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This paper is proposed for modelling concrete beams reinforced with fiber reinforced
polymer (FRP) bars in a simplified way. In order to appropriately model the FRP-reinforced
concrete beams the stiffness matrix is developed in the frequency domain using fast
Fourier Transform. Numerical results with the proposed spectral model for the load-
displacement response and the shear stress distribution between FRP reinforcement and
surrounding concrete are obtained for beams statically tested. Tens of elements are
deployed in this work due to the simplicity of the proposed model. Using the same spectral
model the natural frequency and mode shapes are evaluated since the frequency-
dependent stiffness matrix enables it to apply for dynamic study, e.g. modal analysis.
The feasibility of the proposed numerical approach for performing dynamic analysis
especially for high frequency excitations in an efficient way makes it a promising tool
for use in the field of structural health monitoring according to the changes in dynamic
characteristics.
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INTRODUCTION

The long-term durability of reinforced concrete structures has become a major concern over the past
few decades, mainly due to the corrosion risk of steel reinforcements. Fibre-reinforced polymer
(FRP) is being increasingly used in civil engineering as a reinforcement to replace steel bars because
of its rather durable properties (Rizkalla and Nanni, 2003), especially in aggressive environments
where steel reinforcements are easily corroded. Additionally, under some special circumstances, such
as in the magnetic resonance imaging rooms of hospitals, there is a demand for electromagnetic
permeability, and such needs can be met by FRP bars since they are non-metallic. Since FRP bars
possess mechanical characteristics different from those of steel bars (e.g., lower elastic modulus, non-
yielding properties), numerous experimental investigations have been carried out to study the
behaviour of concrete members reinforced by FRP bars (Barris et al., 2009; Kassem et al., 2011; Al-
Sunna et al., 2012; Barris et al., 2013; Miàs et al., 2013; Habeeb and Ashour, 2014; Acciai et al., 2016).
Unlike concrete members with steel reinforcement, the experimental results showed that FRP
reinforced concrete members behave elastically until failure due to the characteristics of the FRP
reinforcement, and structural failure would occur at a relatively large displacement.

Some studies applied analytical models to determine the responses of FRP-RC members.
Branson’s equation, which was developed for the design of concrete beams reinforced with steel
bars (Branson, 1977; ommittee 318 (2008)., 2008), was adjusted by introducing empirical coefficients
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(Benmokrane et al., 1996) and a modified equivalent moment of
inertia (Bischoff, 2005). In refs. Razaqpur et al. (2000); Rasheed
et al. (2004), bilinear and tri-linear moment-curvature
relationships have been used to derive closed-form equations
for predicting the deflection of FRP-reinforced members. A local
deformation model was developed in ref. Gravina and Smith
(2008) to capture the flexural response and moment distribution
of indeterminate concrete beams reinforced by FRP bars, in
which the progressive cracking process with an increasing load
was considered. An iterative analytical procedure was also
proposed for the prediction of the flexural behaviour of FRP-
reinforced concrete beams in ref. Almusallam (1997). During the
iterative process, the neutral axis depth is changed until force
equilibrium is reached. Furthermore, ref. Kara et al. (2013)
presented an analytical model for evaluating the deflection of
FRP-reinforced concrete structures, and the flexural and shear
cracks in cracked regions were reduced by introducing an
effective moment of inertia. Although several studies have
been conducted to develop design formulas, many researchers
have noted that deviations occur when using these equations to
predict the deflection of FRP-reinforced concrete beams (Aiello
and Ombres, 2000; Mota et al., 2006).

A two-dimensional finite element (FE) model was used to
study the performance of concrete beams reinforced with
steel and FRP bars (Bencardino et al., 2016), and it was shown
that a 2D FE model can be used to simulate the load-
deflection relationship of concrete beams reinforced with
different ratios of steel and FRP. Furthermore, a spatial 3D
FE model that is more realistic for simulation was used to
calculate the flexural deflections of FRP-RC beams (Zhang
et al., 2015), and the results show better agreement with the
experimental data than the equations from the design code.
To clarify the failure mechanism of FRP-RC members, a limit
analysis strategy is integrated with an FE model (De
Domenico et al., 2014) by using the linear matching
method (LMM) and the elastic compensation method
(ECM), which is adequate for obtaining the upper and
lower bounds of the peak load value. Furthermore, to
calculate both global deformation and local strain, several
FE models were developed by considering the constitutive
laws of materials and the interfacial bond-slip model of an

FRP bar and concrete (Nour et al., 2007; Rafi et al., 2008;
Hawileh, 2012; Hawileh, 2015). A proportional integral
derivative (PID) controller (Echeverria and Perera, 2013)
was introduced into the 3D FE approach to capture the
softening branch of the interfacial bond-slip performance
between FRP rods and concrete.

Obviously, an analytical model can be used to evaluate the
global behaviour of an FRP-RC beam, but it is very difficult to
capture the local behaviours, e.g. concrete strain and shear stress
distribution. Although this shortcoming can be overcome by
using a refined FE model, a huge number of elements are
needed, which results in a heavy computational cost and
possibly a convergence problem due to the highly nonlinear
properties of the materials and the interface. In refs. Perera and
Bueso-Inchausti (2010); Sun et al. (2015), a 4-degree-of-
freedom spectral element model was used to simulate the
flexural behaviours of RC beams strengthened with externally
bonded FRP strips by considering the interfacial bond slip
between the FRP strip and the RC beam. This numerical
approach has shown promise due to its simplicity since it is
derived from the frequency domain. Thus, it is adopted in this
study for determining the global and local performance of an
FRP-RC beam by assuming a perfect bond between the FRP bars
and the surrounding concrete for simplicity. Only 23 spectral
elements are used to calculate the load-displacement response
and concrete strain while tens of thousands elements are needed
using FE model. The interfacial bond behaviour between FRP
bars and concrete, which is a very local phenomenon, is also
evaluated to study the development of shear stress distribution
with the gradually increasing load. Obviously, the
computational cost has been reduced dramatically due to the
simplicity and efficiency of the proposed spectral element
method, and the accuracy is verified comparing the
numerical results with the experimental data.

Of particular interest is the ability of the present model to
obtain the dynamic characteristics of FRP-RC beams, since to
the best of the author’s knowledge, few studies have focused on
the dynamic analysis of FRP-RC beams (Capozucca and
Bossoletti, 2014; Capozucca et al., 2015). By making a
frequency sweep for the dynamic stiffness-matrix, the
natural frequencies and mode shapes are efficiently
calculated even in high frequency range as long as the
uniformity of concrete beam remains unchanged (Trefethen,
2000; Gopalakrishnan et al., 2008). Structural damages can be
identified according to the changes of dynamic characteristics
under intact and damaged scenario, which makes the proposed
model promising for damage detection due to its simplicity
and efficiency.

SPECTRAL MODEL OF A CONCRETE
BEAM REINFORCED WITH FRP BARS

Since one of the main advantages of the proposed spectral model
is its simplicity for calculating the structural behaviour, in which
the formulations are established in the frequency domain, it can
be used to analyse the global and local responses of an FRP-RC

FIGURE 1 | Kinematics of the transverse section of the concrete beam
reinforced with FRP bars.
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beam in this study. To this end, the governing equations are
derived in this section. First, the axial and transverse
displacement of the beam can be formulated as follows by
using first-order shear deformation theory:

uC(x, z, t) � u0(x, t) − zϕ(x, t) (1)

w(x, z, t) � w(x, t) (2)

where uC and w are the axial and transverse displacements in a
concrete beam at a material point, respectively. As shown in
Figure 1, u0(x, t) is the mid-plane axial displacement, ϕ
represents the rotation of the cross section about the Y-axis,
and z is the coordinate measured from the mid-plane. The strain
of concrete can be derived as follows based on Eq. 1 by
introducing a linear strain-displacement relationship:

εx � u0,x − zϕ,x (3)

where εx denotes the longitudinal strain in the RC beam and (·),x
represents differentiation with respect to x.

The constitutive relation of the FRP bar is assumed to be
linearly elastic, and the nonlinearity of the concrete material is
considered since it has a great influence on the load-resisting
mechanism. The nonlinear constitutive relationships of
concrete in compression and tension are based on the CEB-
FIP code in (fib, 2010). Furthermore, the bond behaviour
between the bar and concrete is an essential aspect of the
reinforced beam. Although the bond-slip relationship was
discussed, it still highly depends on the surface condition,
material strength and confinement provided by the
surrounding concrete (Yan et al., 2016; Solyom and Balázs,
2020; Solyom and Balázs, 2021). Since one of the main purposes
of this study is to numerically simulate FRP-RC beams in a
simplified way to reduce computational costs, a perfect bond

relationship based on the equilibrium of FRP bars and the
surrounding concrete is used in this work. Therefore, the
stresses of the concrete and bar can be expressed as follows:

σC � ECεC εC � u0,x − zcjϕ, (4)

σB � EBεB εB � u0,x − zBjϕ, (5)

τC � GCcC cC � w,x − ϕ (6)

where σ and τ denote the axial and shear stresses, and the
subscripts C and B represent the concrete and FRP bar,
respectively. Additionally, the elastic and shear modulus of
concrete EC and GC depend on the strain at every point
throughout the concrete beam, which will be updated by the
equivalent secant elastic moduli due to the material nonlinearity
of the concrete. The longitudinal strain of the concrete and FRP
bars, εC and εB, with coordinates of zjC and zjB, respectively, can
be formulated based on Eq. 3.

Based on the expressions above, the strain energy of the
reinforced beam composed of concrete and FRP bars is
formulated as

U � 1
2
∫

L
∫z2

z1

(σCεC + τCcC)bCdzdx + 1
2
∫

L
∑NB

i�1
(σBεB)ABjdx (7)

where z1 and z2 are the Z-coordinates of the bottom and top
surfaces limiting the beam, respectively, and the variables bC and
L denote the width and length of the beam, respectively. NB is the
number of FRP bars, and the area of each bar is ABj. Since a
perfect bond relationship between the FRP bars and the
surrounding concrete is used in this word, the shear strain
energy of FRP reinforcement is neglected for simplicity.

By introducing Hamilton’s principle, the differential equations
of motion can be derived by incorporating the kinematic energy

FIGURE 2 | Framework of proposed numerical strategy for static study.
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of the beam. The equations of motion for the displacement field
are given by

δu0 : I0ü0 − I1€ϕ − A11u0,xx + B11ϕ,xx � 0 (8)

δw : I0 €w − A22w,xx + A22ϕ,x � 0 (9)

δϕ: I2€ϕ − I1ü0 + B11u0,xx −D11ϕ,xx − A22w,x + A22ϕ � 0 (10)

and the boundary force equations are

N � A11u0,x − B11ϕ,x (11)

V � A22w,x − A22ϕ (12)

M � −B11u0,x +D11ϕ,x (13)

whereN, V andM are the boundary forces related to the variables
u0, w and ϕ, respectively. (),x and (·) represent differentiation
with respect to length and time.

The coefficients in Eqs 8–13, which are related to the material
properties, are given by the following expressions:

[A11 B11 D11] � ∫z2

z1

EC[1 z z2]bCdz
+∑NB

j�1
EBjAsj[ 1 zj z2j ] (14)

[A22] � ∫z2

z1

GCbCdz (15)

[ I0 I1 I2 ] � ∫z2

z1

ρC[ 1 z z2 ]bCdz (16)

FIGURE 3 | (A) Experimental test setup, (B) arrangement of rebar and concrete strain gauges.

TABLE 1 | Material and geometrical properties of the tested specimens.

Specimens BG1 BG2

Concrete Elastic modulus (MPa) 29,300
Compressive strength (MPa) 37.7

Main GFRP bar Diameter (mm) 2ϕ9.5 2ϕ12.7
Elastic modulus (MPa) 42,800 41,600
Reinforcement ratio 0.0043 0.0077

RC beam Span (mm) 2,300
Width (mm) 150
Height (mm) 250
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where ρC denotes the density of concrete and EBj is the elastic
modulus of each FRP bar. To model the progressive cracking
process, the entire beam is divided into several layers through
the height, and the material properties of the concrete in each
layer will be updated by using the nonlinear stress-strain
relationship of concrete. Furthermore, the elastic modulus of
the FRP’s EB is treated as a constant due to its non-yielding
properties.

By applying a fast Fourier transformation (FFT), the
displacement field is transferred from time domain to
frequency domain as follows:

{u0, w, ϕ} � ∑N
n�1

∑M
m�1

{ûp
mn} e−jkmnxe−jωnt (17)

where N is the number of frequency sampling points, which
depends on the Nyquist frequency. ωn represents the circular
frequency at the nth sampling point in the FFT, and kmn denotes
the mth wave number of ωn. ûpmn � (û0, ŵ, ϕ̂)mn}{ is the vector of
the wave coefficients related to the mth mode of the wave at
frequency pointωn. By introducing Eq. 17, Eqs 8–10 turn into the
following formula:

[W]{ûp} � 0 (18)

where W is a 3 × 3 matrix with functions of frequency and
wavenumber as follows:

[W] � ⎛⎜⎜⎝A11k
2 0 −B11k

2 + I1ω
2
n

0 A22k
2 − I0ω

2
n −jA22k

−B11k
2 + I1ω

2
n jA22k D11k

2 − I2ω
2
n + A22

⎞⎟⎟⎠
(19)

For each frequency point, the wavenumber kmn can be
obtained by solving a 6-th order equation when W equals
zero in Eq. 18, and the six related eigenvectors Ri (i � 1, . . . 6)
can be used to formulate the general solution of nodal
displacement as

{u(x)} � ⎛⎜⎝ û0(x)
ŵ(x)
ϕ̂(x)

⎞⎟⎠ � [ {R1} / {R6} ] diag
i�1,...6

(e−jkix){A}
� [R][D(x)]{A} (20)

Furthermore, the displacements of the two nodes in an
element with a length of L can be expressed as

{ u1

u2
} � [R1

R2
][D(0)

D(L)]{A} � [T1]{A} (21)

where {A} is the vector of the constants, which depends on the
associated boundary conditions. Substituting Eq. 21 into Eq. 20,
the nodal displacements can be obtained as

{u(x)} � [R][D(x)][T1]−1{ u1

u2
} � [N]{ u1

u2
} (22)

where [N] is the matrix of the shape functions of the proposed
spectral model. By combining the boundary forces given by Eqs
11–13, the dynamic stiffness matrix (DSM) [K] is formed to
compute the displacement in the frequency domain:

{ {f1}{f2} } � [F(0)
F(L) ]{A} � [T2][T1]−1{ u1

u2
} � [K]6×6{ u1

u2
}
(23)

Based on the derivation of the equations presented above, the
6 × 6DSM [K] is formulated, as shown inEq. 23. Additional details
regarding the FFT process and implementation of the spectral
element model can be found in Trefethen (2000); Capozucca et al.
(2015). The DSM, which is frequency-dependent, is established
according to the governing equations and boundary conditions in
Eqs 8–13, and it can be considered a combination of a mass matrix
and a stiffness matrix that introduces exact dynamic shape
functions. Since circular frequency ωn is included in the DSM,
dynamic factors of the FRP-RC beam such as natural frequencies
and related mode shapes can be obtained. Furthermore, by making

FIGURE 4 | Load-deflection comparison at the midspan. FIGURE 5 | Load-strain relationship of the FRP bar at the midspan.
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ωn in DSM tend to zero, it can be used to calculate the structural
behaviour in static cases. The framework of proposed numerical
strategy for static study is shown in Figure 2.

CASE STUDY OF THE PROPOSED MODEL

Concrete beams reinforced with FRP bars tested by Al-Sunna
(2006) were selected to validate the capability of the proposed
spectral model. In his tests, twenty-eight concrete beams and slabs
reinforced with FRP or steel bars were fabricated, two FRP bars
with nominal diameters of 6 mm were located in the compressive
zone, and FRP bars with diameters of 9.5 and 12.7 mmwere used as
the main flexural reinforcement for concrete beams BG1 and BG2,
respectively. The reinforced beams were 150 mm wide, 250 mm
deep and 2,550 mm long, and the span between two supports was
2,300 mm. The experimental test setup is shown in Figure 3. The
specimens were tested by progressive four-point loading with a
shear span of 767 mm (one-third of the length), and two loading

platens were used to control the deflection of FRP-RC beams
during testing. Fourteen strain sensors were installed to measure
the local strain of the reinforced beam; four of them were adhered
to the FRP bar to capture the strains of the bar, and the other ten
gauges were located around the crack inducer at the midspan to
measure the local behaviour at the crack locations. In this study, the
experimental data of two concrete beams reinforced with GFRP
(glass-fibre-reinforced polymer) are chosen to validate the accuracy
of the proposed approach, and the material properties and
geometrical parameters of the specimens are illustrated in Table 1.

As presented previously, the proposed approach can simulate the
behaviours of a reinforced beam with only one spectral element if
there is no discontinuity of the geometrical and material properties.
Since the two specimens maintain their uniformity along the length
of the beam, it is very convenient to evaluate global and local
behaviours by using the proposed one-dimensional model due to
its simplicity. The mechanical behaviours, particularly for local
behaviours such as stress and strain, can be obtained with higher
accuracy by using more elements, and the computational burden
would simultaneously increase. Hence, the number of elements can
be determined by balancing the computational costs and the desired
degree of precision. To this end, the element size is chosen as
100mm in this study, resulting in a total of 23 spectral elements for
the RC beams. Obviously, the computational costs decrease
remarkably by reducing the number of elements from tens of
thousands in the FE model to tens of elements. Additionally, the
static behaviour of the FRP-RC beams can be directly calculated by
making the circular frequency ωn of dynamic stiffness [K] in Eq. 23
go towards zero.

The longitudinal FRP bars are modelled as an elastic material by
assigning the elastic modulus according to the tested data given in
Table 1. The strain-stress relationship of concrete in the European
Code (fib, 2010) is introduced in the present work. The nonlinear
property of concrete is simulated by adopting a secant procedure, in
which the elastic modulus of concrete is updated by the secant
modulus associated with the concrete strain with the increasing
load. The parameters ofEqs 14–16 related to thematerial properties
are represented by the equivalent secant modulus of concrete. The

FIGURE 6 | FRP strain along the length of (A) BG1 and (B) BG2.

FIGURE 7 | Load-concrete strain comparison at the midspan.
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cross section of each element is divided into twenty layers along the
height of the beam to model the progressive cracking of concrete as
the load increase. Furthermore, the applied load is divided into
several sub-load steps, and the material properties of the RC beam
would be updated implicitly in an iterative manner until force
equilibrium is reached for each load step. By conducting this load-
control strategy, the nonlinear behaviour throughout the FRP-RC
beam can be evaluated in details.

To model the mechanical behavior of FRP reinforced concrete
beam using conventional finite element method, a refined mesh is
usually required leading to a huge number of elements. However, a
small number of elements are needed by using the proposed spectral
approach, since only one spectral element is enough to calculate the
structural response as the geometry and material remains uniform.
In this study, an element size of 100mm is selected in the proposed
model resulting in only 23 spectral elements to numerically simulate

the flexural and local behaviors of the FRP-RC beamwith a length of
2.3 m. Therefore, the computational burden is significantly released
compared with the FE model due to the simplicity and efficiency of
the proposed spectral approach.

VALIDATION OF THE PROPOSED MODEL

Flexural Behaviours
The FE model was implemented in Al-Sunna (2006) by using
commercial software to numerically simulate the FRP-RC beams.
The relationship between the load and the deflection at the midspan
of specimens BG1 and BG2 obtained from the experimental test and
numerical simulation are compared, as shown in Figure 4. In general,
the load-deflection curves present an approximate bilinear response.
Both of the beams exhibit a brittle elastic behaviour with no softening

FIGURE 8 | Concrete strain of BG1 and BG2 along the depth at the midspan.

FIGURE 9 | Average neutral axis depth of BG1 and BG2.
FIGURE 10 | Bond behaviour of a segment of FRP bar.
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prior to failure. In the first stage, before the first crack occurs at the
load of 14 kN, the FRP-RC beams follow a linear elastic behaviour
patternwith a steep slope. The reinforcement ratio of FRP bars has an
insignificant effect on the stiffness of the load deflection curves with
only a slight influence on the cracking loads for the two beams. In the
second stage, a subsequent reduction in the slope is observed due to
the progressive cracking of the beam occurs, which shows linear and
non-ductile behaviour with increasing load because of the non-
yielding properties of the FRP bars. The deflection of BG2 after
the first crack has been reduced remarkably compared to that of BG1,
and the geometrical and material properties are the same except for
the amount of FRP reinforcement at the bottom of the RC beams.
With the increase of reinforcement area, a greater increase in the
stiffness and also the ultimate load of BG2 than BG1 is observed.
Failure mode of BG1 might be governed by FRP rupture since the
midspan deflection of BG1 is much higher than that of BG2 at
the same load level. In general, a small deviation is noticed between
the numerical and the test results, which indicates the ability of the

proposed approach to predict the pre- and post-cracking deflections
of the FRP-RC beams and demonstrates the accuracy of the proposed
spectral model.

Strain of the FRP bar
According to the material properties of the FRP bars, which are elastic
until failure, the load-strain relationship of the FRP bar at the midspan
is shown inFigure 5. The load-strain curves of the twoRCbeams show
a linear relationship before concrete cracking at 14 kN. Afterwards, the
rebar undergoes additional strain with the development of cracks at
higher load levels. Finally, the FRPapproaches the rupture strain,which
is approximately 15,000 microstrains according to the test data. The
non-yielding properties of the FRP bars cause the lack of ductility of
FRP-RC beams, which would result in sudden brittle failure because of
FRP rupture. This phenomenon is one of themain differences between
concrete beams reinforced with steel and those with FRP. As reported
in Al-Sunna (2006), the failuremode of BG1 is the rupture of FRP bars
during the four-point loading test, while for BG2 it is concrete crushing
immediately followed by the rupture of the FRP bars, which results in
balanced failure. The prediction of the current numerical model is in
good agreement with the experimental results and FE simulation.

By applying the proposed spectral model for both specimens, the
strain distributions of the FRP bars under different load levels along
the lengths of the beams are shown in Figure 6. The strains obtained
by the experimental test and FE simulation are compared with the
results predicted by the spectral approach and show good agreement.
According to the results obtained from the proposed model, low
strain of the bar is observed over the support of the beam, and
increasing strain occurs from the shear span to the midspan,
reaching a plateau between the two loading points. Figure 6
reveals that the plateaus of the FRP stain at the midspan in the
numerical simulation are different from those of the experimental
results, in which strain concentration exists. This result is mainly due
to the application of the smeared crack model in the proposed
numerical approach to represent flexural cracks instead of a discrete
crack model. The concrete and steel properties were updated using
the secant modulus during the iterative nonlinear analysis until force
equilibrium was reached as the load level increased. Therefore, the

FIGURE 11 | Average bond shear stress of (A) BG1 and (B) BG2.

FIGURE 12 | Distance of the peak bond stress from the left support.
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flexural cracks at the midspan are simulated uniformly by using the
proposed spectral model. It can be observed that the measured FRP
strains are more localized due to the penetration of cracks and their
nearby openings; thus, the strain variation at the midspan exhibits
conditions that are different than the average conditions assumed in
the numerical simulation.

Concrete Strain
In the test, to measure the strain development of concrete, the strain
gauges were located on top of the FRP-RC beams at the midspan. The
typical load-strain relationships of both specimens are shown in
Figure 7. As shown, the proposed numerical approach predicts the
measured concrete strains for BG1 and BG2 reasonably well. Similar to

the development of the FRP strains in Figure 6, the concrete strain is
negligible before cracking, and it increases remarkably with load until
failure after concrete cracking at a load level of 14 kN. The experimental
strain of the concrete on the top surface is compared with the
predictions of the proposed model and FE simulation. The
differences between the tested data and numerical results are shown
in Figure 7. One of the reasons for this discrepancy may be the
heterogeneity of the concrete material, as it is assumed to be
homogeneous for the numerical calculation to simplify the nonlinear
analysis. Nevertheless, considering the fact that only one-dimensional
and two-dimensional elements are used for numerical simulation in the
proposed spectral approach and FEM, respectively, the predicted global
and local behaviours are reasonable, as presented previously, which
demonstrates the reliability of the proposed spectral model.

As previously presented, the cross section of the reinforced
beam was divided into several fibres to update the material
properties during nonlinear analysis. Hence, the concrete strains
of BG1 and BG2 at themidspan can be evaluated along the depth of
the beam at different load levels. Figure 8 shows the strain profiles
on the cross section at different load levels for the two RC beams.
The slopes of the strain profiles represent the curvature of the cross
section. Obviously, the concrete strain across the depth of the
section shows a linear relationship, and a larger strain in the
compressive and tensile sections are observed at higher load levels.

By using the strain sensors located at the top of the reinforced
concrete beam, the neutral axis depth can be deduced by using the
curvature (φ) and concrete strain at the top fibre of the midspan
(εc) as follows:

x � εc
φ

(24)

According to the distribution of the concrete strain along the
depth of the cross section, as illustrated in Figure 8, the average
neutral axis depth can be evaluated numerically by using linear
interpolation. The numerical prediction and experimental neutral
axis depth are compared in Figure 9. The neutral axis depth,
which is located at the middle of the cross section, has a value of
125 mm before cracking and decreases significantly when a
cracking load of 14 kN is reached. Thereafter, the neutral axis
depth increases slightly until the maximum load level. The
influence of the reinforcement ratio on the neutral axis depth
is also shown in Figure 9; good agreement can be observed
between the numerical simulation and the experimental results.

FIGURE 13 | ANPSD of BG1.

TABLE 2 | Comparison of the natural frequencies of BG1 and BG2.

Natural frequencies BG1 BG2 Δf (%)

f1(Hz) 76.48 76.98 0.65
f2(Hz) 292.43 293.43 0.34
f3(Hz) 617.35 619.35 0.32
f4(Hz) 1017.75 1020.74 0.29
f5(Hz) 1468.63 1472.63 0.27
f6(Hz) 1952.51 1957.01 0.23

TABLE 3 | Comparison of frequency changes due to damage.

Natural frequencies BG1 BG2

D0 D1 D2 D0 D1 D2

f1 (Hz) 76.48 76.48 75.98 76.98 76.48 76.48
f2 (Hz) 292.43 292.42 292.43 293.43 293.42 293.42
f3 (Hz) 617.35 616.34 614.84 619.35 618.34 616.84
f4 (Hz) 1017.75 1017.24 1016.74 1020.74 1020.24 1019.74
f5 (Hz) 1468.63 1467.13 1465.63 1472.63 1471.13 1469.63
f6 (Hz) 1952.51 1951.01 1951.01 1957.01 1954.51 1951.01

Note: D0-No damage; D1-10% damage; D2-20% damage.
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Bond Shear Stress
For a segment of the tensile bar surrounded by concrete with a
length of ΔL, as shown in Figure 10, the bond shear stress can be
considered to be uniformly distributed around the interface
between the FRP bar and concrete. For a segment of the FRP
bar, the force equilibrium can be formulated as

dσAbar � τCΔL (25)

where σ is the axial stress of the bar, τ represents the average
interfacial stress between the concrete and the bar, and C denotes
the perimeter of a cross section of the FRP bar. Based on Eq. 25,
the average bond stress can be obtained as

τ � Ebd(ε2 − ε1)
4ΔL (26)

where d is the diameter of the bar, and ε1 and ε2 denote the strains
at both ends of the segment of the bar. From Eq. 26, it is clear that
the average bond stress is proportional to the rate of change in the
FRP strain along the length of bar, and the axial stress of the bar is
balanced by the bond shear stress, which is provided by the
confined concrete surrounding the reinforcement. Therefore, the
bond stress can be calculated according to Eq. 25 using the FRP
strain obtained from the proposed model.

Different surface conditions of the FRP bars in the
manufacturing process would affect the bond behaviour due to

the mechanical interlock between the deformed bar and the
confined concrete. This effect is beyond the scope of this study,
considering the simplicity of proposed one-dimensional model.
Hence, to study the interfacial bond behaviour, the average bond
shear stress along the length of bar is numerically evaluated using
Eq. 26. A refined mesh is needed to study the interfacial bond
stress, and the length of the proposed one-dimensional element is
defined as 0.01 m, resulting in 230 spectral elements for the two
specimens. Nevertheless, the computational cost has decreased
dramatically compared with that of conventional FEM. Since few
strain gauges were used in the test, the bond stresses along the
lengths of the beams were not measured. To clarify, the numerical
results are discussed in this section.

The average bond shear stress of BG1 and BG2 distributed along
the length of the FRP bar are evaluated numerically, as shown in
Figures 11A,B, respectively. As the smeared crack model is
employed to model flexural cracks in this study, concrete
cracking is represented by reducing the elastic modulus of each
element. Hence, the bond stress concentrations near the flexural
cracks are not represented in a distributed way. As shown, the
predicted bond stress between the two loading points at themidspan
of the RC beams tends to be zero, and it increases from the loading
point to the shear span until reaching a peak stress. With increasing
load, the value of peak bond stress increases. The location of the peak
point would gradually move towards the supported end of the beam
with increasing load, from 0.52m at 20 kN to 0.24m at 50 kN for

FIGURE 14 | First four mode shapes of BG1 of intact (solid line) and damaged (dash line) scenarios. (A): The first mode, (B): The secondmode, (C): The third mode,
(D): The fourth mode.
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BG1, and from 0.58 m at 20 kN to 0.2 m at 70 kN for BG2. This
phenomenon demonstrates that the concrete surrounding the FRP
bar might peel off near the beam’s support at a high load level, as the
maximum bond strength is exceeded. Furthermore, it is worth
noting that the value of the peak bond stress of BG1 (from 11.69
to 13.79MPa) is higher than that of BG2 (from 4.93 to 7.25MPa)
before the ultimate load is achieved, which means that debonding
failure of the FRP bars at the support region might occur in an RC
beam with a lower reinforcement ratio.

Figure 12 shows the distance of the peak bond stress from the
left support of the reinforced beam under different load levels.
The peak bond stresses are located at the point of loading
initially and could migrate towards the supporting end of the
beam as the load increased, until failure, as long as the cracking
load is reached. The turning points of both curves are associated
with the cracking load at load levels of 12 and 14 kN for BG1 and
BG2, respectively. As seen in Figure 12, the location of the peak
bond stress of BG1 is closer to the free end than BG2 at the same
load level. Additionally, the peak stress of BG1 is higher than
that of BG2, as shown in Figure 11. Therefore, it can be
concluded that end-peeling, which usually occurs in a sudden
and brittle way, is more likely to occur at the surface between the
FRP bar and the surrounding concrete in BG1 than in BG2. Due
to a higher axial stress resistance, a higher reinforcement ratio of

the FRP bars can enhance the shear bond performance of a
reinforced beam.

DYNAMIC VALIDATION

As shown in Eq. 23, the DSM [K], in which the circular frequency ωn
is included, is established in the frequency domain. Since the DSM is
frequency-dependent, only one element is sufficient to capture the
natural frequencies as long as the material and geometrical properties
remain unchanged throughout the entire element by making a
frequency sweep over a wide frequency range. Therefore, the mesh
refinement is no longer needed to capture the natural frequencies and
related mode shapes especially in high frequency range, and a
dramatic reduction of computational costs can be realized.

In this work, the signal of the excitation force is applied at the
two loading points, and the dynamic responses are captured at four
points equally spaced along the beam to simulate different output
channels. Despite the fact that only one element can sufficiently
represent entire reinforced beam (Sun et al., 2018) as long as the
material and geometric properties remains unchanged, more
elements are applied in this study so that the nodes of the
spectral model correspond with the location of the applied load
and output channels. After that, the frequency sampling points are

FIGURE 15 | First four mode shape curvatures of BG1 of damaged scenario.
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swept from 0 to 2,000 Hz to obtain the natural frequencies of the
specimen, and the average normalized power spectral densities are
obtained according to the spectra signatures from all channels.

A typical profile of the average normalized power spectral density
(ANPSD) of BG1 is shown in Figure 13, and the natural frequencies
can be obtained by the frequencies associated with the peak values in
the curve. Using the same method, the modal frequencies of both
specimens are shown in Table 2, and it is clear that the differences
between BG1 and BG2 are quite small (from 0.23 to 0.65 percent),
which shows that the increasing reinforcement ratio only slightly
influences the modal frequencies.

Taking the computational efficiency and accuracy into
account, the spectral method can also be used for damage
identification by employing a vibration-based technique that
can reflect changes in the stiffness, mass or damping ratio of a
structure. To achieve this goal, the element size is set as 0.1 m,
resulting in 23 elements for BG1 and BG2. Two damage scenarios
(D1 and D2) are introduced by reducing the elastic modulus of
the element at 1.0 m by 10–20 percent to numerically simulate the
flexural crack at the midspan of the specimens. Using the same
procedure, the frequency changes among the different levels of
damage scenarios can be calculated, as shown in Table 3. The
frequency changes can be clearly observed which demonstrate the
influence of structural damage on natural frequencies.

The measurement of natural frequencies can exhibit the global
structural changes, but it is insufficient when being used for the
localization of structural damages. The mode shape curvature,
which is extracted from the second-order differentiation of
displacement mode shapes as shown in Eq. 27, is more
sensitive for depicting structural damage than the frequency
characteristics. Hence, it will be used herein to indicate the
damage location of the reinforced beam.

κj �
ϕj(i + 1) − 2ϕj(i) + ϕj(i − 1)

l2i
(27)

In this study, mode shapes can be extracted directly from the
nodal displacement related to each natural frequency since the
proposed spectral model is formulated in the frequency
domain. The damage scenario D2 (20% damage) of BG1 is
chosen to study the alternation of mode shape curvature. The
first four mode shape and mode shape curvature are shown in
Figures 14, 15. According to the abrupt changes of mode shape
curvature observed at the location of damaged element, the
structural changes correlated to changes in material properties,
which are usually caused by structural damage, can be clearly
indicated.

Furthermore, an interesting application of the proposed
model for damage identification is to be used as the baseline
model of FRP-RC beams under a framework of model updating
strategy, in which the static and dynamic measurements are
usually used to update the baseline model in order to assess the
structural conditions. Due to its simplicity and efficiency, the
proposed one-dimensional spectral model enables the updating
procedure to be conducted in a fast way, compared with that of
FE model which requires high computational costs. From this
preliminary study, it is found that the quantification of

structural damage at an early stage can be used to predict
catastrophes and the proposed model has great potential to
achieve this purpose.

CONCLUSION

This study numerically investigated the static and dynamic
performances of a concrete beam reinforced with FRP bars by
using a simplified spectral model. A one-dimensional spectral
model is developed to study the flexural behaviour of FRP-RC
beams, and the global deflection and local strain of concrete and
FRP bars are calculated. Compared with experimental and FE
results, the accuracy of the proposedmodel has been demonstrated,
and satisfactory precision can be achieved by using a small number
of elements. The interfacial bond behaviour between the FRP bar
and the surrounding concrete is simulated. Despite the simplicity
of the proposed one-dimensional model, the peak shear stress and
its propagation towards the support end of the RC beam with
increasing load have been appropriately captured. This
phenomenon represents the tendency of end-peeling of FRP
bars when the interfacial shear strength is exceeded.

Since the proposed spectral model is derived in the frequency
domain, the dynamic characteristics of the FRP-RC beam, such as
the natural frequencies and mode shapes, are obtained by using a
small number of elements. Compared with the FE analysis, the
computational costs are reduced dramatically due to the simplicity
of the proposed model. Furthermore, damage location can be
clearly observed based on the changes of the mode shape
curvatures. Therefore, due to the simplicity and efficiency, the
proposed model might be used as a baseline model for damage
identification to prevent catastrophes at an early stage.
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