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Crystallographic texture is related to the anisotropy or isotropy of material physical
properties, including mechanical performance. The crystallographic effect in
micromachining is more significant than that in macro-processing owing to that the
depth of the cut and the grain size are in the same order. It is of great significance to
model the crystallographic texture evolution induced by mechanical and thermal load
during micro-machining to investigate the surface integrity and performance of the finished
product. This study performed hot deformation experiments of Al alloy 7075 (AA7075)
under various input parameters, including the temperature, temperature rate, stain rate,
and strain, which was designed using the Taguchi method. Following that, crystallographic
orientation of the samples before and after the deformation was tested using electron
back-scattered diffraction (EBSD). Then, the crystallographic texture evolution was
modeled with the parameters obtained by fitting a part of the experimental data. The
crystallographic texture evolution of AA7075 under different levels of input parameters is
studied and analyzed. Finally, the sensitivity of crystallographic orientation evolution to the
process parameter is analyzed. The results indicate that these four input parameters have
a significant impact on some crystallographic texture of the specimens. The proposed
model is instructive in the future investigation of micromachining and microstructure
evolution.

Keywords: hot deformation, crystallographic texture, mechanical load, thermal load, EBSD

INTRODUCTION

Aluminum is the most abundant metal material in the Earth’s crust. It is easy to process and has high
corrosion resistance, electrical conductivity, and thermal conductivity. Alloying aluminum with
other elements can obtain better mechanical properties. Alloy aluminum 7075 (AA7075) is used as
the main structural material for aviation applications and has been the first choice for the aircraft
industry for decades (Yasakau et al., 2014). AA7075, which has high strength-to-density ratio, high
ductility, light weight, corrosion resistance, and superior mechanical properties, is widely used in the
automotive and aerospace industries (Puchicabrera et al., 2006).

The microstructure of the material includes grain orientation, grain size, dislocation density, and
phase transition. During micromachining, the quality of the workpiece will be affected by the
microstructure of the workpiece material (Wu et al., 2019). The machining surface quality has an
important impact on the performance of the part, and many scholars have done some research
around the machining surface quality (Ding et al., 2021). Guo et al. (2021) proposed a new surface
roughness prediction system with good prediction performance, which has certain feasibility and
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practicality. Li et al. (2021) found that grinding assisted by
graphene oxide coolant could improve the surface quality of
grinding. The influence mechanism of surface generation and the
generation mechanism of residual stress in the grinding process
have attracted the attention of many researchers (Li et al., 2019;
Dingetal., 2020; Sun et al., 2021; Xiao et al., 2021). For the surface
quality requirements of precision machining of complex parts,
robotic grinding is also used as a method to control the surface
integrity (Lv et al.,, 2020; Xie et al.,, 2020; Zhu et al,, 2020). The
grain orientation is a key parameter in the analysis of the
microstructure effect. The study of the evolution of the grain
orientation during processing is of great significance for obtaining
better machining quality.

The importance of texture in materials science stems from
“anisotropy”. The properties of single crystals such as
mechanical, thermal, magnetic, optical, and chemical can be
very different in different crystallographic directions. For
example, rotation of the axis of loading can result in a 15%
increase in the Young’s modulus of commercial pure aluminum
from 63 to 72 GPa. Simoneau et al. (2007) through the
orthogonal micromachining of normalized AISI 1045 steel
and refined AISI 1045 steel found that the small grain size
will reduce the maximum plastic strain during chip formation. If
the orientation of the grain boundary is not parallel to the shear
surface, it can reduce the size of the pits on the processed
surface. Cho et al. (2004) studied the effect of initial
crystallographic orientation on the microstructure evolution
of Ni-30 Fe alloy and found that the development of the
deformed microstructure will be affected to a certain extent
by the initial grains. Wu et al. (2015) found through copper
microcutting experiments that the grain orientation has a great
influence on the cutting force and the formation of burrs. The
movement direction of the dislocation is obliquely forward of
the cutting direction, which is beneficial to reduce the cutting
force and the formation of burrs. Lin and Shiu (2016) used
molecular dynamics methods to study the nanogrooving of
single-crystal copper, and the results showed that the grain
orientation has a significant effect on the cutting force and
groove morphology. As a typical micro-part processing
technology, microgrinding will be significantly influenced by
the microstructure effect of the workpiece material. Min et al.
(2006) used the tool at different angles relative to the workpiece
direction to micro grind face centered cubic (FCC) single crystal
materials and found that due to different crystal grain
orientations, the activated slip system is different, which will
have a significant effect on the surface and edges. Zhao et al.
(2021) found that the grain orientation has a significant effect on
the residual stress of microgrinding. Aicheler (2010) found that
[111] surface grains produced much greater damage and
roughness than the oriented surface grains in [100] through
surface thermal fatigue experiments of polycrystalline copper.
This is because the grains of the two orientations of <111> and
<100> had different evolution during the thermal fatigue test of
polycrystalline copper, and the surface with a grain orientation
of <111> was severely deformed, while the surface with a grain
orientation of <100> remained almost unchanged (Aicheler
et al., 2011).

Crystallographic Texture Evolution Modeling

The texture evolution of aluminum alloys is mainly caused by
the rotation of the operating slip system towards the direction of
the applied external force. Also, twinning is considered to
contribute to the texture evolution of AA7075 (Tabei 2015).
Zhang and Li (2008) studied the grain orientation evolution of
extruded magnesium alloy AZ31B sheets under uniaxial
stretching at room temperature and found that the twin
behavior is also different due to different initial orientations of
the grains. Fang et al. (2011) carried out tensile tests on high
manganese TWIP steel at different temperatures and found that
temperature has a certain effect on the grain orientation evolution
and twinning. Chen et al. (2018) studied the effect of strain rate
and temperature caused by friction during high-speed sliding on
the evolution of copper microstructure, and the results showed
that the deformation is dominated by dislocation movement and
twinning at lower or higher strain rates. Peng et al. (2018)
conducted a uniaxial tensile test on a pure copper sample. In
the experiment, with the increase of strain, the crystal grains with
orientation <110> gradually rotated to the <111> orientation,
and finally found that there were three main grain orientations.
The ratio of <111> oriented grains increased significantly, the
ratio of <110> oriented grains decreased significantly, and the
ratio of <100> oriented grains hardly changed. Sun et al. (2019)
studied the Cu-Sn low-temperature TLP-bonding solder joints
and observed the grain orientation of the samples at 235, 250, and
265°C reflow and found that CusZns and CuzZn grains showed
the preferential orientations of [001] and [100]. Parajuli et al.
(2018) found that after annealing the gold film along the <111>
direction, the grain orientation changed significantly. The
proportion of <111> oriented grains increased from 50 to 70%
because <111> is the preferred orientation of the gold film under
certain conditions.

Zhang et al. (2018) conducted stress fracture experiments on
Waspaloy alloy and found that the grain orientation evolution
behavior is related to the initial grain size of the sample. Zhang
et al. (2021) conducted cold rolling experiments on ultra-thin
grain-oriented silicon steel and found that changing the shear
distribution during the rolling process would change the
evolution of grain orientation. Wang et al. (2021) combined
the VPSC model and the finite element cutting simulation
model to study the texture changes during Ti-6Al-4V
processing and found that the slip system plays an important
role in the formation of shear texture. Gong et al. (2017) studied
the effect of microgrinding parameters on the ground surface and
microstructure through a nickel-based single-crystal superalloy
microgrinding experiment. Riyad et al. (2021) established a
simulation framework based on multilevel crystal plasticity to
study the texture evolution of Ti-6Al-4V in tension and
compression. Tang et al. (2019) considered thermo-mechanical
effects and established a viscoplastic self-consistent model based
on dislocation density and introduced it into the hot extrusion
process of magnesium alloy bars to analyze the changes in the
microstructure. Roatta et al. (2021) used a polycrystalline plastic
viscoplastic self-consistent (VPSC) model based on an affine
linearization procedure to analyze the crystallographic texture
evolution of Zn-Cu-Ti alloy sheets under simple shear and
uniaxial tension.
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FIGURE 1 | Schematic illustration of Euler angles defined by Bunge’s
notation.

Researchers concur that crystallographic texture
evolutions are important microstructural evolutions
occurring in the processing of materials. The above
literature mentioned several experimental observations of
the abovementioned phenomena. To the best of my belief,
the predictive model of crystallographic texture evolution is
not presented, which takes the effect of strain rate, strain,
temperature, and temperature rate induced by the thermal-
mechanical load in machining of different types of metals and
alloys. This work focused on analytically modeling the
crystallographic texture evolution in microgrinding of
AA7075 and developed an empirical model considering the
effect of the strain rate, strain, temperature, and temperature
rate with the parameters obtained by fitting the
experimental data.

CRYSTALLOGRAPHIC TEXTURE
EVOLUTION MODELING

Representation of Crystallographic Texture
AA7075 is a FCC metal, and there is no phase transformation
in the microgrinding process. The texture research of
materials is mainly focused on microtexture analysis.
Electron backscatter diffraction (EBSD) is the main tool
for microtexture analysis.

Euler angles are about Cartesian axes of the rotation required,
and it can be obtained in the desired direction from a reference
direction. The work follows Bunge’s notation; the Euler angles are
represented by ¢,, ®, and ¢,. The definition of Bunge’s notation
is shown in Figure 1. In order to get to the desired orientation, ¢,
is rotated around the z axis. ® is rotated around the x axis that has
already been rotated, as shown by x’ in Figure 1. ¢, is the rotation
about the z’ axis (the z axis after the first two rotations).

Crystallographic Texture Evolution Modeling

Each crystallite’s orientation coordinates are called the
“crystal” frame. In Bunge’s notation of Euler angles, the range
of ¢, and ¢, is [0, 2n] while the range of ® is [0, n].

Modeling of Crystallographic Texture

Evolution

Experimental results show that twinning is mostly suppressed in
FCC metals such as aluminum, and the major mechanism of
inelastic deformation is slip (Barlat et al., 1997). The reason for
the change of the crystallographic orientation in slip deformation
is explained by Schmid’s law (Schmid and Boas 1950). From the
perspective of thermodynamics, the direction of the normal slip
plane (n) of the crystal should be consistent with the direction of
the externally applied load(s). The activation of any slip system
requires that the shear stress acting on the slip system to reach a
critical value, the so-called “critical resolved shear stress” or Tcgss.
Eshelby proposed the strain and rotation fields in the ellipsoidal
grain (Eshelby 1957). Therefore, the rotation of each grain can be
determined. Following that, “self-consistent” approaches were
introduced to solve the crystal plasticity problem (Hutchinson
1970). The spin (rotation rate) Qf; of the crystal explains that the
crystallographic texture evolution can be found using the
following formula:

o0, = [1:57 (6-4) W

where S is the fourth-order Eshelby tensor that is only a function
of the shape of the ellipsoid particle, and [] is the skew-symmetric
fourth-order Eshelby tensor (Eshelby 1957). &, is the strain rate in
the crystal; the overline denotes the value of the medium. The
self-consistent approach leads to the following (Molinari et al.,
1987):

& —&j= M (0~ 0), )

where M* is the secant modulus associated with the rate.

Feng et al. (2018) used the modified Johnson-Cook flow stress
law to calculate the cutting and plowing forces considering the
grain size and proposed an analytical model for predicting the
milling temperature of Inconel 718 considering the effect of
dynamic recrystallization. In this study, we consider only the
effect of grain orientation. In this process, the hardening behavior
of the material is taken into account and is used to update Tcgss.
The Johnson-Cook model can be used to obtain the constitutive
behavior of AA7075 at each temperature.

n E TO_Tw "
0=(A+Bs)<1+Clns—0>(1—(m> >, (3)

where A, B, C, m, n, and &, are material constants, ¢ is the plastic
strain, € is the plastic strain rate, T is the workpiece temperature,
T\, is the ambient temperature, and T, is the material melting

TABLE 1 | Johnson-Cook model parameters for Al Alloy 7075.

A (MPa) B (MPa) c m n Tm(°C) € (s7")

520 ar7 0.001 1 0.52 619.85 5x 1074
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FIGURE 2 | Samples before and after the hot compression test.

temperature. The values of Johnson-Cook model parameters are
from Flores-Johnson et al. (2014) in Tablel.

From the theoretical analysis, it is captured that
crystallographic texture evolution is related to the strain rate,
strain, temperature, and temperature rate. Therefore, the
empirical model can be expressed as follows:

Qf = f(T.T,4¢). 4)

For polycrystalline material, crystallographic texture is
represented by COs and the corresponding orientation
distribution  functions (ODFs). Crystallographic texture
evolution can be represented by the ODF variation of main
COs, as follows:

Fonon)= g TR T % g%, )

where a;; is the constant and exponents.
To convert the nonlinear model to a linear model, logarithmic
transformation is used.

lnf(% 9)) = Inay, + aplnT + awlnT + awlné + agslne . (6)

For model simplification, Eq. (6) can be given as follows:
y =By +BA+BB+pC+BD+I, (7)

where y is logarithmic transformations of the measured surface
roughness, and A, B, C, and D are temperature, temperature
rate, strain rate, and strain on a logarithmic scale, respectively;
Bo> By Bys By etc., are coefficients to be estimated by the least
squares method, and 9§ is the randomly distributed error terms.

EXPERIMENTS METHOD

Hot Compression Test

In the research process, AA7075 is used as the experimental
material. The dimension of samples is a diameter of 8 mm and the
height of 12 mm as shown in Figure 2.

In order to simulate the microgrinding process and study
the flow behavior and crystallographic texture evolution of
AA7075, the isothermal compression test was carried out on
the Gleeble-3800 thermo-mechanical simulator as shown in

Crystallographic Texture Evolution Modeling

Figure 3, and each parameter was set to 3 levels, respectively;
the temperature was 350, 400, and 450°C, and the temperature
rate was 1, 10, and 100°C/s; the strain rate was 0.01, 0.1, and 1 s-1,
and the strain was 0.5, 0.6, and 0.7. The hot compression tests
were designed according to the Taguchi method, as shown in
Table 2.

The Gleeble-3800 thermo-mechanical simulator is composed
of a computer control system, mechanical control system, and
thermal control system, which can simulate various thermal-
mechanical processes, such as thermal tension, thermal
compression, and plane deformation. For the hot compression
test, each sample was heated to the target temperature according
to the respective set temperature rate in Table 1 and then held for
2 min, after which the specimens were compressed according to
the respective corresponding strain rate and strain.

The details of the hot compression process are shown in
Figure 4.

Microstructure Observation

To study the microstructure evolution during hot compression,
the microstructure of the samples before and after the test was
observed by EBSD. The surface of the compressed sample was
polished before the EBSD examination. EBSD data were taken
from the center of the polished surface. The samples were
polished and tested as depicted in Figure 5.

RESULTS AND DISCUSSION

EBSD Measurement Result

Inverse pole diagrams (IPFs) of nine samples were obtained from
EBSD, as shown in Figure 6, which can be used as a qualitative
description of microtexture.

The COs and the corresponding distributions of the nine
samples were analyzed by TSL OIM Data Collection 5
software and depicted by the OIM micrographs, as shown
in Figure 7.

The ODF is a preferred orientation representation of the three-
dimensional spatial distribution of a crystal and represents the

H

& 4
1

"

b
]

}
\

FIGURE 3 | G1eeble-3800 compression test setup.
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TABLE 2 | Parameter detalils in the hot compression test.

Factors Temperature rate (°C/s)
NO.
1 1
2 1
3 1
4 10
5 10
6 10
7 100
8 100
9 100
i
e Temperature:350, 400 and /\/ \/\/\/\
gi 450°C holding 2 minutes
- Cooli
g Temperature rate:1, ng
= 10 and 100°C/s
2
Strain rate: 0.01, 0.1 and 15!

Time (s)

FIGURE 4 | Hot compression test procedure.

odds of a particular crystal orientation defined by the Euler
angles. The COs and the corresponding ODFs of the nine
samples were obtained by EBSD tests. The top 11 ODFs and
COs are listed in Table 3.

For comparing the variance of microtexture intuitively, the
ODFs of nine specimens are described in Figure 8.

Form Figure 8, it is found that the ODFs of specimens are
completely different, which indicates that crystallographic texture
evolution is conspicuous.

Temperature (°C)

Strain rate (s) Deformation (um)

350 0.01 50
400 0.1 60
450 1 70
350 0.1 70
400 1 50
450 0.01 60
350 1 60
400 0.01 70
450 0.1 50

The Linear Regression Analysis

In the research process, the crystallographic texture evolution is
represented by the main COs evolution of specimens. To determine
the main COs, the calculated method was developed. In the method,
the ODF variation of each CO is obtained by calculating the
difference value between the specimens before and after hot
deformation. Then, the sum for ODF variation of each CO was
calculated, and the top three variations represent COs evolution. The
ODF variation of each specimen is listed in Table 4.

It is found that the top three COs are (270.0, 35.3, and 45.0),
(35.3,90.0, and 45.0), and (270.0, 25.2, and 45.0). To connect the
crystallographic texture evolution to the process parameters of
hot deformation intuitively, the process parameters and ODF
variation of the top three COs are listed in Table 5.

The coefficients of the three CO evolutions are determined by
fitting predictions with 9 groups of experimental data, with the
R-squares of 0.8460, 0.9575, and 0.7064, respectively.

+0.9495 ,
f(270.0, 15.3450) = 4.1 189T0.0536T 80.020280.6141

- 2.4915 ,
f (35.3,9045.0) = _10.0246T0.1197T 804061981.6069,

- - =7.1702 , _
f(270'0325'2,45.0) = 25.9283T 0A0372T 80‘26408 4A7421.

>

Sensitive Analysis

The sensitivity analysis of crystallographic orientation evolution to the
parameters of the hot deformation process was carried out to
investigate the significance of input parameters. Four input

Color Coded Map Type: Crystal Orientation
Orientation Orientation Total Partition
7 Phase Euler Angles {hk@i}<uvit)iv> Min Max Fraction Fraction
Polished B Auminum  (270.0,353,450) (112)§11-1] 0° 15° 0343 0343
surface B Auminum  (353,90.0,450) (110f1-11  0° 15° 0341 0341
Hl Auminum (0.0, 0.0,0.0) (001100 ©0° 15° 0063  0.063
[ Auminum (90.0,90.0,450) (1104001  0° 15° 0092  0.092
B Auminum  (547.90.0,450) (110{1-12] 0° 15° 0003  0.003
[ Auminum (121.0,36.7,266) (123)-6-34] 0° 15° 0013 0013
B Auminum  (56.8,77.4,266) (241{1-12] 0° 15° 0004  0.004
B Auminum  (270.0,547,450) (11111-2] 0 15° 0001  0.001
Il Auminum  (270.0,25.2,450) (113)§33-2) 0° 15* 0002  0.002
Hl Auminum  (3150,00.00) (001110  0° 10° 0000  0.000
B Auminum  (15.0,57.7.184) (132)44-21] 0° 10° 0.000 0.000
Sample Initial microstructure Crystallographic orientation and fraction
FIGURE 5 | Initial microstructure of AA7075.
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4

FIGURE 6 | Inverse pole figures of AA7075.
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FIGURE 7 | The COs and the corresponding distributions.

parameters were selected for sensitivity analysis, including
temperature, temperature rate, strain rate, and strain. The
influence of each main input on the three crystallographic
orientations (270.0, 35.3, 45.0), (35.3, 90.0, 45.0), and (270.0, 25.2,
45.0) was shown in Figure 9.

The results show that the process parameters have a greater
impact on the crystallographic orientation evolution within the
scope of the experimental exploration. The three crystallographic
orientations (270.0, 35.3, 45.0), (35.3, 90.0, 45.0), and (270.0, 25.2,
45.0) have negative correlation with temperature, temperature rate,
and strain. The grain orientations of (270.0, 35.3, 45.0) and (35.3,

90.0, 45.0) also show negative correlation with the strain rate, while
grain orientations of (270.0, 25.2, and 45.0) are positively correlated
with the strain rate. Therefore, to obtain the two crystallographic
orientations (270.0, 35.3, 45.0) and (35.3, 90.0, 45.0), lower
temperature, temperature rate, strain rate, and the strain are
required. To obtain crystallographic orientation of (270.0, 25.2,
45.0), low temperature, small temperature rate, small strain, and
large strain rate are required. At the same time, it can be seen that
the effect of temperature on the evolution of grain orientation is
almost linear, and as the strain rate increases, the rate of grain
orientation evolution slows down.
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TABLE 3 | The COs and the corresponding ODFs of specimens.

Bunge Euler angles

(91, 2, 95)

Specimen Initial NO.1 NO.2 NO.3
(270.0, 35.3, 45.0) 0.343 0.144 0.109 0.000
(85.3, 90.0, 45.0) 0.341 0.262 0.171 0.002
(0.0, 0.0, 0.0 0.063 0.069 0.062 0.002
(90.0, 90.0, 45.0) 0.092 0.078 0.059 0.002
(54.7, 90.0, 45.0) 0.003 0.004 0.025 0.008
(121.0, 36.7, 26.6) 0.013 0.031 0.127 0.019
(56.8, 77.4, 26.6) 0.004 0.007 0.028 0.044
(270.0, 54.7, 45.0) 0.001 0.025 0.012 0.001
(270.0, 25.2, 45.0) 0.002 0.154 0.054 0.020
(815.0, 0.0, 0.0) 0.000 0.000 0.000 0.002
(15.0, 57.7, 18.4) 0.000 0.001 0.002 0.014

§C018C028CO3mCO4MCO58CO6NCO7 8CO8CO9WCOI0MCO11

o
‘wmm

i N\ SRR\
INSREEAN: Y

=
3

- S
Rl N\

Specimens

FIGURE 8 | The ODF of specimens after hot deformation.

CONCLUSION

This article mainly studies the crystallographic orientation
evolution of Al alloy 7075 under mechanical and thermal
loads. The Taguchi method was used to conduct hot
compression tests on Al alloy 7075 samples at different
temperatures, temperature rates, strains, and strain rates, and
the COs and the corresponding ODFs are measured by the EBSD
tests. The crystallographic texture evolution was modeled using

Crystallographic Texture Evolution Modeling

ODF
NO.4 NO.5 NO.6 NO.7 NO.8 NO.9
0.014 0.047 0.000 0.047 0.010 0.003
0.078 0.123 0.053 0.110 0.022 0.018
0.018 0.047 0.008 0.025 0.001 0.021
0.015 0.065 0.010 0.031 0.038 0.021
0.006 0.028 0.014 0.016 0.045 0.001
0.082 0.085 0.002 0.041 0.020 0.004
0.008 0.051 0.006 0.059 0.048 0.015
0.008 0.036 0.014 0.074 0.022 0.173
0.070 0.082 0.000 0.083 0.012 0.107
0.003 0.000 0.000 0.000 0.006 0.001
0.003 0.002 0.001 0.001 0.054 0.000

the parameters obtained by the fitting part of the experimental data.
The model linked the crystallographic texture evolution with the hot
deformation process parameters to study the crystallographic texture
evolution of Al Alloy 7075 under force-thermal loading. The
following conclusions are drawn from this study:

1) The surface of Al Alloy 7075 sample had different crystallographic
texture evolutions under the hot compression test with four
different levels of parameter combination.

2) For the top three crystallographic orientations of the ODF
variation, with the increase of temperature, temperature rate,
strain rate, and strain, the grain orientations of (270.0, 35.3,
45.0) and (35.3, 90.0, 45.0) decrease, and oriented grains of
(270.0, 25.2, 45.0) decrease with the increase of temperature,
temperature rate, and strain, but there is a positive correlation
with the strain rate.

3) The effect of temperature on the evolution of grain orientation
is almost linear, and as the strain rate increases, the rate of
grain orientation evolution slows down.

4) The thermo-mechanical load in micromachining is closely related
to the process parameters. This study will be instructive for the
crystallographic texture evolution in micromachining. This paper
focuses on crystallographic orientation evolution under the
thermo-mechanical load, and it is important to examine the

TABLE 4 | The ODF variation of each specimen.

Bunge Euler angles

(91, @, 93)

Specimen NO.1 NO.2 NO.3 NO.4
(270.0, 35.3, 45.0) 0.199 0.234 0.343 0.329
(35.3, 90.0, 45.0) 0.079 0.17 0.339 0.263
(0.0, 0.0, 0.0) 0.006 0.001 0.061 0.045
(90.0, 90.0, 45.0) 0.014 0.033 0.09 0.077
(54.7, 90.0, 45.0) 0.001 0.022 0.005 0.003
(121.0, 36.7, 26.6) 0.018 0.114 0.006 0.019
(56.8, 77.4, 26.6) 0.003 0.024 0.04 0.004
(270.0, 54.7, 45.0) 0.024 0.011 0 0.007
(270.0, 25.2, 45.0) 0.152 0.052 0.018 0.068
(315.0, 0.0, 0.0) 0 0 0.002 0.003
(15.0, 57.7, 18.4) 0.001 0.002 0.014 0.003

ODF variation

NO.5 NO.6 NO.7 NO.8 NO.9 Sum
0.296 0.343 0.296 0.333 0.34 2.713
0.218 0.288 0.231 0.319 0.323 2.23
0.016 0.055 0.038 0.062 0.042 0.326
0.027 0.082 0.061 0.054 0.071 0.509
0.025 0.011 0.013 0.042 0.002 0.124
0.072 0.011 0.028 0.007 0.009 0.284
0.047 0.002 0.065 0.044 0.011 0.23
0.035 0.013 0.073 0.021 0.172 0.356
0.08 0.002 0.081 0.01 0.105 0.568

0 0 0 0.006 0.001 0.012
0.002 0.001 0.001 0.054 0 0.078
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TABLE 5 | The process parameters and ODF variation of the top three COs.

Crystallographic Texture Evolution Modeling

Factors Temperature rate Temperature (°C) Strain rate Deformation (um) Bunge Euler angles (¢4, 0, ¢,)
o —1
No (°C/s) ™) (270.0,353, (353,900,  (270.0,252,
- 45.0) 45.0) 45.0)
1 1 350 0.01 50 0.199 0.079 0.152
2 1 400 0.1 60 0.234 0.17 0.052
3 1 450 1 70 0.343 0.339 0.018
4 10 350 0.1 70 0.329 0.263 0.068
5 10 400 1 50 0.296 0.218 0.08
6 10 450 0.01 60 0.343 0.288 0.002
7 100 350 1 60 0.296 0.231 0.081
8 100 400 0.01 70 0.333 0.319 0.01
9 100 450 0.1 50 0.34 0.323 0.105
A
-35 0 -33 -30
s g = g
g < .100 23 2
o3 352 o o o
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o o o o
R 354 g = g
S S S 36 S
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FIGURE 9 | Sensitivity analysis of the main effects on (A) (270.0, 35.3, 45.0), (B) (35.3, 90.0, 45.0), and (C) (270.0, 25.2, 45.0) orientations.
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evolution of other material microstructures evolution such as grain
size and recrystallization in future studies.
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GLOSSARY

CO Crystallographic orientation

EBSD Electron back-scattered diffraction

FCC Face centered cubic

IPFs Inverse pole diagrams

ODF Orientation distribution function Notation
aij the constant and exponents

A the yield stress

B the coefficient of strain hardening

C the coefficient of strain rate hardening

m the thermal softening exponent

¢
M the secant modulus

Crystallographic Texture Evolution Modeling

1 the strain hardening exponent

S the fourth-order Eshelby tensor

T temperature

T temperature rate

Ty, T, Ty, workpiece, melting and ambient temperature
& the randomly distributed error terms

€ Plastic strain

€ Plastic strain rate

€y Material constant

Ef] the strain rate in the crystal

[ the skew-symmetric fourth-order Eshelby tensor
TCRsS critical resolved shear stress

c .
Q; ; the rotation rate of the crystal
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