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Energy is the driving force behind the upcoming industrial revolution, characterized by
connected devices and objects that will be perpetually supplied with energy. Moreover, the
global massive energy consumption increase requires appropriate measures, such as the
development of novel and improved renewable energy technologies for connecting remote
areas to the grid. Considering the current prominent market share of unsustainable energy
generation sources, inexhaustible and clean solar energy resources offer tremendous
opportunities that, if optimally exploited, might considerably help to lessen the ever-
growing pressure experienced on the grid nowadays. The R&D drive to develop and
produce socio-economically viable solar cell technologies is currently realigning itself to
manufacture advanced thin films deposition techniques for Photovoltaic solar cells.
Typically, the quest for the wide space needed to deploy PV systems has driven
scientists to design multifunctional nanostructured materials for semitransparent solar
cells (STSCs) technologies that can fit in available household environmental and
architectural spaces. Specifically, Plasma Enhanced Chemical Vapor Deposition
(PECVD) technique demonstrated the ability to produce highly transparent coatings
with the desired charge carrier mobility. The aim of the present article is to review the
latest semi-transparent PV technologies that were impactful during the past decade with
special emphasis on PECVD-related technologies. We finally draw some key
recommendations for further technological improvements and sustainability.
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INTRODUCTION

In recent decades, thousands of research reports related to green renewable energy have attracted
the attention of scientists worldwide. One of the inexhaustible energy generation sources that
can successfully suit mankind’s need for sustainable socio-economic growth in an
interconnected world is the sun (IEA, 2020; Jacobson et al., 2017; IRENA, 2020; Brinkerink
et al., 2018; Kim et al., 2020; Huang and Luscombe, 2019; Burke and Lipomi, 2013). The direct
conversion of sunlight to electricity, well known as photovoltaic energy conversion, has been
successfully demonstrated using various photonic materials with high photon absorption
capabilities classified in two main categories, organic and inorganic semiconductors
(Nakamura et al., 2019; Kim et al., 2020). The successfully converted solar energy is used in
daily life activities such as water heating, solar cooking, deep water pumping, household device
PV powering, and clean hydrogen generation, out of a total annual provision of 18 TW solar
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energy available on the earth’s surface (Smyth et al., 2005;
Kalyanasundaram and Grätzel, 2012; Chandel et al., 2015;
Aramesh et al., 2019; Kuang et al., 2019).

Sunlight to electrical energy conversion without the
interference of any intermediary thermal generator leads to
photovoltaic (PV) conversion. The PV conversion process
takes place in an electron device, known as a solar cell, which
is a component from which the power output is the conjunction
of mechanical, electrical, and photophysical properties, mainly
(Green, 2020). For decades, scientists have been working on the
enhancement of key technical characteristics such as efficiency,
which is expressed as a fractional relationship of the output
generated current over the incoming absorbed photons under
specific irradiance conditions (Green, 2020). Interestingly, several
approaches were found to considerably enhance the efficiency of
PV solar cells; these include intrinsic and extrinsic factors, both
related to the thin films’ deposition techniques (Kemell et al.,
2005). Generally, thin film solar cell components are fabricated
using various vacuum and non-vacuum deposition techniques
such as sol-gel spin coating, spray coating, doctor blade, drop
casting, dip coating, ink-jet evaporation, Pulsed Laser Deposition,
Chemical Vapor Deposition (MOCVD), Molecular Beam Epitaxy
(MBE), Electron-Beam Physical Vapor Deposition (EBPVD),
magnetron sputtering, and Plasma Enhanced Chemical Vapor
Deposition (PECVD) (Steirer et al., 2009; Eslamian, 2014;
Eslamian and Zabihi, 2015; Lu et al., 2015; Leyden et al., 2016;
Farrag and Balboul, 2017; Matur and Baydogan, 2017;
Hodgkinson et al., 2018; Abzieher et al., 2019; Ji et al., 2019;
Lim et al., 2021a; Smirnov et al., 2021; Sun et al., 2021).

An extensive survey by solar PV specialists established that
there exist three generations of PV solar technology that have
been reported so far (Khatibi et al., 2019; Green et al., 2020),
among which semi-transparent photovoltaic solar cells (STPSCs)
is one of the most promising for the next generation of
environmentally friendly renewable energy sources (Lim et al.,
2021b). STPSCs have been recently manufactured via thin films’
deposition techniques such as Inkjet printing, Pulsed laser
deposition (PLD), and PECVD as reported in recent studies.
This includes perovskite solar cells which reached a record high
efficiency of over 25% (Cheng et al., 2014; Xie et al., 2018; Corzo
et al., 2020; Lim et al., 2021b). In addition, recent studies have
demonstrated that the use of various protective and antireflective
coatings, such as intrinsic a-Si:H layers, among others, can
considerably enhance the performance of future generations of
thin film solar cells (Uzum et al., 2017; Zhao et al., 2017; Li et al.,
2020a; Bacal et al., 2020; Qu et al., 2021). The scientific
community devoted to semitransparent solar cell technology
research may consider the recent advent of monolithic
Perovskite/Si tandem solar cells as a unique opportunity to
reshape the current knowledge in the field, allowing the
possibility to reach the Shockley-Queisser theoretical efficiency
limit of 33% (Ail-Ashouri et al., 2020; Lu et al., 2020). The present
review is mainly devoted to Semi-transparent solar cells
technology with special focus on Plasma Enhanced Chemical
deposition (PECVD)-based devices.

BACKGROUND OF
BUILDING-INTEGRATED PHOTOVOLTAICS
TECHNOLOGY
Building-integrated photovoltaics (BIPVs) are considered as
the most promising option that will boost renewable energy
among all PVs currently available in the market (IEA et al.,
1996). Global reports from well-established renewable energy
institutions ascertain that in the entire PV solar technology
market, approximately USD 14.4 billion was attributed to
BIPVs technology in 2020 (EMR, 2021). Considering that
semitransparent solar cells are among the major
components in BIPVs, this technology will obviously benefit
from the net market growth estimated at about 20% for the
next 6 years (see Figure 1A); (EMR, 2021). Prospective actors
in the renewable energy sector have to consider two major
categories of BIPV technologies depending on their
architectural need, namely roof-based and façade-based
BIPVs. Moreover, these categories are mainly shared among
crystalline silicon and thin films solar technologies (see
Figure 1B). Notwithstanding the perceived bright future of
BIPV, stakeholders are constantly driven by the predominant
circular economy vision of national governments, which are
mostly eagerly engaged in the successful greener fourth
industrial revolution. In a recent report by the Becquerel
Institute, three BIPV products were defined. Among these,
glazed semi-transparent BIPV offers flexibility for effective
integration in both building roofs and façades (Curti et al.,
2020); (see Figure 1C).

PV CELL WORKING PRINCIPLE

Put simply, a photovoltaic solar cell is an electron device
characterized by three main parts, amongst which the
photoactive layer, the electrons and holes transport layers, and
the electrical contact layers are deposited on a transparent
substrate (Figure 2).

The photoactive central layer is preferably a direct band gap
semiconductor material that is highly sensitive to photon
absorption throughout the entire electromagnetic solar
spectrum. Moreover, the photoactive layer forms a PN
junction with the electron transport layer, similar to a diode
where electron-hole pairs ‘‘excitons’’ are generated after photon
absorption (Gray et al., 2011). Consecutively, the generated
charge carriers are dissociated due to the presence of an
electric field at the PN junction as to allow electrons and holes
to migrate at the negative and positive electrode terminal,
respectively (Figure 3); (Markvart and Castaner, 2003). The
resulting direct current flow throughout the device PN
junction follows a single direction from the negative to the
positive terminal. It is worth mentioning that among factors
that affect the PV solar cell efficiency, the diffusion length is the
most prominent which requires detailed time resolved
fluorescence analysis for better understanding.
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PECVD DEPOSITION TECHNIQUE

Background
Plasma Enhanced Chemical Vapor Deposition (PECVD) was
first demonstrated in the fifties and sixties at various
laboratories. Their research outputs are among the most
seminal traceable proofs known to date (Poole, 1953;
Ennos, 1954; Christy, 1960; Baker and Morris, 1961;
Christy, 1962; Alt et al., 1963; Ing and Davern, 1964). Since
its discovery almost 6 decades ago, PECVD has successfully
overcome the major drawbacks encountered in the use of other
deposition techniques as well as conventional wet chemistry.

Moreover, PECVD is one of the main processes used in the
nanofabrication of electron devices in order to deposit high
quality thin film semiconductors (Jeong et al., 2020).
Generally, in nanofabrictation, PECVD of a thin film
immediately follows the doping of silicon compound film
pre-grown on Si wafer with either Arsenic, phosphorous, or
boron via Ion Implantation which aims to tune the
conductivity, relative to a particular technology application
of the semiconductor industry (Skorupa et al., 1987; Yokota
et al., 1994). Consecutively to PECVD process, a lithography
process is used to apply a pattern on the thin film
semiconductor via a pre-coated photoresist film using either

FIGURE 1 | (A) US forecast of BIPV market, © (2021) Grand View Research (EMR, 2021). (B) BIPV technologies split for (top) roof and (bottom) façade
applications, respectively. Redrawn from (Zanetti et al., 2017). (C) Photograph of semitransparent BIPVs BellWorks, skylight, United States. Reprinted with permission ©

Onyx Solar (Curti et al., 2020).
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EUV light or electron beam (Desai et al., 2016; Shamma et al.,
2016; Van de Kerkhof et al., 2021).

Fundamental Principles
The PECVD thin films deposition technique is a complex process
deriving from the conventional chemical vapor deposition (CVD)
which can operate either in open or closed reactor configurations,
the latter being the most convenient for industrial usage (Martinu
et al., 2010). Generally, the operation of CVD systems consists of
filling the reaction chamber with reactants via a supply section
designed to allow easy delivery of solid, liquid, or gaseous
reactants for substrate coating under vacuum (Figure 4).
However, due to the drawbacks resulting from solids and
liquids reactants management, gaseous reactants are used in
PECVD processes in which the reactant is delivered in the
reaction chamber via gas-flowing elements, coupled to
computer-controlled pressure controllers. The chemical
reaction is activated by a low-temperature inductively/
capacitively-coupled plasma produced by DC or RF power
source, which, in contrast to other CVD techniques, uses the
plasma as a source of activation energy instead of high
temperatures, allowing much larger flexibility in substrates and
samples diversity (Bera et al., 2002). It is worth mentioning that
the produced plasma has the characteristics of the “inert” carrier
gas, such as Ammonia, Argon, Helium, Nitrogen, and Oxygen,
used in the process, including their derived forming gasses.
PECVD-deposited thin films’ high quality and superior
properties are governed by various parameters including RF
power, plasma temperature, reactor pressure, gas phase
diffusion, and gas flow rate in addition to the types of carriers
and reacting gases. Typically, the neutrally charged and highly
energetic plasma used during PECVD thin films deposition is a
partially or totally ionized gas composed of charged particles,
electrons, and neutral atoms constituents (Hamedani et al., 2016).
The main PECVD setups are presented in the next sections.

Over the years, tremendous advancements have resulted in the
development of several plasma technologies to fit scientific
research needs. This has led to the identification of two major

plasma classifications: thermal and non-thermal plasma. The
class of thermal plasma techniques includes inductively
coupled plasma (ICP) (Jatta et al., 2019), electron cyclotron
resonance chemical vapor deposition (ECR-CVD) (Hu et al.,
2015), direct-current plasma (DCP) (Wahyudiono et al., 2020),
direct current-inductively coupled (DC-ICP) hybrid (Kambara
et al., 2014), and plasma spraying (Navidpour et al., 2017). On the
other hand, capacitively coupled plasma (CCP) (Fang et al.,
2016), Dielectric barrier discharge (DBD) (Tsai et al., 2020),
Glow discharge (GD) (Schmitt et al., 1988), Plasma Enhanced
Atomic Layer Deposition (PEALD) (Jin et al., 2013), and DC
Magnetron sputtering (Kim et al., 2012) are non-thermal plasma
deposition techniques. Despite the progress made in the Plasma
technologies, there is still hot debate on the constituent of the
deposited film mass because the ions and neutral species present
in the plasma behave differently depending on the dynamic
physical and chemical conditions (Michelmore et al., 2015).

Inductively Coupled Plasma
In the inductively coupled plasma (ICP) deposition, the ionized
gas is obtained by coupling the electromagnetic field produced by
a coil within the reaction chamber without the need for paired
electrodes (Cuxart et al., 2017). The radiofrequency (RF)-ICP is a
thermal plasma system which can perform thin films deposition
in a wide variety of environments, such as oxidizing, reducing,
inert, and many more reactive atmospheres (Cuxart et al., 2017).
It is worth noting that ICP-PECVD configuration allows an
extremely high purified environment appropriate for the
synthesis of nanomaterials requiring accurate control of
morphology and chemistries (Cuxart et al., 2017). The ICP
configuration is advantageous as compared to its counterpart
due to its higher energy density capabilities; its setup is presented
below in Figure 4.

FIGURE 2 | Structure of organic PV solar cell device (ETL and HTL
denote electron and hole transport layer, respectively).

FIGURE 3 | Schematic band diagram of a solar cell device as a PN
junction.
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Capacitively Coupled Plasma
In the plasma deposition system industry, most non-thermal
radio frequency plasma are generated by capacitively coupling
two metal electrodes short-distanced placed in the reaction
chamber, one of which is connected to a single frequency
microwave RF power source (13.56 MHz) and the other of
which is grounded (Ohtsu, 2018). Upon electric field
appearance in between the electrodes, atoms are ionized in

order to release electrons which are accelerated by the RF
electric field to produce secondary electrons leading to
electron-avalanche due to the exponential field increase
(Ohtsu, 2018). Consecutively, an electron-avalanche
breakdown will make the gas electrically conductive due to its
large number of bind-free electrons and allow perfect surface
coating (Ohtsu, 2018). The schematic principle of CCP, which is
similar to a conventional capacitor, is presented in Figure 5.

FIGURE 4 | Schematic configuration setup of Inductively Coupled Plasma.

FIGURE 5 | Basic schematic principle of Capacitively Coupled Plasma.
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Technology Application
PECVD is promising in the entire nanofabrication of
semiconductor-based devices (see Figure 6), however, there
is still room for improvement when real device
commercialization comes in to play. It is worth noticing
that notable results such as in Solar cells (Gabriel et al.,
2014), Light emitting diodes (LEDs) display (Park et al.,
2019), Sensors (Forleo et al., 2009), photocatalysis (Nada
et al., 2017), triboelectric nanogenerators (TNGs) (Wang
et al., 2016), Thin Film Transistors (TFTs) (Park et al.,
2008), non-Volatile Memories (NVMs) (Choi et al., 2007),
integrated circuits (Zhang et al., 2013), neutron detection
(Bute et al., 2021), diamond growth (Mankelevich and May
2008), photonic waveguides (Neutens et al., 2019), energy
storage (Quesnel et al., 2016), and UV photodetectors
(Chao and Wei, 2015) are essential to the successful
development of the next generation of commercially viable
electronic devices.

SEMITRANSPARENT PECVD SOLAR
TECHNOLOGY

The concept of semitransparent electron devices dates back to
the early 2000s when Forrest’s group first successfully
demonstrated semitransparent cathodes for organic light
emitting devices prior to its solar cells application 6 years
later (Burrows et al., 2000; Bailey-Salzman et al., 2006).
Moreover, the promise of the concept was successfully
followed by the so-called inverted solar cell configuration
which was initially applied to organic photovoltaic solar
cells (OPVSCs) in Yang’s group (Li et al., 2006). In his
seminal work on semitransparent OPVSCs, Bailey-Salzman

et al. (Bailey-Salzman et al., 2006) astoundingly envisioned the
use of multiple paints in the form of thin films coated on
building walls and windows to generate power (Chae et al.,
2014). Fifteen years later, tremendous progress (see table 1)
was made on the use of this architectural-friendly concept
which has been successfully integrated in other solar cell
technologies, among which the most prominent based on
PECVD are discussed in the following subsections.

Silicon Solar Cells
Recently, a group of scientists developed a semitransparent
non-stoichiometric photovoltaic solar cell based on Si-rich
SixC1-x p-i-n grown by hydrogen-free PECVD at low plasma
power (Cheng et al., 2014). During the fabrication process
using RF plasma power ranging from 20–100 W (40W step) at
a power density of 560 mW cm−2, the optical bandgap of Si-
rich SixC1-x absorbing layer was effectively controlled by
varying the Si/C ratio. Moreover, the device absorbing layer
was sandwiched in between a SixC1-x:P and SixC1-x:B which
were doped at various fluences to accurately define their
conductivity for ensuring optimal charge mobility across the
device. Furthermore, the charge collection process was realized
using ITO and Al electrode which were connected to P-type
SiC and N-type SiC films respectively (see Figure 7).
Ultimately, the optimized device fabricated with an
absorbing layer of 25 nm exhibited the highest power
conversion efficiency (Cheng et al., 2014). The optimization
of deposition parameters remains a key challenge for better
performance of the devices (see table 2).

In 2014, Chae and colleagues (Chae et al., 2014) successfully
integrated semitransparent solar cells in building windows via
building integrated photovoltaic (BIPV). In the study, two
parameters were considered to evaluate the performance of the
devices: the thickness of a-Si:H absorbing layer and the applied
texture. The p-i-n absorbing layer was deposited via PECVD at
250°C on glass substrate pre-coated with ZnO:Al film. Moreover,
the tuning of parameters revealed enhanced power conversion
efficiency (PCE) in the device with 180 nm thicker absorbing
layer, the performance of which was further improved with
texturing to reach 6.3% PCE.

Elsewhere, Kang et al. (Kang et al., 2019) applied engineering
light absorption to fabricate a transparent solar cell with a 70 nm
thick SiN AR coating deposited via PECVD on the SiMW tips.
The resulting JSC considerably increased from 17.07 to
18.94 mA cm−2 while the other key parameters did not
undergo the expected changes due to the decrease of VOC and
ideality factor FF relative to the device without SiN AR layer. The
authors attributed the VOC decrease to the localization of the n-Si
and p-PEDOT heterojunctions which formed only on the side
surface and not on the top surface of SiMWs, resulting in
hampering electron-hole pairs’ generation.

Perovskite Solar Cells
Nowadays, perovskite solar cells are recording unprecedented
momentum across the scientific community worldwide due to
their versatile properties and easy and sustainable processing
(Leyden et al., 2016; Jain et al., 2019; Tavakoli et al., 2019; Zhu

FIGURE 6 | Various applications of PECVD.
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et al., 2019; Elseman et al., 2020a; Asuo et al., 2020; Elseman et al.,
2020b; Rahmany and Etgar, 2020; Selim and ElsemanHao, 2020;
Xu et al., 2020; Chen et al., 2021; Cui et al., 2021; Heshmati et al.,
2021; Jeong et al., 2021; Tong et al., 2021). In 2018, a research
group innovatively demonstrated that the application of
atmospheric pressure plasma enhanced chemical vapor
deposition (AP PECVD) can contribute to improving the
efficiency of a perovskite solar cell. Technically, the roll-to-roll

plasma system used Argon gas flow and an audio frequency
power supply (3.4 kHz) which activated the plasma under a
potential of 4 and 8 kV to achieve 10.68 m hr−1 line speed for
the deposition of mesoporous TiO2 film (Hodgkinson et al.,
2018). The deposited film served as the hole blocking layer
coated on top of the TCO of the solar cell; afterward, the
performance of the device was compared to a reference cell
with the TiO2-x electron transport layer sputtered using an RF
source at 60oC in argon along with oxygen at a pressure of 7.5 x
10−6 mbar (Hodgkinson et al., 2018). It is worth mentioning that
this strategy consisting in the tuning of the electronic properties
of the Electron transport layer and/or hole transport layer was
found to be beneficial in the decline of their parasitic absorption
(Li et al., 2020b).

In a completely different study, the optimized use of
Aluminum-doped ZnO (AZO) as a transparent electrode (TE)
of a semitransparent perovskite solar cell (ST-PSCs) in a tandem
perovskite/Si device contributed to reaching power conversion
efficiency (PCE) of 23.1% (Li et al., 2020b). The authors
particularly stressed the crucial role of the transparency and
conductivity of the TE in the high performance of ST-PSCs
which constituted the top part of the tandem device.
Interestingly, the AZO layer was found to bring more stability
in the device relative to devices without an AZO layer (Li et al.,
2020b). Moreover, in this tandem solar cell device, the PECVD
technique was successfully used to deposit the lower silicon bi-
layer TOPCon structure, including the hydrogenated silicon
nitride (SiNx:H) which served as anti-reflection coating and
front passivation layer. Finally, the tandem semitransparent
concept demonstrated to perform better with PCE reaching
over 20% (Chen et al., 2016a; Dewi, 2019).

TABLE 1 | Summary performances of the representative semitransparent PV solar cells.

Cell
type

Cell
structure

Device layers Avt (%) JSC
(mA/cm

2
)

VOC

(mV)

FF (%) PCE (%) Ref. (Year)

Perovskite Single ITO/Glass/NiO//(CsFAMA)Pb(IBr)3//PMMA:PCBM/ZnO/IZTO 12.89 19.02 1070 76.88 15.72 Lim et al. (2021a)
Perovskite Single ITO/Glass/SnO2//Perovskite//spiro-MeOTAD/MoOx/AZO/Ag − 20.6 1200 68.4 16.6 Li et al. (2020b)
Polymer Single ITO/Glass/ZnO//PBDB-T:PTAA:Y1//MoO3/Au/Ag 20.1 19.7 860 69.1 12.1 Cheng et al. (2020)
n-Silicon Single n-Si/SiO2//SiMPF//IZO/PEDOT:PSS 10 22.54 537 66.7 8.07 Kang et al. (2019)
Perovskite Single FTO/Glass/p-SnO2//Perovskite//spiro-MeOTAD/Ag/ITO − 21.52 1060 77.5 17.7 Dewi, (2019)
Perovskite Single ITO/Glass/PTAA//MAPbI3//PCBM/C60/BCP/Cu/Au − 20.6 1080 74.1 16.5 Chen et al. (2016a)
Perovskite single FTO/glass/bl-TiO2 36.6 19.2 950 64 11.7 Chen et al.

(2016b)//MAPbI3//spiro-OMeTAD/Li-TFSi/Au
Perovskite Single MgF2/ITO/glass/cp-TiO2//Perovskite//Spiro-MeOTAD/MoOx/ITO/

Au/Pt
− − − − 12.2 Duong et al.

(2016)
Perovskite Single FTO/Glass/ZnO/PCBM − 17.4 1104 73.6 14.2 Fu et al. (2015)

//CH3NH3PbI3//Spiro-OMeTA/MoO3/In2O3:H
Perovskite Single FTO/Glass/TiO2 − 19.17 960 67.22 12.37 You et al. (2015)

//Perovskite//Spiro-OMeTAD/PEDOT:PSS/PDMS/PMMA/
Graphene

Polymer Single PTB7-th:ATT-2 37 18.53 712 59 7.74 Liu et al. (2017)
i-SiC Tandem Al/a-SiH://i-SiC//N-type SiC/a-SiH://i-SiC//N-type SiC/ITO − 19.1 780 35 5.24 Cheng et al. (2014)
a-Si:H Single Glass/ZnO:Al//a-Si:H − 10.1 904.6 68.6 6.3 Chae et al. (2014)
Polymer Single ITO/Glass/ZnO 39 8.65 895 51.9 4.02 Sano et al. (2019)

//PCDTBT/PCBM/ITIC//Ag/MoO3

Polymer Single PET/Ag/FPI-PEIE − 18.25 810 0.70 10.4 Huang et al. (2015)
//PBDTT-F-TT:PCBM//MoO3/UTMF-Ag/TeO2

Polymer Single ITO/glass/ZnO-NPs/SAM − 10.25 620 66.6 4.20 Hau et al. (2009)
//P3HT/PCBM/PEDOT:PSS//Ag

FIGURE 7 | Schematic drawing of the device structure.
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CONCLUDING REMARKS AND FUTURE
PROSPECTS

The present review highlighted the recent advances in the
development of semitransparent solar cells, which offers a
promising future in building integrated photovoltaic applications.
The review shows that the emergence of semitransparent solar cell
technologies is mainly driven by research undertaken in polymer
solar cells, perovskite solar cells, and Si-based solar cells. To bemore
concise, we focused our effort on semitransparent technologies that
used the versatile advantages offered by PECVD technique owing to
its applicability in matured industrial manufacturing processes. We
surprisingly realized that, despite the unique strengths of PECVD
thin film deposition, very limited numbers of reports on
semitransparent solar cells are available to date. Nonetheless,
PECVD demonstrated its efficacy in several semitransparent
solar cells including monolithic perovskite/Si tandem solar cells,
which are currently exhibiting the highest power conversion
efficiency in the entire field.

Considering factors that hamper the optimal performance of
semitransparent solar cells, mainly polymers and perovskites-
based PV, some recommendations are necessary to contribute to
improving the manufacturing processes of future generations of
semitransparent solar cells:

1) Encapsulation of the device using a thin dielectric layer with
higher resistance to UV degradation and thermal oxidation in
addition to a good light transmission aiming to combat
oxygen infiltration and moisture. Particular care will be
required to ensure that the encapsulating layer exhibits
higher oxygen transmission rate (OTR) and water vapor

transmission (WPTR), which are governed by Fick’s law
(Uddin et al., 2019).

2) Reinforced PECVD is one of the most adapted solutions to
perform encapsulation at low temperatures. However,
stringent precautions are recommended, especially the
passivation of intrinsic defects which persist to single layer
encapsulation.

Looking ahead, great effort is still required to innovatively
design and fabricate industrially viable high quality and colorless
semitransparent photovoltaic solar cells that meet the
requirement for building and window integration. This
includes the stringent control of PECVD parameters/factors
such as gas flow rate, pressure, voltage, gas mixture, rf power,
platen temperature, and plasma chemistry during the formation
of the various layers and the application of tunnel oxide
passivating contacts (Yoon et al., 2020).
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