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Thiols are efficient capping agents used for the synthesis of semiconductor and metal
nanoparticles. Commonly, long-chain thiols are used as passivating agents to provide
stabilization to nanoparticles. Theoretical methods rarely reported aromatic thiol
ligands’ effects on small-sized CdTe quantum dots’ structural and electronic
properties. We have studied and compared the structural and electronic properties
of (i) bare and (ii) aromatic thiols (thiophenol, 4-methoxybenzenethiol, 4-
mercaptobenzonitrile, and 4-mercaptobenzoic acid) capped CdnTen quantum dots
(QDs). Aromatic thiols are used as thiol-radical because of the higher tendency of thiol-
radicals to bind with Cd atoms. This work provides an understanding of how the
capping agents affect specific properties. The results show that all aromatic thiol-radical
ligands caused significant structural distortion in the geometries. The aromatic thiol-
radical ligands stabilize LUMOs, stabilize or destabilize HOMOs, and decrease HOMO-
LUMO gaps for all the capped QDs. The stabilization of LUMOs is more pronounced
than the destabilization of HOMOs. We also studied the effect of solvent on structural
and electronic properties. TD-DFT calculations were performed to calculate the
absorption spectra of bare and capped QDs, and all the capping ligands resulted in
the redshift of absorption spectra.
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INTRODUCTION

Semiconductor quantumdots (QDs), or “nanoclusters,” or “nanoparticles” of CdTe andCdSe, are gaining
significant attention due to their potential applications in various fields. Optoelectronic devices (Talapin
et al., 2010; Kumar and Rao, 2014; Kershaw et al., 2017) (e.g., LEDs (Anikeena et al., 2009; Zou et al.,
2017), sensors (Liang et al., 2014; Kanagasubbulakshmi et al., 2018), solar cells (Yaacobi-Gross et al., 2012;
Huang et al., 2014; Carey et al., 2015; Bosio et al., 2017; Xiao et al., 2018), photodetectors (Barkhouse et al.,
2008; Tu and Lin, 2008; Amelia et al., 2012)) and biomedical devices (Zheng et al., 2007; Yaghini et al.,
2009; He and Ma, 2014) use QDs owing to their unique properties: size tunability, changeable surface
chemistry (through capping with variety of ligands) (Hines and Kamat, 2013; Hines and Kamat, 2014),
photoluminescence and absorption profile (Wuister et al., 2003; Wuister et al., 2004; Weng et al., 2006;
Duan et al., 2009). The surface chemistry of semiconductor QDs is important in determining the
electronic and structural properties because of their large surface-to-volume ratio.
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The synthesis of semiconductor QDs is carried out in various
ways, among which aqueous synthesis has considerable
advantages in terms of high yield, reproducibility, and
selectivity. During the synthesis of QDs, capping ligands tend
to cover the surface of newly synthesized QDs and alter the
structural and electronic properties of QDs. Ligands-capped
CdTe QDs exhibit unique tunable structural, emission, and
electronic properties (Akamatsu et al., 2005; Guo et al., 2005;
Yaacobi-Gross et al., 2012; Deng et al., 2013; Lin et al., 2014; Amin
et al., 2015; Liu et al., 2015; Schnitzenbaumer and Dukovic, 2018).

The presence of ligands on the surface affects the nucleation
and growth of QDs considerably. Knowing the ligand effect helps
develop a strategy for the synthesis and manipulating the size and
properties of the QDs. Experimental characterization of
structures and properties during the synthesis process remains
challenging due to the minimal size and short lifetime of newly
formed particles of QDs. On the other hand, first-principles
computational techniques have been a good instrument for
investigating the structures and properties of QDs. The cluster
models have been used in several theoretical studies to investigate
the structural and electronic properties of bare and ligated CdSe/
CdTe QDs (Bhattacharya and Kshirsagar, 2007; Bhattacharya and
Kshirsagar, 2008; Wang et al., 2009; Xu et al., 2010a; Seal et al.,
2010; Haram et al., 2011; Kuznetsov et al., 2012; Lim et al., 2012;
Ma et al., 2012; Leubner et al., 2013; Lin et al., 2013; Sriram and
Chandiramouli, 2013; Wu et al., 2013; Alnemrat et al., 2014;
Kuznetsov and Beratan, 2014; Rajbanshi et al., 2014; Sarkar et al.,
2014; Shah and Roy, 2014; Aruda et al., 2016; Kilina et al., 2016;
Swenson et al., 2016; Cao et al., 2018). Mainly, these studies were
limited to exploring the capping effects of aliphatic ligands on the
structural, electronic, and optical properties of CdTe QDs. Most
of these computational studies have been conducted on small-
sized QDs because of significant challenges associated with the
atomistic simulation of large-sized QDs (Bhattacharya and
Kshirsagar, 2007; Wang et al., 2009; Seal et al., 2010; Ma et al.,
2012). These studies determined the possible lowest energy
structures and optical properties of CdnTen (n � 1–16, 19, 20,
24, 28) nanoclusters employing the first-principles calculations.

Recent computational and experimental studies have
confirmed the utilization of aromatic capping ligands in
synthesis and the capping exchange process of CdSe/CdTe
QDs (Bloom et al., 2013; Lin et al., 2013; Kumar et al., 2015;
Aruda et al., 2016; Swenson et al., 2016). However, significant and
systematic studies that would have investigated the effect of
aromatic ligands on the structural, electronic, and optical
properties of CdTe QDs are rare. Hence, the present study
aims to fill that knowledge gap and provide a systematic
computational analysis of the structural, electronic, and optical
properties of aromatic thiol capped CdTe QDs.

In one of our previous studies, we had performed an extensive
search for the lowest energy geometries of CdnTen QDs (n �
1–17) using particle swarm optimization (PSO) algorithms and
density functional theory (DFT) approaches and explored
structural and electronic properties (Imran et al., 2019). The
present study presents structural and electronic properties of bare
and capped small-sized CdnTen (n � 6,8 and 9) QDs. We have
used four aromatic thiol ligands for capping: thiophenol (TP), 4-

methoxybenzene-thiol (MBT), 4-mercaptobenzonitrile (MBN),
and 4-mercaptobenzoic acid (MBA) (see Figure 1).

Computational Methods
All the calculations described here were performed using the
Gaussian 09W package (Frisch et al., 2013). Recent studies have
used the simulated annealing technique to find CdTe clusters’
lowest energy structures (Wang et al., 2009; Ma et al., 2012). Our
previous study performed an extensive structural search for CdTe
clusters using PSO algorithms as implemented in CALYPSO,
evaluated the candidate clusters by DFT and MP2 theory levels.
We re-used the lowest energy CdTe structures from our previous
work for the sake of the present work (Imran et al., 2019). All the

FIGURE 1 | Structures of the capping ligands: thiophenol (TP),
4-methoxybenzenethiol (MBT), 4-mercaptobenzonitrile (MBN), and
4-mercaptobenzoic acid (MBA).

FIGURE 2 |Optimized gas-phase structures and Frontier orbitals of bare
Cd6Te6 (A), Cd8Te8 (B) and Cd9Te9 (C) QDs. Dark yellow spheres represent
Cd, and gray spheres represent Te.
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symmetric structures of bare and capped QDs were optimized
without symmetry constraints. Vibrational frequency analysis
indicated that optimized QD structures are actual minimum
energy structures.

All the calculations were performed using hybrid functional
B3LYP (Becke, 1993) with basis sets of Los Alamos double-ζ
effective core potential (Lanl2dz) (Hay andWadt, 1985a; Hay and
Wadt, 1985b; Wadt et al., 1985) in the gas phase as implemented
in the Gaussian 09W package. Earlier studies had found the
B3LYP/Lanl2dz level of theory to be a practical approach in terms
of accuracy and efficiency when used to study CdTe and CdSe

bare and capped QDs (Kuznetsov et al., 2012; Lim et al., 2012;
Kuznetsov and Beratan, 2014). However, utilizing the B3LYP
functional may underestimate the HOMO-LUMO gaps and
excited-state energy, which may be corrected by using range-
separated functionals, as shown in previous studies (Salzner and
Aydin, 2011; Kurban et al., 2019; Muz and Kurban, 2020). In
small-sized QDs, all the cadmium atoms are exposed to the
surface and potentially coordinated with ligands. We also
varied the number of ligands attached to QDs to explore the
effect of ligand density on the structural and electronic properties
of QDs. Theoretical studies were simulated in toluene solvent
(dielectric constant ε � 2.2706). The ligand-binding energies (BE)
were calculated with the help of the following equation:

BE � [E(CdnTenLn) − (E(CdnTen) + nE(L))]/n
Where E(CdnTenLn) is the energy of capped QD, E(CdnTen) is the
energy of bare QD, and E(L) is the energy of the capping agent.
Time-dependent DFT calculations were performed using the
B3LYP/Lanl2dz approach both in the gas and implicit solvent
to study the electronic transitions of both bare and capped QDs.
Calculated spectra were plotted with the help of Gabedit 2.5.0
(Allouche, 2011) to determine λmax/Emax from plots. Molecular
structures and orbitals were visualized using Molden 5.8
(Schaftenaar and Noordik, 2000) and GaussView, respectively.

RESULTS AND DISCUSSION

Bare CdnTen (n = 6,8 and 9) Quantum Dots
Figure 2 shows the minimum energy structures of bare Cd6Te6,
Cd8Te8, and Cd9Te9 QDs in the gas phase and their Frontier

TABLE 1 | Calculated EHOMO and ELUMO energies (eV), HOMO-LUMO gaps (eV) of bare CdnTen (n � 6, 8, and 9) QDs in the gas phase, and toluene with B3LYP/Lanl2dz
approach.

Species (symmetry, spin
state)

E HOMO, eV
(gas phase; toluene)

E LUMO, eV
(gas phase; toluene)

Gap, (eV)

Cd6Te6 (C3v
1A) −6.150 −3.10 3.05

−5.96 −2.86 3.10
Cd8Te8 (S4

1A) −6.19 −3.10 3.09
−6.01 −2.89 3.12

Cd9Te9 (D3h
1A) −5.93 −3.17 2.76

−5.74 −2.86 2.88

TABLE 2 | Calculated EHOMO energy (eV), ELUMO energy (eV), HOMO-LUMO gaps (eV), excitation energies (Emax) (eV), and maximum absorption wavelengths (λmax) (nm), of
the excited states with maximum oscillator strength of bare CdnTen (n � 6, 8, and 9) QDs in the gas phase and toluene with TDB3LYP/Lanl2dz approach.

Species (symmetry,
spin state)

E HOMO,
eV (gas

phase; toluene)

E LUMO,
eV (gas

phase; toluene)

Gap, (eV) Emax (eV) λmax (nm)

Cd6Te6 (C3v
1A) −6.15 −3.10 3.05 3.13 395

−5.97 −2.83 3.14 3.21 386
Cd8Te8 (S4

1A) −6.18 −3.09 3.09 3.22 385
−6.03 −2.86 3.17 3.25 378

Cd9Te9 (D3h
1A) −5.94 −3.18 2.76 2.93 423

−5.76 −2.93 2.83 2.95 420

TABLE 3 | Calculated vertical and adiabatic IPs and EAs (eV) in the gas phase of
bare CdnTen (n � 6, 8, and 9) QDs and capped CdnTenLn QDs (where L � TP,
MBT, MBN, and MBA) using B3LYP/Lanl2dz level of theory.

Species (symmetry, spin
state)

IPv/IPad, (eV) EAv/EAad, (eV)

Cd6Te6 (C3v
1A) 7.41/7.21 1.96/2.11

Cd6Te6(TP)6 (C1
1A) 6.78/6.30 2.64/3.55

Cd6Te6(MBT)6 (C1
1A) 6.34/5.93 2.52/3.44

Cd6Te6(MBN)6 (C1
1A) 7.41/6.99 3.34/4.25

Cd6Te6(MBA)6 (C1
1A) 7.46/7.24 3.38/4.22

Cd8Te8 (S4
1A) 7.33/7.10 2.07/2.17

Cd8Te8(TP)8 (C1
1A) 6.61/6.10 2.76/4.16

Cd8Te8(MBT)8 (C1
1A) 6.20/5.65 2.71/3.73

Cd8Te8(MBN)8 (C1
1A) 7.13/6.71 3.44/4.51

Cd8Te8(MBA)8 (C1
1A) 7.20/6.75 3.49/4.52

Cd9Te9 (D3h
1A1) 7.04/6.96 2.15/2.29

Cd9Te9(TP)9 (C1
2A) 6.57/5.72 2.95/4.16

Cd9Te9(MBT)9 (C1
2A) 6.28/5.86 2.89/3.68

Cd9Te9(MBN)9 (C1
2A) 7.21/6.84 3.53/4.39

Cd9Te9(MBA)9 (C1
2A) 7.28/6.98 3.67/2.29
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molecular orbitals. Table 2 shows calculated HOMO/LUMO
energies, HOMO-LUMO gaps, Emax, and λmax.

Cd6Te6 (C3v symmetry) structure shows that it consists of
stacks of Cd3Te3 rings of hexagonal shape with a Cd-Te bond
distance of 2.87 Å inside the hexagonal rings Cd-Te bond
distance between the two layers is 3.045 Å.

Cd-Te bond lengths in Cd8Te8 (S4 symmetry) are calculated to
be 2.856–3.002 Å in distorted six Cd2Te2 rhombi and four Cd3Te3
hexagonal rings.

Cd9Te9 (D3h symmetry) consists of three interconnected
Cd3Te3 hexagonal rings, and Cd-Te bond lengths in
upper and lower hexagonal layers are 2.85 Å, while in the
middle layer, Cd-Te bond lengths expand to 2.994 Å. The
interlayer Cd-Te bond lengths are calculated to be 3.163 Å
which is greater than the interlayer bond length of
Cd6Te6 QD.

Geometry optimization with implicit solvent (toluene) and
gas-phase gave similar geometries for all QDs. However, the
amount of NBO charges on Cd and Te atoms increased by adding
implicit solvent (toluene) during calculations.

In the gas phase, HOMO-LUMO gaps of Cd6Te6, Cd8Te8,
and Cd9Te9 QDs revealed that all the QDs were semiconductor-
like (Table 1). The calculated HOMO-LUMO gaps are 3.05,
3.09, and 2.76 eV for Cd6Te6, Cd8Te8, and Cd9Te9 QDs.
Generally, an increase in the size of QDs decreases HOMO-
LUMO gaps, but in the present study, HOMO-LUMO gaps of
Cd9Te9 QD are less than Cd6Te6 QD while Cd8Te8 QD shows a
higher HOMO-LUMO gap than the other two species. We
attribute this observation to different structural motifs of
each size of QD. Cd6Te6 and Cd9Te9 are similar to wurtzite
structures with six atoms in a ring, whereas Cd8Te8 is somewhat
similar to zinc-blende structures. Probably this structural
difference is the reason behind the unexpected higher
bandgap of Cd8Te8.

Table 2 presents TD-DFT calculations of excitation
energies (Emax) and absorption wavelengths (λmax) of
excited states with maximum oscillator strength. The
calculated excitation energies (Emax) of bare QDs in the
gas phase are close to the HOMO-LUMO gaps of the same
QDs and consistent with the previous computational report

FIGURE 3 | Optimized gas-phase structures of bare and capped Cd6Te6 QDs: Cd6Te6(TP)6 (A), Cd6Te6(MBT)6 (B), Cd6Te6(MBN)6 (C), and Cd6Te6(MBA)6 (D).
Atoms are represented as follows: Cd by dark yellow spheres, Te by dark gray spheres, C brown spheres, H light gray sphere, O red spheres, S sapphire spheres, and N
blue spheres.
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(Lim et al., 2012). The inclusion of toluene solvent in
calculations slightly increased the excitation energies. A
blue shift in the absorption maxima caused by the solvent
is an interesting observation. One may find few previously
published studies on solvents’ effect on the absorption
spectrum of CdSe clusters reporting a blue shift
occurrence (Xu et al., 2010a; Xu et al., 2010b; Lim et al.,
2012). In our research, we have observed a similar blue shift
occurrence in the case of CdTe clusters.

IPv and EAv values are considered to be an index of stability of
QDs. It is energetically not favorable for QDs with large IPv and
EAv values to be activated toward a chemical reaction. Hence,
QDs with large IPv and EAv values can be considered more stable.
Calculated IPv/IPad values and EAv/EAad values are given in
Table 3. It is observed that IPv/IPad values decrease with an
increase in the size of bare QDs, while EAv/EAad values increase
gradually with an increase in the size of bare QDs.

Capped CdnTen (n = 6,8 and 9) Quantum
Dots
We capped CdTe QDs with aromatic thiol-radical ligands: TP
(C6H5S-), MBT (CH3OC6H4S-), MBN (CNC6H4S-), and MBA
(COOHC6H4S-), (see Figure 1). The aromatic ligands were
coordinated to the QDs via sulfur, which significantly changed
the geometries of bare QDs after geometry relaxation. We
explored different numbers of capping ligands and different
modes of ligands’ coordination with QD.

Cd6Te6L6 and Cd6Te6L4 (L � TP, MBT, MBN, and MBA)
species gave stable and physically acceptable geometry after
geometry relaxation. For both Cd6Te6L6 and Cd6Te6L4 species,
different geometries arose from bare QD because of Cd-Te bond
breakage and Cd-S-Te bridge formation in the form of a 5-
membered ring. However, the overall structural motif remained
intact, containing interconnected two hexagonal (6-membered
rings) layers (see Figure 3 and Supplementary Figure S1).

FIGURE 4 | Optimized gas-phase structures of bare and capped Cd8Te8 QDs: Cd8Te8(TP)8 (A), Cd8Te8(MBT)8 (B), Cd8Te8(MBN)8 (C), and Cd8Te8(MBA)8 (D).
Atoms are represented as follows: Cd by dark yellow spheres, Te by dark gray spheres, C brown spheres, H light gray sphere, O red spheres, S sapphire spheres, and N
blue spheres.
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Closed structural configurations were observed after optimization
of Cd6Te6L6 and Cd6Te6L4 species, and these results are different
from previous works of Kuznetsov et al. (2012), Lim et al. (2012),

where they had capped Cd6Te6 with small-sized ligands and
observed open structures after geometry relaxation.

The capping of Cd8Te8 QDs (with S4 point group) by all four
aromatic ligands led to a slight opening of the bare QD structure
due to Cd-Te bond breakage, Cd-S-Cd bridge formation with 4-
membered rings, Cd-S-Te bridge formation with 5-membered
rings, and formation of one 8-membered ring. We explored the
geometries of two Cd8Te8L8 and Cd8Te8L4 species and found that
ligands caused a slight opening of the bare QD structure in both
cases. On a relative scale, the coordination of eight ligands caused
a larger opening than four ligands (see Figure 4 and
Supplementary Figure S2).

Similarly, Cd9Te9 QD (with D3h point group) was also capped
with the aromatic thiol-radical ligands, which led to significant
changes in QD’s structure compared to its bare lowest energy
structure (see Figure 5 and Supplementary Figure S3).
Optimized structures of Cd9Te9L9 species showed open

FIGURE 5 | Optimized gas-phase structures of bare and capped Cd9Te9 QDs: Cd9Te9(TP)9 (A), Cd9Te9(MBT)9 (B), Cd9Te9(MBN)9 (C), and Cd9Te9(MBA)9 (D).
Atoms are represented as follows: Cd by dark yellow spheres, Te by dark gray spheres, C brown spheres, H light gray sphere, O red spheres, S sapphire spheres, and N
blue spheres.

TABLE 4 | Ligand’s total net charge change and net charge change per ligand (in e
unit) for capped CdnTenLn (n � 6, 8, and 9) QDs (where L � TP, MBT, MBN,
and MBA) calculated with B3LYP/Lanl2dz approach in the gas phase.

Ligands Capped-QDs

Cd6Te6 Cd8Te8 Cd9Te9

TP total −2.111 −2.596 −3.106
per ligand −0.351 −0.324 −0.345

MBT total −1.733 −2.388 −2.863
per ligand −0.288 −0.298 −0.318

MBN total −2.187 −2.716 −3.245
per ligand −0.364 −0.339 −0.361

MBA total −2.242 −2.932 −3.493
per ligand −0.373 −0.366 −0.388
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structures with a hexagonal ring at the center while above and
lowered layer opened up to stabilize the structure. It resulted in
Cd-Te bond breakage, Cd-S-Cd bridge formation with 4-
membered rings, and Cd-S-Te bridge formation with 5-
membered rings. However, in the case of Cd9Te9L4 species
with a smaller number of capping ligands attached to QDs,
the closed-shell configuration of Cd9Te9 QDs remained intact
with the slight opening of the QDs structures. These changes in
the structure of capped Cd9Te9 QDs also arise from the formation
of multiple Cd-S-Te bridges in 5-membered ring configuration
and breakage of Cd-Te bonds. These findings are consistent with
the previous works of Kuznetsov et al. (2012), Lim et al. (2012).

We performedNBO charge analysis to explore the distribution
of charges on QDs after capping with aromatic ligands. Cd atoms
in all Cd6Te6L6 species displayed positive charges that range from
0.71e to 0.85e.While positive charges on Cd atoms in bare Cd6Te6
QDs were 0.76e. There was an increase in the positive charge on
Cd atoms in all capped QDs. The ranges of negative charges on Te
atoms in capped Cd6Te6L6 species were from −0.11e to −0.77e,
close to −0.76e charge on Te atoms in bare Cd6Te6 QD.

In Cd8Te8L8 species, the positive charges on the Cd atoms
were also higher than bare Cd8Te8 QD. The positive charges on
Cd atoms in ligated Cd8Te8L8 species were in the range of 0.64e to
0.94e. Compared to bare Cd8Te8 QD, there was no significant
negative charge change on Te atoms in ligated Cd8Te8L8 species.
However, those Te atoms which formed a bridge configuration of
Cd-S-Te in capped Cd8Te8L8 species displayed low negative
charges.

In bare Cd9Te9 QD, the range of positive charges on Cd
atoms and negative charges on Te atoms were (0.71–0.79)e and
-(0.72–0.85)e, respectively. The range of positive charges on
Cd atoms in Cd9Te9L9 species was 0.74e to 0.91e. The negative
charges on the Te atom in ligated Cd9Te9L9 species varied from
−0.05e to −0.87e. Both positive and negative charge
distribution in capped Cd9Te9L9 species varied
tremendously. A significant negative charge accumulates on
the oxygen of the methoxy group of MBT, the nitrogen of the

nitrile group of MBN, and oxygens of the carboxyl group
of MBA.

At the CdTe-ligand interface, the charge interchange between
the ligand and the QD produces a dipole layer that could
influence the oxidation potential of QDs. The extent of charge
transfer between the ligand and the QDs determines the strength
of the dipole layer. Adsorption of ligands to the QDs causes a
change in the net charge of the capping ligands. Table 4 presents
the total net change in the NBO charge of capping ligands and the
net change in the NBO charge per ligand for all capped QDs. A
negative value of net charge transfer by ligands indicates that
ligands withdraw electron density from the QDs. The net NBO
charge change is in the following order: CdnTen(MBA)n >
CdnTen(MBN)n > CdnTen(TP)n > CdnTen(MBT)n for each
value of n.

Calculated ligand binding energies are given in Table 5. The
ligand-binding energies of all ligated QDs decrease in the
following order: CdnTen(MBA)n > CdnTen(MBN)n >
CdnTen(TP)n > CdnTen(MBT)n for each value of n. A possible
explanation of this sequence of ligand binding energies can be the
HOMOs, and LUMOs stabilization, and higher IPv and EAv

values depicted by MBA and MBN capped QDs (see Table 1, 2,
and 5). On the other hand, CdnTen(MBT)n and CdnTen(TP)n
present lower ligand binding energy due to their HOMOs
destabilization and low IPv and EAv values. These results are
also reflected in NBO charge analysis, where MBA exhibits the
biggest charge change by withdrawing electrons density from the
QDs. Charge analysis also reveals that oxygens of -COOH groups
in CdnTen(MBA)n possess greater charges about −(0.598–0.787)e
compared to the nitrogen of -CN groups in CdnTen(MBN)n that
shows charges about −(0.308–0.363)e. This could be another
reason for higher ligand binding energies of CdnTen(MBA)n.
Our calculated ligand binding energies values are close to the
previous findings of Lim and co-workers (Lim et al., 2012), who
calculated binding energies with the B3LYP/Lanl2dz approach in
the gas phase for CdnSen/CdnTen QDs (n � 3,4,6, and 9) capped
with SCH2COOH–, SCH2CH2CO2H–, and SCH2CH2NH2

TABLE 5 | EHOMO and ELUMO energies (eV), HOMO-LUMO gaps (eV), and binding energy (BE/L) in kcal/mol of capped CdnTenLn (n � 6, 8, and 9) QDs (where L � TP, MBT,
MBN, and MBA) calculated with B3LYP/Lanl2dz approach.

Species (symmetry, spin
state)

E HOMO, (eV) E LUMO, (eV) Gap, (eV) BE/L, kcal/mol

Cd6Te6(TP)6 (C1
1A) −5.57 −3.97 1.6 −17.9

Cd6Te6(MBT)6 (C1
1A) −5.28 −3.72 1.56 −16.6

Cd6Te6(MBN)6 (C1
1A) −6.60 −4.71 1.89 −26.1

Cd6Te6(MBA)6 (C1
1A) −6.22 −4.45 1.77 −36.4

Cd8Te8(TP)8 (C1
1A) −5.62 −3.60 2.02 −19.3

Cd8Te8(MBT)8 (C1
1A) −5.33 −3.41 1.92 −17.5

Cd8Te8(MBN)8 (C1
1A) −6.62 −4.45 2.17 −28.1

Cd8Te8(MBA)8 (C1
1A) −6.60 −4.44 2.16 −30.6

Cd9Te9(TP)9 (C1
2A) α:−5.36 α: −3.46 α: 1.90 −20.9

β:−5.36 β: −4.64 β: 0.72
Cd9Te9(MBT)9 (C1

2A) α: −5.11 α: −3.09 α: 2.02 −19.3
β: −5.10 β: −4.32 β: 0.78

Cd9Te9(MBN)9 (C1
2A) α: −6.53 α: −4.52 α: 2.01 −29.2

β: −6.53 β: −5.57 β: 0.96
Cd9Te9(MBA)9 (C1

2A) α: −6.17 α: −4.04 α: 2.13 −38.8
β: −6.16 β: −5.10 β: 1.06
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ligands. Our calculated values also agree with the work of
Kuznetsov and co-workers (Kuznetsov et al., 2012), who
studied CdnSen/CdnTen QDs (n � 6,9) capped with NH3,
SCH3, and OPH3 ligands in the gas phase using B3LYP/
Lanl2dz approach.

Figure 6 presents the interaction of S containing ligands with
Cd6Te6 QD frontier orbitals. The partial density of states (PDOS)
plots (see Figure 7) shows the dominant contributions of sulfur
3p orbitals of the aromatic thiol-radical ligands in the HOMOs of

capped Cd6Te6 QDs with minor contributions from QD atoms.
On the other hand, the LUMOs of the capped Cd6Te6 QD show
high contributions from both QD atoms and ligand groups: with
slightly higher contributions from Te atoms (see Figure 7). The S
containing ligands tend to use their lone pair and their unpaired
electrons to interact with Cd and Te atoms. An unpaired electron
is present in the sulfur 3p orbital of thiol-radical ligands.
Seemingly, the singly occupied β-LUMOs of thiol-radical
ligands favorably interact with the doubly occupied HOMO of

FIGURE 6 |Orbital mixing diagram depicting interactions between HOMOs and LUMOs of the capped Cd6Te6(TP)6 (A), Cd6Te6(MBT)6 (B), Cd6Te6(MBN)6 (C) and
Cd6Te6(MBA)6 (D) QDs.
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FIGURE 8 | HOMO-LUMO gap (eV) for bare and capped CdnTenLn (n � 6, 8, and 9) QDs.

FIGURE7 | The partial density of states (PDOS) plots (stacked) near the HOMO/LUMO gaps for the capped Cd6Te6(TP)6 (A), Cd6Te6(MBT)6 (B), Cd6Te6(MBN)6 (C)
and Cd6Te6(MBA)6 (D) QDs calculated with B3LYP/Lanl2DZ approach.
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the QD, which possesses some d-character from Cd atoms. This
interaction destabilizes the HOMO of the capped QDs, as
depicted in Figures 7A,B. The interaction of the LUMOs of
QD with the α-LUMOs and β-LUMOs of thiol-radical ligands
highly stabilizes the LUMOs of the capped QDs.

Capping with all four aromatic thiol-radical ligands stabilize
the LUMOs of all QDs, while HOMOs are either stabilize or
destabilize (see Tables 2 and 5). Both TP and MBT ligands
destabilize HOMOs in all capped QDs. The effect is much
prominent for HOMOs of MBT capped QDs: MBT
destabilizes the HOMO by 8.72 eV for Cd6Te6, 8.68 eV for
Cd8Te8, and 8.44 eV for Cd9Te9.

On the other hand, both MBN and MBA ligands tend to
stabilize HOMOs of all capped QDs. MBN capped QDs show a
more pronounced effect with HOMOs stabilization by 4.52 eV for
Cd6Te6, 4.19 eV for Cd8Te8, and 5.82 eV for Cd9Te9. All the
aromatic thiol-radical ligands decrease the HOMO-LUMO gap of
all the capped QDs (see Tables 2 and 5) due to the interaction of
frontier orbitals of ligands with frontier orbitals of QDs, as shown
in Figure 8. These observations are due to the stronger
stabilization of LUMOs as compared to HOMOs. A drastic
decrease in the HOMO-LUMO gap is observed for capped
Cd6Te6 QDs: 1.45 eV for Cd6Te6(TP)6, 1.49 eV for
Cd6Te6(MBT)6, 1.16 eV for Cd6Te6(MBN)6, and 1.28 eV for
Cd6Te6(MBA)6. While all the other capped QDs show a less
pronounced decrease in the HOMO-LUMO gap. This effect of
thiol-radical capping ligands is in line with the previous report,
where SCH2COOH, SCH2CH2CO2H, and SCH2CH2NH2 capped
CdnSen/CdnTen QDs (n � 3,4,6, and 9) were studied by Lim et al.
(2012).

We further explore the effect of aromatic thiol-radical ligands
on vertical and adiabatic IPs and EAs of QDs in the gas phase (see
Table 1 and Figure 9). Analysis of IP/EA values for bare, and
capped QDs reveals that both IPv/IPad values show a decrease
after capping with all aromatic thiol-radical ligands. However,
Cd6Te6(MBA)6, Cd9Te9(MBN)9, and Cd9Te9(MBA)9 species

exhibited an increase in IPv/IPad values as compared to bare
QDs. EAv/EAad values increase after capping with all aromatic
thiol-radical ligands as compared to bare QDs. It is worth
noticing that the capping of QDs with MBT ligand causes the
highest decrease in IPv values. Generally, IPv and EAv values are
considered to be an index of stability of capped-QDs. It is
energetically not favorable for QDs with large IPv and EAv

values to be activated toward a chemical reaction. Hence QDs
with large IPv and EAv values can be more stable toward a
chemical reaction. It is observed that IPv and EAv values of
capped-QDs decrease in the order MBA >MBN > TP >MBT, so
the large IPv and EAv values of MBA capped QDs are associated
with their higher stability.

The density of states (DOS) plots of thiol-radical ligands
revealed the presence of midgap states which were not
present in the parent thiol ligands. The conversion of thiol
into thiol-radical by dehydrogenation generates one singly
occupied 3p orbital of the sulfur, which appears as midgap
states between the HOMO and LUMO states (see
Supplementary Figures S5, S6). The PDOS plots of
Cd6Te6L6 species are presented in Figure 7 as a
representative, while DOS plots of the rest of ligands and
QDs (both bare and capped species) are given in the
supporting information. As indicated in Figure 7, the
Frontier orbitals of the capped Cd6Te6 QDs are mainly
composed of ligands’ orbitals, which affect the electronic
properties of capped QDs, especially the HOMOs and
LUMOs energies of the QDs.

To probe the effect of capping on electronic transitions of
QDs, we also performed a TD-DFT study. TDB3LYP/Lanl2dz
calculations for bare and capped QDs are given in Tables 3 and 6.
We computed excitation energies (Emax), and maximum
absorption wavelengths (λmax) for maximum intensity excited
states in the gas phase and with implicit solvent (toluene).

All ligated QDs displayed a decrease in excitation energies
compared to the excitation energies of their respective bare

FIGURE 9 | IPv (A) and EAv (B) for bare and capped CdnTenLn (n�6, 8, and 9) QDs.
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QDs. For capped QDs species, all the thiol-radical ligands
altered the absorption spectra of bare Cd6Te6 and Cd8Te8
QDs by shifting the absorption peaks towards lower energy
(redshift) because of the midgap states generated by 3p orbitals
of sulfur, as shown in Figure 10. Aromatic ligands are known to
influence the electronic and optical properties of QDs by
stabilizing the LUMOs and reducing the bandgap. The
delocalization of the exciton across the ligand shell is
attributed to a significant redshift in the absorption spectra
of capped CdTe QDs compared to bare QDs. The ligands’
Frontier orbitals coincide with the bandgap of CdTe QDs.
Such a resonance situation might generate interfacial QD-
ligand states, which would improve the optical properties of
the QDs and perhaps open up new relaxation routes for
photoexcited charge carriers, hence cause a redshift of the
absorption peaks in capped QDs.

The addition of the solvent shifted the redshift toward higher
wavelengths for all capped QDs except for Cd6Te6(TP)6 and
Cd6Te6(MBA)6 QDs. It was observed that the redshift in the gas
phase for capped-Cd6Te6 QDs decreased in the following order:
TP >MBT >MBA >MBN. For capped-Cd8Te8 QDs, it decreased
in the order: MBT ≈MBN >MBA > TP. These results align with
previous studies of similar QDs, which suggested that aromatic
thiol ligands cause a redshift of the spectrum (Tan et al., 2012;
Nadler and Sanz, 2015; Plata et al., 2017).

CONCLUSION

The effects of aromatic thiol-radical ligands on the structural and
electronic properties of CdnTen quantum dots (n � 6,8,9) were
investigated by a systematic DFT study using B3LYP/Lanl2dz

TABLE 6 | Calculated EHOMO energy (eV), ELUMO energy (eV), HOMO-LUMO gaps (eV), excitation energies (Emax) (eV), and maximum absorption wavelengths (λmax) (nm), of
the excited states with maximum oscillator strength of capped CdnTenLn (n � 6 and 8) QDs (where L � TP, MBT, MBN, and MBA) in the gas phase and toluene.

Species (symmetry,
spin state)

E HOMO,
eV (gas

phase; toluene)

E LUMO,
eV (gas

phase; toluene)

Gap, (eV) Emax (eV) λmax (nm)

Cd6Te6(TP)6 (C1
1A) −5.57 −3.97 1.6 2.59 455

−5.70 −3.85 1.85 2.88 429
Cd6Te6(MBT)6 (C1

1A) −5.28 −3.72 1.56 2.44 443
−5.40 −5.71 1.69 2.69 460

Cd6Te6(MBN)6 (C1
1A) −6.60 −4.71 1.89 2.85 434

−6.52 −4.43 2.09 2.88 443
Cd6Te6(MBA)6 (C1

1A) −6.22 −4.45 1.77 2.81 438
−6.25 −4.27 1.98 2.83 437

Cd8Te8(TP)8 (C1
1A) −5.62 −3.60 2.02 2.39 465

−5.74 −3.58 2.16 2.50 495
Cd8Te8(MBT)8 (C1

1A) −5.33 −3.41 1.92 2.31 483
−5.45 −3.44 2.01 2.30 538

Cd8Te8(MBN)8 (C1
1A) −6.62 −4.45 2.17 2.45 483

−6.47 −4.20 2.27 2.47 500
Cd8Te8(MBA)8 (C1

1A) −6.60 −4.44 2.16 2.35 482
−6.40 −4.18 2.22 2.34 529

FIGURE 10 | Absorption spectra of bare and capped Cd6Te6 (A) and Cd8Te8 (B), calculated with TDB3LYP/Lanl2DZ approach.
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theory level. We chose thiophenol (TP), 4-methoxybenzene-thiol
(MBT), 4-mercaptobenzonitrile (MBN), and 4-mercaptobenzoic
acid (MBA) as model capping ligands (see Figure 1). All the four
ligands coordinated to the CdnTen QDs successfully and formed
stable ligand-QD species when subjected to geometry
optimization. Generally, the ligands slightly opened up the
Cd6Te6 and Cd8Te8 QDs, but the overall structural motif
remained intact. While in the case of Cd9Te9, QDs capping
with ligands caused the complete opening of the closed
structure of bare QDs. Each QDs ligands-QD complexes
shows a steady increase in ligand binding energies in the
order: MBT < TP < MBN < MBA. The capping of aromatic
thiol-radical ligands causes a slight increase in Cd atoms’ positive
charges due to their electron-withdrawing ability. Adsorption of
the ligands decreases the HOMO-LUMO gap due to the
stabilization of the LUMOs of QDs. Finally, the TD-DFT
study revealed that all the ligands shifted the absorption
spectra to redshift in the gas phase and with implicit solvent
(toluene).
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