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X-Ray Computed Tomography (XCT) techniques have evolved to a point that high-
resolution data can be acquired so fast that classic segmentation methods are
prohibitively cumbersome, demanding automated data pipelines capable of dealing
with non-trivial 3D images. Meanwhile, deep learning has demonstrated success in
many image processing tasks, including materials science applications, showing a
promising alternative for a human-free segmentation pipeline. However, the rapidly
increasing number of available architectures can be a serious drag to the wide
adoption of this type of models by the end user. In this paper a modular interpretation
of U-Net (Modular U-Net) is proposed with a parametrized architecture that can be easily
tuned to optimize it. As an example, the model is trained to segment 3D tomography
images of a three-phased glass fiber-reinforced Polyamide 66. We compare 2D and 3D
versions of our model, finding that the former is slightly better than the latter. We observe
that human-comparable results can be achievied even with only 13 annotated slices and
using a shallow U-Net yields better results than a deeper one. As a consequence, neural
networks show indeed a promising venue to automate XCT data processing pipelines
needing no human, adhoc intervention.

Keywords: deep learning, U-net, modular network architecture, semantic segmentation, 3D X-ray computed
tomography (XCT), composite material

1 INTRODUCTION

X-ray Computed Tomography (XCT), a characterization technique used by material scientists for
non-invasive analysis, has tremendously progressed over the last 10 years with improvements in both
spatial resolution and throughput (Withers et al., 2021; Maire and Withers, 2014). Progress with
synchrotron sources, including the recent European Synchrotron Radiation Facility (ESRF) upgrade
(Pacchioni, 2019), made it possible to look inside a specimen without destroying it in a matter of
seconds (Shuai et al., 2016)—sometimes even faster (Maire et al., 2016).

This results in a wealth of 3D tomography images (stack of 2D images) that need to be analyzed
and, in some applications, it is desirable to segment them (i.e., transform the gray-scaled voxels into
semantic categorical values). A segmented image is crucial for quantitative analyses; for instance,
measuring the distribution of precipitate length and orientation (Shashank Kaira et al., 2018), or
phase characteristics, which can be useful for more downstream applications like estimating thermo-
mechanical properties (Strohmann et al., 2019).

XCT images typically have billions of voxels, weighting several gigabytes, and remain complex to
inspect manually even using dedicated costly software (e.g., Avizo, VGStudioMax). Using
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thresholding techniques on the gray level image is an easy,
useful method to segment phases in tomographies, but it fails
in complex cases, in particular when acquisition artifacts (e.g.,
rings, beam hardening, phantom gradients) are present.
Algorithms based on mathematical morphology like the
watershed segmentation (Beucher, 1994) help tackling more
complex scenarios, but they need human parametrization,
which often requires expertise in the application domain.
Thus, scaling quantitative analyses is expensive, creating a
bottleneck to process 3D XCT—or even 4D (3D with time
steps).

Deep learning approaches offer a viable solution to attack this
issue because neural networks can generalize patterns learned
from annotated data. A neural network is a statistical model
originated from perceptrons (Rosenblatt, 1958) capable of
approximating a generic function. Convolutional neural
networks (CNNs) (Bengio and Lecun, 1997), a variation
adapted to spatially-structured data (time series, images,
volumes), made great advances in computer vision tasks. Since
the emergence of popular deep learning frameworks, more
problem-specific architectures have been proposed, such as
fully-convolutional neural networks (Shelhamer et al., 2017), a
convolution-only type of model used to map image pixel values to
another domain (e.g., classification or regression).

Shashank Kaira et al. (2018) trained a model to segment three
phases in 3D nanotomographies of an Al-Cu alloy, showing that
even a simple convolutional neural network can reproduce
patterns of a human-made segmentation. Stan et al. (2020)
optimized a SegNet (Badrinarayanan et al., 2017) to segment
dendrites of different alloys, including a 4D XCT. Strohmann
et al. (2019) identified Aluminides and Si phases in XCT using a
U-Net, an architecture that, along with its many flavors
(Ronneberger et al., 2015; Çiçek et al., 2016; Qin et al., 2020;
Zhou et al., 2018), has shown success in a variety of applications
(Oktay et al., 2018; Stoller et al., 2018; Zhang et al., 2018). Finally,
Furat et al. (2019) combined U-Nets with classic segmentation
algorithms (e.g., marker-based watershed) to segment grain

boundaries in successive XCTs of an Al-Cu specimen as it is
submitted to Ostwald ripening steps.

If great proof of concepts have been made in the field, the
variety of architectures available and the ability to optimize them
is a real challenge for the end user. We present a modular U-Net
architecture that has the potential for wider adoption of CNN-
based segmentation tasks as it makes it easier for the end user to
tune its architecture based on objective measures of the
performances. Our architecture, the Modular U-Net (Figure 1
and Figure 2), is proposed as a generalized representation of the
U-Net, explicitly factorizing the U-like structure from its
composing blocks. Describing U-Nets in this way makes it
easier to analyze its components as hyperparameters and
provides elements of vocabulary to communicate their details
more easily.

In this paper, an annotated 3D XCT of glass fiber-reinforced
Polyamide 66 (Figure 3) is presented as an example of
segmentation problem in Materials Science that can be
automated with a deep learning approach. Like Furat et al.
(2019), we compare three variants on the composite material
dataset focusing on the dimensionality of the convolutions (2D or
3D), obtaining qualitatively human-like segmentation (Figures
4–6) with all of them although 2D-convolutions yield better
results (Figure 8). We find that (for the considered material)
the U-Net architecture can be shallow without loss of
performance, but batch normalization is necessary for the
optimization (Figure 9). Finally, a learning curve (Figure 10)
shows that only ten annotated 2D slices are necessary to train
our model.

Our results confirm that NNs can be not only a quality-wise
satisfactory but also a viable solution in practice for XCT
segmentation as it requires little annotated data and shallow
models (therefore faster to train). Furthermore, the Modular
U-Net, where the architecture becomes a set of
hyperparameters, allows to optimize the model more easily
and may ease the adoption of CNN-based models for
automated X-ray tomography segmentation tasks.

FIGURE 1 | Modular U-Net: a generalization of the U-Net architecture.
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FIGURE 2 | Examples of Modular U-Net blocks. Left: our Convolutional Block. Middle/right: rigid/learnable Down-sampling Block and Up-sampling Block.

FIGURE 3 | Glass fiber-reinforced Polyamide 66 tomography. Left: A 1300 × 1040 slice on the XY plane of the volume Train-Val-Test. In the upper left corner, a
histogram of the gray level values in the image (linear scale in black, log scale in gray). Right: Zoom. Ring artifacts—from the acquisition process—can be as dark as
porosities, making it harder to segment such regions.

FIGURE 4 | Segmentation generated by the 2D model on the test set. Phase color code: blue represents voxels correctly classified as fiber (hatched), yellow as
porosity (contours), and red represents misclassification. Notice that some regions in blue are in fact mistakenly segmented as fiber, although it is considered as correct
because the annotations contain the same mistake. (B) is a zoom of the yellow-countoured area in (A).
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2 MATERIALS AND METHODS

2.1 Data
The data used in this work is composed of synchrotron X-ray
tomography volumes recorded using 2 mm × 2 mm cross section
composite specimens of Polyamide 66 reinforced by glass fibers, a
material commonly used for structural pieces in different
applications. XCT allows to assess the relation between the
microstructure and the mechanical properties such as the
resistance to the formation of damage under load. For this
matter, segmenting such images automatically would, for
instance, make it possible to visualize the propagation of
cracks inside a specimen.

Two volumetric images (of different specimen) were used in
this study. First, a volume of 20483 voxels, referred to as Train-
Val-Test (Figure 3, 4), was cropped to get rid of the specimen’s
borders, and its ground truth segmentation was created semi-
manually with ImageJ (Schneider et al., 2012) using Fiji
(Schindelin et al., 2012) and Avizo. Second, another specimen
containing a fracture was segmented in order to qualitatively
evaluate our models (Figures 5, 6)—it is further referred to as
“Crack”—on a representative application of interest. All the data
used in this work is publicly available; Table 1 describes the files
published on Zeonodo (Bertoldo et al., 2021a).

2.1.1 Acquisition
X-ray tomography scans were recorded on the Psiché beamline at
the Synchrotron SOLEIL using a parallel pink beam. The incident

FIGURE 5 | Segmentation generated by the 2D model on the volume Crack. Image rendered with standard tools in Avizo for the sake of visualization: two
orthogonal planes inside the specimen, fibers rendered in 3D at the bottom, and the fracture rendered as a surface. Phase color code: blue represents the fiber and
yellow represents the porosity.

FIGURE 6 | Segmentation of the volume Crack. A crop from the vertical
plane in a slice passing through the fracture. The fiber phase is hatched in blue
and the porosity phase is contoured in yellow.
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beam spectrum was characterized by a peak intensity at 25 keV,
defined by the silver absorption edge, with a full width at half
maximum bandwidth of approximately 1.8 keV. The total flux at
the sample position was about 2.8e12 photons/s/mm2. The
detector placed after the sample was constituted by a LuAG
scintillator, a 5× magnifying optics, and a Hamamatsu CMOS
2048 × 2048 pixels detector (effective pixel size of 1.3 µm). 1,500
radiographs were collected over a 180° rotation and an exposure
of 50 ms (full scan duration of 2 min). The sets of radiographs
were then processed using PyHST2 reconstruction software
(Mirone et al., 2014) with the Paganin filter (Paganin et al.,
2002) activated to enhance the contrast between the phases.

2.1.2 Phases
The three phases in the material are visible in Figures 3, 4: the
polymer matrix (gray), the glass fibers (white, hatched in blue),
and damage in form of pores (dark gray and black, contoured in
yellow). Although the pores (absence of material) do not
constitute a real phase, they can be thought of as such for the
sake of this study, and will be referred as porosity. Furthermore, a
segmentation can be seen as a voxel-wise classification so the
phases here are also referred to as “classes.”

2.1.3 Ground Truth
The data was annotated in two steps: first, the fiber and the
porosity phases were independently segmented using Seeded
Region Growing (Adams and Bischof, 1994); then, ring
artifacts that leaked to the porosity class were manually
corrected. A detailed description of the procedure is presented
in the Supplementary Material.

2.1.4 Data Split
The ground truth tomography slices (of the Train-Val-Test volume)
were sequentially split—their order was preserved to train the 3D
models (Section 2.2.2)—into three sets: train (1300 slices),
validation (128 slices), and test (300 slices). A margin of 86 slices
between these sets was adopted to avoid information leakage. The
“train” range was used to train the models, the “validation”) (or
“val”) was used to select the best model (during the optimization),
and the “test” was used to evaluate the models (Section 3).

2.1.5 Class Imbalance
Due to the material’s nature, the classes (phases) in this dataset
are intrinsically imbalanced. The matrix, the fiber, and the
porosity represent, respectively, 82.3, 17.2, and 0.5% of the voxels.

2.2 Neural Network
Let x ∈ X � [0, 1]w×h×d be a normalized gray 3D image. Its
segmentation y ∈ Y � [[C]]w×h×d , where [[C]] � {1, 2, . . . , C},
contains a class value in each voxel, which may represent any
categorical information, such as the phase of the material. In this
setting, a segmentation algorithm is a function f: X →Y . In this
section we present our approach (that is, the f) used to segment
the data described in the previous section.

In this section, a generic U-Net architecture, which we coined
Modular U-Net (Figure 1), is proposed. We explain how it is
composed and describe the modules used in this work. Three

variants of the Modular U-Net were considered; their
differences—based on the input, convolution, and output
nature (2D or 3D)—are then analyzed (summary in Table 2).
Finally, our training setup is described, specifying the loss
function, optimizer, learning rate, data augmentation, software,
and hardware used.

2.2.1 Modular U-Net
Since Ronneberger et al. (2015) proposed U-Net, variations of it
emerged in the literature [e.g., Çiçek et al. (2016); Qin et al.
(2020)]. Here we propose a generalized version, preserving its
overall structure. The Modular U-Net is based on three blocks
(Figure 2): the Convolutional Block (ConvBlock), the Down-
sampling Block (DownBlock), and the Up-sampling Block
(UpBlock).

The left/right side of the architecture corresponds to an encoder/
decoder: a repetition of pairs of ConvBlock and DownBlock/
UpBlock modules. The two sides are connected by concatenations
between their respective parts at the same U-level—which
corresponds to the inner tensors’ resolutions (higher U-level
means lower resolution). The U-depth, a hyperparameter, is the
number of U-levels in a model, corresponding to the number of
DownBlock (and equivalently UpBlock) modules.

The ConvBlock is a combination of operations that outputs a
tensor with the same spatial dimensions of its input, though the
number of channels may differ—in our models it always doubles.
The assumption of equally-sized input/output is optional, but we
admit it for the sake of simplicity because it makes the model
easier to be used with an arbitrarily shaped volume. The number
of channels after the ConvBlocks is 2U−level × f0, where f0 is the
number of filters in the first convolution.

The DownBlock/UpBlock applies a down/up-sampling
operation—which can be a learnable convolution/transposed
convolution or a “rigid” max pooling/up-sampling (see
Figure 2)—changing the tensor’s shape by dividing/multipling
by two every spatial dimension: width, length, and depth in the
3D case. In other words, a tensor with shape (w, h, d, c)—wherew,
h, and d are the dimensions of the volume (respectively, the width,
height, and depth), and c is the number of channels—becomes
(w2 , h2, d2, c) after a DownBlock and (2w, 2h, 2d, c) after an
UpBlock.

In Ronneberger et al. (2015), for instance, the ConvBlock is a
sequence of two 3 × 3 convolutions with ReLU activation, the
DownBlock is a max pooling, and the UpBlock is an up-sampling
layer. In Çiçek et al. (2016), the ConvBlock is a 3D convolutional
layer, and in Qin et al. (2020) it is a nested U-Net.

The ConvBlock used here (Figure 2) is a sequence of two 3 × 3
(x3 in the 3D case) convolutions with ReLU activation, a residual
connection with another convolution, batch normalization before
each activation, and dropout at the end. The DownBlock is a 3 × 3
convolution with 2 × 2 stride, and the UpBlock is a 3 × 3
transposed convolution with 2 × 2 stride.

2.2.2 Variations: 2D, 2.5D, and 3D
Since our dataset contains intrinsically 3D structures, we
compared the performances of this architecture using 2D and
3D convolutions. The 2D model processes individual
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tomography slices independently, while the 3D one processes
several at once (i.e. a volume). We also compared an intermediate
version, which we coined 2.5D; it processes one tomography slice
at a time with 2D convolutions taking five consecutive slices at the
input (the processed slice plus two above and two below), as if the
extra slices were channels of a 2D image.

The 2D and 2.5D models can only process each slice of a plane
individually; the XY plane (slices in the z-axis, as in Figures 3, 4)
was chosen because the visual characteristics in this direction are
mostly invariant—we observed a high correlation between
adjacent slices.

These three variants have different receptive fields (therefore
access to different information) and mix up the input entries
differently (Table 2 summarizes these differences). The 2.5D
model has access to extra information relative to the 2Dmodel; its
first convolution layer can correlate local information from
adjacent tomography slices, although the rest of the network is
identical in terms of structure. Meanwhile, the 3D model uses
information from adjacent slices in every network layer, enabling
more complex correlations but also increasing the model’s
variance.

2.2.3 Training
The next paragraphs describe how our models were trained;
Table 1 summarizes the hyperparameters of our neural network.

2.2.3.1 Loss Function
Our models were trained using a custom loss inspired on the
Jaccard index, also known as Intersection over Union (IoU).

DEF. 1. Let A and B be two sets, and |·| denote a set’s
cardinality. The Jaccard index J ∈ [0, 1] is

J(A, B) � |A ∩ B|
|A ∪ B| �

|A ∩ B|
|A| + |B| − |A ∩ B| . (1)

Similar to Duque-Arias et al. (2021), we adapt the right hand side
of Eq. 1 to define the multi-class Jaccard2 loss for a batch of images.

For the sake of simplicity, the spatial dimensions (see Section
2.2) are omitted, and a single index n refers to position of
individual voxels in a batch. In other words, instead of referring
to a batch of normalized 3D images in [0, 1]w×h×d×b, where b is
the batch size, we refer to an unraveled batch of voxels in [0, 1]N,
where N � w × h × d × b. Nevertheless, the 3D structure remains
implicitly unchanged—notice that the definition below remains
the same for 2D images.

DEF. 2. Let y ∈ {0,1}N×C be a batch of ground truth voxels,
where N is the number of voxels, each belonging to one out of C
classes, such that

yn,c � 1, if the voxelyn belongs to the class c
0 otherwise

{ ,

where yn is the voxel at position n ∈ [[N]], and yn,c is its cth entry
(c ∈ [[C]]).

A model’s last activation map, a per-voxel softmax, is a tensor
ŷ ∈ [0, 1]N×C, where each row is a probability vector
ŷn ∈ [0, 1]C, and the component ŷn,c corresponds to the
probability assigned to the class c.

The Jaccard2 loss of the batch (y, ŷ) is defined as

J2(y, ŷ) � 1 − ∑N

n�1∑C

c�1yn,cŷn,c

∑N

n�1∑C

c�1yn,cyn,c +∑N

n�1∑C

c�1ŷn,cŷn,c −∑N

n�1∑C

c�1yn,cŷn,c

� 1 − ∑N

n�1ŷ
*
n

N +∑N

n�1 ∑C

c�1ŷ
2
n,c( ) − ŷ*

n( ) , (2)

where ŷ*
n � ∑C

c�1yn,cŷn,c is the probability assigned to the correct
class of the voxel n.

Notice that J2 ∈ (0, 1), thus it can, conveniently, be expressed
as a percentage, and it is a measure of dissimilarity—J2 � 100% is
a completely uncorrelated estimation, and J2 � 0% is a perfect
replication of the ground truth—while Eq. 1 measures the
similarity between two sets.

2.2.3.2 Data Augmentation
In order to increase the variability of the data, random crops
were selected from the data volume, then a random geometric

TABLE 1 | Default hyperparameters. Parameters not mentioned are the default in TensorFlow 2.2.0.

Parameter 2D 2.5D 3D

U-depth 3 3 3
Convolution kernel 3 × 3 3 × 3 3 × 3 × 3
Batch size (nb. of crops) 10 10 10
Epoch size (nb. of batches) 10 10 10
Crop shape 160 × 160 160 × 160 × 5 32 × 32 × 32
Dropout 10% 10% 10%
Gaussian noise (zero mean) standard deviation 0.03 0.03 0.03
f0 16 16 16
Up/Down-sampling stride or Max pooling size 2 × 2 2 × 2 2 × 2 × 2
Batch normalization momentum 0.5 0.5 0.5

TABLE 2 |Modular U-Net variations: input, convolutional layer, and output nature
(2D or 3D).

Model Input (data) Convolution Output (segm.)

2D 2D 2D 2D
2.5D 3D 2D 2D
3D 3D 3D 3D
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transformation (flip, 90° rotation, transposition, etc) is applied.
As our training dataset is reasonably large, we used a simple
data augmentation scheme, but richer transformations could
be applied as long as the transformations result in credible
samples.

2.2.3.3 Optimization
We used AdaBelief, an optimizer that combines the training
stability and fast convergence of adaptive optimizers [e.g.,
Adam (Kingma and Ba, 2015)1] and good generalization
capabilities of accelerated schemes (e.g., stochastic gradient
descent).

Each model was trained for 200 epochs, each with 10 batches
of 10 crops. The learning rate is set to 10−3 during the first
100 epochs then linearly decays until 10−4 during the last
100 epochs. This is done to quickly converge in the initial
phase, then stabilize the optimization once it’s close to
convergence. We verified that 200 epochs was enough to
achieve convergence for all the models (the validation
loss plateaus, oscilating randomly), and select the model
with the lowest loss (i.e., not necessarily the one from the
last epoch).

2.2.3.4 Software and Hardware
We trained our models using Keras with TensorFlow’s (Abadi
et al., 2015) GPU-enabled version with CUDA 10.1 running on
two NVIDIA Quadro P40002 (2 × 8 GN).

3 RESULTS

In this section we present a compilation of qualitative and
quantitative results obtained. The training process took one to
3 h for each model, up to 8 h for the largest 3D model. The
segmentations from the three Modular U-Net versions presented
in Section 2.2 are quantitatively compared, then an ablation
analysis and the learning curve of the 2Dmodel are presented. All
the quantitative analyses were made on the test split (see Section
2.1), which contains 1300 × 1040 × 300 ≈ 406×106 voxels. The
trained models and the data used to produce our results are
publicly available online (Bertoldo et al., 2021a,b). A further
detailed analysis is provided as Supplementary Material.

3.1 Qualitative Results
Figure 4 shows two snapshots of the volume Train-Val-Test in the
test partition with a superposed segmentation generated with the 2D
model. The zoomed area illustrates examples of misclassified
regions—including parts of data with annotation mistakes.

The volume Crack was used to evaluate our method’s usability
with another image (i.e., a volume from another specimen of the same
material); the segmentation obtained with the 2D model is presented
in Figures 5, 6. In terms of processing speed, the results show that our
method could be carried out almost in real time using typical hardware
available at a synchrotron beamline: using anNVIDIAQuadro P2000
(5 GB), it took 32min to process the volume Crack, with
approximately 5.8 billion voxels (1579 × 1845 × 2002).

3.2 Baseline
For the sake of comparison, we considered two theoretical models: the
ZerothOrder Classifier (ZeroOC) and the Bin-wise ZeroOC. Both are

TABLE 3 | Expected performance of baseline theoretical models in terms of class-wise Jaccard index (%).

Model Description Matrix Fiber Porosity Mean

ZeroOC Classify every voxel with the majority class (matrix) 81.0 0 0 27.0
Bin-wise ZeroOC Classify a voxel based only on its value. The majority class of each value is chosen. This is equivalent to a

ZeroOC model per gray level
98.4 94.2 35.9 76.2

TABLE 4 | Published 3D volumes: all the data necessary to train and test the models presented in this paper are publicly available on Zenodo (Bertoldo et al., 2021a). The raw
files have complementary raw.info files containingmetadata (volume dimensions and data type) about its respective volume. Notice that the volumes (a) and (b) contain all
the three splits (train, validation, test) together (1900 z-slices), while the volumes (c) and (d) correspond to their last 300 z-slices. A demo of how to read the data is available on
GitHub. The values in the data volumes are integers from 0 to 255, where the former is black and the latter is white. The values in the segmentation volumes (predictions and
ground truth) are 0, 1, and 2, which respectively correspond to the phases matrix, fiber, and porosity. The volumes (e) and (f) correspond to the volume in Figures 5, 6.
Figure 3was generated in Fiji (Schindelin et al., 2012) with the volume (a). Figure 4was generated in Avizo with volumes (a) and (d), which is derived from volumes (b) and
(c). Figure 6 was generated in Avizo with volumes (e) and (f).

Zip file Raw file Description

pa66.zip pa66.raw (a) Data (gray level image stack) of the Train-Val-Test volume
pa66.ground_truth.raw (b) Ground truth segmentation of the Train-Val-Test volume

pa66_test.zip pa66.test.prediction.raw (c) Segmentation generated by the best 2D model on the test set.
pa66.test.error_volume.raw (d) Disagreement between the ground truth and the model’s prediction on the test set: 1 means incorrect, 0 means correct

crack.zip crack.raw (e) Data of the non-annotated volume containing a crack inside
crack.prediction.raw (f) Segmentation generated with the best 2D model on the Crack volume

1Adam yielded equivalent results but took longer (more epochs) to converge
2pny.com/nvidia-quadro-p4000
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described below, and their expected performances are summarized in
Table 3. This analysis shows us the minimum expected Jaccard index
for each class (seeTable 3); notably, themean class-wise Jaccard index
of the Bin-wise ZeroOC is 76.2%.

The ZeroOC is the simplest model possible: it classifies every
voxel with the majority class (the matrix phase), ignoring all the
information from the data.

The Bin-wise ZeroOC takes gray level values into
consideration individually (ignoring its neighbors) relying
on the class imbalance on a per-value basis. Figure 7, the
histograms of gray level value per class, illustrates this model’s
principle: for a given gray level value in the x-axis, it selects the
respective class of the highest curve in the y-axis—in other
words, it always chooses the majority class conditioned on a

FIGURE 7 | Glass fiber-reinforced Polyamide 66 gray value (normalized) histograms (one per class). The histogram is normalized globally, i.e., a bin’s value is the
proportion of voxels out of all the voxels (all classes confounded). The superposition of the classes’ value ranges make it impossible to segment the image with a
threshold on the gray values.

FIGURE 8 |Modular U-Net variations comparison. On the x-axis, the number of parameters; on the y-axis themean class-wise Jaccard indices. TheModular U-Net
2D, 2.5D, and 3D versions are scaled with f0 (in parentheses), the number of filters of the first convolution of the first Convolutional Block.
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given the gray level. The Bin-wise ZeroOC can be seen as a
look-up table of gray level values as input and class as output,
completely ignoring the contextual information available (the
neighbor voxels).

3.3 Quantitative Results
Figure 8 presents a comparison of the three model variations (2D,
2.5D, and 3D), where they are evaluated with varying sizes. The
models are scaled with the hyperparameter f0 (values inside the
parentheses in Figure 8).

The performance is measured using the Jaccard index, also
known as Intersection over Union (IoU), on each phase (class).
Our main metric is the arithmetic mean of the three class-wise
indices, and the baseline minimum is 76.2%, Bin-wise ZeroOC’s
performance. This metric provides a good visibility of the
performance differences and resumes the precision-recall trade
off; other classic metrics—even the area under the Receiver
Operating Characteristic (ROC) curve (Hanley and McNeil,
1982)—are close to 100% (see the Supplementary Material),
so the differences are hard to compare.

3.4 Ablation Study
Figure 9 presents a component ablation analysis of the 2D model
with f0 � 16 in terms of number of parameters and performance.
Starting with the 2D model with the default hyperparameters (see
Figure 2; Table 1), we retrained other models removing one
component at a time. The learnable up/down-samplings were
replaced by “rigid” ones (see Figure 2), the 2D convolutions were
replaced by separable ones, and the batch normalization was
replaced by layer normalization. Finally, we varied the U-depth
from 2 to 4.

Notice that the model without dropout performed better than
the reference model, but we kept it in our default parameters
because the same thing did not occur with other variations
and sizes.

3.5 Learning Curve
Finally, we computed the learning curve of the 2Dmodel in order
to assess the trade-off between performance and amount of
annotated data. As the data annotation is time-consuming and
requires expertise (therefore expensive), this analysis intends to
estimate howmuch annotation is necessary to achieve our results.
The number of (consecutive) slices in the training dataset was
progressively decreased from 1024 to 1 while the validation
dataset is kept the same (300 slices) for evaluation. This
experiment was run with the 2D Modular U-Net using the
default hyperparameters (presented in Table 1), and the
results presented in Figure 10 in terms of class-wise Jaccard
index and their arithmetic mean.

4 DISCUSSIONS

4.1 Overview
Our models achieved, qualitatively, very satisfactory results
from a Materials Science application point of view, with
87% of mean class-wise Jaccard index and an F1-score
macro average of 92.4% (Supplementary Material). We
stress the fact that these results were achieved without any
strategy to compensate the (heavy) class imbalance (82.3% of
the voxels belong to the class matrix); they may be further
improved using, for instance, re-sampling strategies (Ando
and Huang, 2017; Pouyanfar et al., 2018), class-balanced loss
functions (Cao et al., 2019; Khan et al., 2019), or self-
supervised pre-training (Yang and Xu, 2020).

The results obtained with another specimen (the Crack
volume), thus with slight variations in the acquisition
conditions, were way faster than the manual process while
keeping good quality—inspection by an expert showed no
relevant error in the segmentation as compared to a human-
made one. The fracture was mostly, and correctly, segmented as
porosity without retraining the model, showing its capacity to
generalize—an important feature for its practical use, although
somemisclassified regions can be seen as holes (missing pieces) in
the fracture’s surface (Figure 5).

Moreover, the processing time achieved (32 min) is indeed a
promising prospect compared to classic approaches.

FIGURE 9 | Modular U-Net ablation (2D model). On the x-axis, the
number of parameters; on the y-axis the mean class-wise Jaccard indices.
Components were removed individually, or replaced by alternatives.
Removals: dropout, gaussian noise, residual (skip connection), batch
normalization. Replacements: convolutions by separable ones, learnable
Down-sampling Block/Up-sampling Block by rigid ones (Figure 2), and batch
normalization by layer normalization. We also compare the effect of the
U-depth, i.e., number of levels in the U structure. Notice that the data point no
batch norm is out of scale in the y-axis for the sake of visualization.
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4.2 Segmentation Errors
As highlighted in Figure 4, the 2D model’s mistakes (in red),
are mostly on the interfaces of the phases, which are fairly
comparable to a human annotator’s. We (informally)
estimate that they are in the error margin because, in
some regions, there is no clear definition of the phases’
limits. The fibers may show smooth, blurred phase
boundaries with the matrix, while some pores are smaller
than the image resolution.

Another issue is the loss of information (all-zero regions) in
some rings (e.g., Figure 3). In such cases, even though one could
deduce that there is indeed a pore, it is practically impossible to
draw a well-defined interface.

Finally, we reiterate that the ground truth remains slightly
imperfect despite our efforts to mitigate these issues. For instance,
in Figure 4 we see, inside the C-like shaped porosity, a blue
region, meaning that it was “correctly” segmented as a fiber—yet,
there is no fiber in it.

4.3 Model Variations
Figure 10 confirms that the porosity class is harder to detect.
Although, the qualitative results are reasonable, and we underline
that the Jaccard index is more sensitive on underrepresented
classes because the size of the union will always be smaller (see
Equations in the Supplementary Material).

Contrarily to our expectations, Figure 8 shows that the 2D
model performed systematically better than the 3D (albeit the
difference is admittedly small). We expected the 3D model to
perform better because the morphology of the objects in the
image are naturally three-dimensional; besides, other work
(Furat et al., 2019) have obtained better results in binary
segmentation problems. We raise three hypotheses about
this result: 1) the set of hyperparameters is not optimal, 2)

the performance metric is biased because the annotation
process uses a 2D algorithm, and 3) the 3D models suffer
more from overfitting because they have higher variance (more
parameters, see Figure 8).

4.4 Model Ablation
Figure 9 contains a few interesting findings about the
hyperparameters of the Modular U-Net:

1. using learnable up/down-sampling operations indeed gives
more flexibility to the model, improving its performance
compared to “rigid” (not learnable) operations;

2. separable convolutions slightly hurt the performance, but it
reduces the number of parameters by 60%;

3. decreasing the U-depth, therefore shrinking the receptive field,
improved the performance while reducing 75% of the model
size; on the other hand, increasing the depth had the opposite
effect, multiplying the model size by four, while degrading the
performance;

4. batch normalization is essential for the training—notice that
the version without batch normalization is out of scale in
Figure 9, and its performance corresponds to the ZeroOC
model (see the Supplementary Material);

Model depth (item 3): this finding gives a valuable
information for our future work because using shallower
models require less memory (i.e., bigger crops can be
processed at once), making it possible to accelerate the
processing time. We hypothesize that the necessary
receptive field for image segmentation is smaller than the
model with U-depth three. Therefore, a spatially bigger input
captures irrelevant, spurious context to the classification.

FIGURE 10 | Learning curve of the 2D model with default hyperparameters (Table 1). 1024 consecutive slices from the training set were used with progressively
fewer data by eliminating slices from the bottom (i.e., closer to the validation set, see Section 2.1.4) of the stack. All the models are evaluated with the validation set.
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4.5 Learning Curve
Figure 10 highlights a very promising finding in our results: very
little annotation is necessary to train a reasonable model. The 2D
Modular U-Net was capable of learning with only 1% of the train
dataset (13 z-slices) without any smart strategy to select the slices
(i.e., one could pick sparsely separated slices to achieve more data
variability).

Furthermore, even a single slice was sufficient to achieve a
reasonable performance. Notice that the Jaccard index of the
porosity is still much higher than its baseline even though this
class represents 0.5% of the voxels. On the other hand, this is
possibly because it is an “easier” class, as its gray level values are
concetrated around zero (see Figure 7).

This result is of great interest from an application point of view
because the annotation process is an important bottleneck to take
our method to a practical application. Notice that the data was
semi-automatically annotated with other algorithms (Seeded
Region Growing and adhoc standard image transformations)
and still contain imperfections (e.g., Figure 4), so the results
can improve with a more refined methodology. In other words,
Figure 10 tells us that one could obtain a preliminary
segmentation by annotating a single slice of this material, then
iterate by refining the model’s results in order to obtain a few tens
of slices, which would provide usable results.

5 CONCLUSION

A dataset of XCT images of glass fiber-reinforced Polyamide 66, a
three-phase composite material, was presented and segmented
with U-Nets; requiring the annotation of only a few tomography
slices, results show a promising venue to automate processing
pipelines for synchrotron XCT.

We proposed the Modular U-Net, a reinterpretation of its
precursor that provides a more abstract, conceptually more
compact representation of this family of neural network
architectures by identifying three essential blocks of a U-Net.
As many variations of U-Net have been presented in the
literature, we expect this re-description of the model to
facilitate the communication of their implementation details.
Three variants of the Modular U-Net (2D, 2.5D, and 3D) were
compared, showing that all three were capable of learning the
patterns from a human-made annotation, although the 2D
version performed better than the others.

An ablation study of the 2D Modular U-Net provided
insights about its components revealing that we might
further accelerate the processing with smaller models, and

its learning curve revealed that only 13 annotated slices are
necessary to achieve our results—in addition, a single slice was
sufficient to obtain preliminary results. Finally, we note that
further improvements could be achieved by adding other
techniques on top of our work, for instance refining the
annotations, compensating the data imbalance, and using
more advanced architectures like UNet++ (Zhou et al.,
2018), which adds new, more complex, skip connections to
U-Net.
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