW log Dr log Da log Tmax
F-value p-value F-value p-value F-value p-value F-value p-value
Model 171.0085 <0.001 164.2804 <0.001 2,479.358 <0.001 902.7742 <0.001
log P — <0.001 — <0.001 - <0.001 - <0.001
log § — <0.001 - <0.001 — <0.001 — <0.001
log D — 0.1734 — <0.001 — <0.001 — <0.001
log C — <0.001 — <0.001 - <0.001 — <0.001
R-sq 96.88% 96.76% 99.78% 99.39%
R-sq (adj) 96.32% 96.17% 99.74% 99.28%
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FIGURE 7 | Plot of actual vs predicted response of (A) WW (mm), (B) DT (mm), and (C) DA (mm) (D) Tnax (°C), resuits.

Under a given set of assumptions, the sensitivity analysis
approach is used to discover how changing values of an
independent variable would influence a certain dependent
variable. Sensitivity analysis provides information regarding
the parameter that has to be measured the most precisely, as
well as the impact of minor changes in that parameter on the
overall design goals (KaraogluSecgin, 2008).

The partial derivative of a design objective function with
respect to its variables is the sensitivity of that function with
regard to control parameter in mathematics. Eq. 8-11 are
differentiated with respect to power for calculating the
sensitivity of WW, Dr, Dy, and Tp.x with respect to power as

IWW/p = 1.689338 P07 70356 proauit cozrss 1)
aDT/aP — 7647889 P4814 g-1.474 [)-2.2485~0.5105 (13)
BDA/aP = 0.964898 P—0.1534 (8)708421 (D)71A2744 (C)—0.1716 (14)

0T ax/p = 1874.389 (P)™"153 (§)706269 (D) 13693 (0094 (15)

Equations 8-11 are differentiated with respect to speed for
calculating the sensitivity of WW, D, D4, and Ty, with respect
to speed.

OWW /5 = —1.34182 P44 §713¢7 pro20tt co783 (16)
ODr/g = ~7.60944 P41 § 2474224505105 (17)
0D, /5g = —0.95979 P (8)7H8421 (D) 174 () 01716 (1g)

T as [5g = ~1387.21(P)"* (8)% (D) *** (C)***  (19)

Equations 8-11 are differentiated with respect to beam
diameter for calculating the sensitivity of WW, D, Dy, and
Tmax With respect to diameter.

aWW/aD = —-0.8009 P0.4241 870.3369 D*l.ZOll C0.2783 (20)
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FIGURE 8 | Sensitivity analysis results for (A) power (constant parameters: welding speed = 1,200 mm/s, beam diameter = 2 mm, and carbon black content 1 wt% (B)
speed (constant parameters: power = 100 W, beam diameter = 2 mm, and carbon black content 1 wt% (C) beam diameter (constant parameters: power = 100 W, welding
speed = 1,200 mm/s, and carbon black content 1 wt% (D) carbon black (constant parameters: power = 100 W, welding speed = 1,200 mm/s, and beam diameter = 2 mm.

aDT/aD =-11.6078 P1.4814 S—1.474D—3,2485Co.5105 (21)

BDA/aD = —1.45253 P0'8466 (S)_0'8421 (D)—2.2744 (C)—0,1716 (22)
aTmax/aD = -3030.2 (P)0.847 (S)—0.6269 (D)—2.3693 (C)0.3943 (23)

RESULTS AND DISCUSSION

Sensitivity analysis is used to investigate the impact of process
control variables on the outputs in the design space studied in this
research. Positive sensitivities indicate that the output variable rises
as the input variable rises, whereas negative sensitivities indicate
that the output variable rises as the input variable falls
(KaraogluSecgin, 2008). The sensitivity plots of all output
responses with regard to each input control variable are shown
in Figure 8. In addition, an inset picture is used for all subfigures of
Figure 8 to provide a clear visualisation of the sensitivity variation
of Dy and D,. Figure 8 (a) shows that all of the weld dimensions
such as WW, D, and Dy exhibit a positive sensitivity with respect

to power. This effect occurs because an increase in power causes an
increase in heat input, resulting in more molten material and, as a
result, larger weld dimensions. The sensitivity of WW with
reference to power is also demonstrated to be greater than that
of Dy and D,. As can be seen, the WW and D, are more sensitive
in the lower power range, but the Dy is more sensitive in the higher
power range. This means that increases in power cause minute
changes in D and D but significant changes in WW. Also on the
secondary vertical axis of Figure 8A, the sensitivity of Ty, with
respect to power is plotted which is positive. This implies a rise in
the value of T, as the laser power rises. This is because when the
laser power increases, the heat input to the irradiation zone rises,
leading in a greater T, Furthermore, Ty, is likewise more
sensitive in the lower power zone than in the higher power zone, as
shown in the preceding figure. This implies that a small variation of
power in lower region causes higher deviation in T, than that in
higher power region.

The sensitivity findings for outputs with reference to the laser
scan speed are shown in Figure 8B. The figure shows that the
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FIGURE 9 | (A) Simultaneous effect of laser power and carbon black content on the weld width (constant parameters: welding speed = 1,200 mm/s, and diameter =

2 mm), (B) Simultaneous effect of laser power and carbon black content on the weld depth of transmissive layer (constant parameters: welding speed = 1,200 mm/s, and
diameter = 2 mm), (C) Simultaneous effect of laser power and carbon black content on the weld depth of absorptive layer (constant parameters: welding speed = 1,200 mm/
s, and diameter = 2 mm) and (D) Simultaneous effect of laser power and carbon black content on maximum weld temperature of transmissive layer (constant
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sensitivity of all weld diameters with regard to welding speed are
negative. This is owing to the fact that when welding speed
increases, the irradiation period decreases, resulting in a
decrease in line energy. As a consequence of reduced
provided heat, the volume of the molten material reduces,
resulting in a narrow weld. The welding speed sensitivity of
Dt and D, is found to be greater than that of WW. This means
that welding speed has a greater impact on the Dt and D, than
on the WW. Also, from secondary axis of Figure 8B T,..’s
sensitivity towards laser scan speed is negative, indicating that as
welding speed increases, T, decreases. The desired
temperature can be defined as a function of the laser power
density and irradiation period, if other parameters are fixed. It is
evident that by decreasing the welding speed lengthens the
irradiation duration, resulting in a greater T, Also, from
Figure 8B, it can be concluded that the T,,,x and all weld
dimensions are likewise more sensitive at higher laser scan
speed values than lower values of speed.

It can be seen from Figure 8C that the weld dimensions WW,
Dy and D, have negative sensitivities with respect to beam
diameter, this trend is similar to their sensitivities with respect
to speed. It is interesting to note that the sensitivity of WW for
beam diameter is negative in this work whereas it is reported
positive by Acherjee et al. (Acherjee et al., 2012a). The reasons

that can be considered are power density, which gets decreased
with the increase of beam diameter, coupled with low line energy
resulting in the reduction of WW in the current study. On the
other hand a smaller beam diameter results in more targeted
power input, which increases power density and improves weld
penetration (Dr and D,). The sensitivity of beam diameter on
Tmax is also negative, as seen on the secondary axis of the plot. It
demonstrates that the value of the T,,,, decreases as the beam
diameter increases. This is because, expanding the beam diameter
causes the laser energy to be distributed across a larger region.
T max and all weld dimensions are likewise more sensitive at higher
laser scan speed values than lower values of speed.

The findings of the sensitivity analysis for carbon black
concentration are shown in Figure 8D. The figure shows that the
WW and Dr sensitivity to carbon black concentration are positive,
whereas the sensitivity of D, is negative. Increased carbon black
concentration increases the absorption coefficient as discussed in
section reduces optical penetration depth, resulting in the laser beam
being absorbed at a lower depth in the absorbing material, increases
the temperature at the interface which further results in a wider WW
and deeper Dt but a lower D4. The change of carbon black content
affects the WW more strongly than Dt and D,.

T max increases with carbon black concentration in the absorbing
polymer, as evidenced by positive sensitivity values in the secondary
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axis of the plot. Increased carbon black concentration raises the
absorbent polymer’s absorption coefficient, which improves laser
absorption and results in a higher T,,,,. All of the output variables
are likewise more sensitive at lower carbon black concentration levels
than at higher ones. It can also be observed that the weld depth in
absorptive and transmissive layer in this work is less than 0.1 mm
whereas in the literature it’s greater than 0.1 as reported in (Acherjee
et al,, 2012a). This is due to the high speed of laser and also due to
larger absorption coefficient, the absorption is closer to surface
absorption and it results in the reduction of weld depth. This
shows that the laser transmission welding is strongly affected by
optical properties of the absorptive layer and hence the carbon black
is the control factor.

Figures 9A-D shows the simultaneous effect of laser power
and carbon black content on output variables by keeping the
other parameters constant.

The Figure 10A-C shows that increase in the carbon black
concentration, raises the maximum weld temperature by keeping
the other set of welding conditions constant. As a result,
increasing the carbon black concentration of the absorbing
polymer can partially compensate for a drop in laser power,
an increase in welding speed, or an increase in beam diameter. It
means that the amount of laser power required is highly
dependent on the amount of carbon black in the absorbing
portion. Its also evident that under given set control
parameters, it’s harder to weld polypropylene with higher CB

wt% due to the rise in the maximum weld temperature from
degradation temperature (500°C).

Also, a reduction in the carbon black concentration decreases
the weld depth of the transmissive layer which eventually results
in the decrease of weld strength as shown in Figure 10D-F. If Dt
is less than 0.02 mm the region is shaded and regarded as not
suitable for welding. It is clear from the figure that the suitable
values of control parameters are i.e., p = 100 W, S = 1,200 mm/s,
and D = 2 mm. It is mentioned that the threshold value of D has
been chosen arbitrarily and in the future work, this value will be
revisited on the basis of experimental investigations.

CONCLUSION

The effect of carbon black and other control parameters such as
power, speed, and beam diameter on the responses such as maxim
weld temperature, weld width and weld depths has been investigated.
Finite element analysis and design of experiments approaches have
been used for the simulation of the laser transmission contour
welding process. To simulate the process and provide results, a
three-dimensional COMSOL model for laser transmission welding
of polypropylene with a moving laser beam was developed. To
design the experimental matrix, the Box-Behnken design (BBD)
method is used. Multiple curvilinear regression analysis is used to
construct empirical models based on simulation findings. In
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sensitivity analysis, the constructed empirical models are used to
identify the relative effects of different inputs on the process
outcomes. The findings of the sensitivity analysis revealed the
important parameters that needed to be considered with the
greatest precision. The sensitivity analysis leads to some unique
findings.

1 Welding speed had a negative sensitivity effect on all of the
responses studied, whereas laser power has a positive
sensitivity effect.

2 The impact of power on WW in terms of sensitivity is
positive and higher than that of Dy and D4, whereas for
welding speed all outputs the sensitivity is negative.

3 Trnaxy WW, Dr, and Dy all have negative sensitivity to beam
diameter.

4 The WW is more affected by changes in carbon black
concentration than DT and DA.

5 Sensitivities of T, WW and Dy carbon black content are
positive, whereas, DA has negative sensitivity. It shows that
T max can increase higher than the degradation temperatures of
polypropylene with the increased of carbon black
concentration, which can result in decomposition rather
than welding.

6 It is concluded that carbon black concentration in the
polypropylene has strong influence on the achievement of
quality weld. By increasing carbon black concentration,
maximum weld temperature increases which may exceed
from degradation temperature. Maximum achievable weld
temperature can be reduced by increasing the speed which
eventually results in decreasing the weld depth of transmissive
layer resulting in limited weld strength. Therefore, it has been
observed that the polypropylene containing higher than 1wt%
carbon black is difficult to weld by high speed and low line
energy lasers.

7 High speed of laser and larger absorption coefficient result in
the absorption closer to surface which has consequences in the
reduction of weld depth. This shows that the laser
transmission welding is strongly affected by optical
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