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Effective properties of functional materials crucially depend on their 3D microstructure. In
this paper, we investigate quantitative relationships between descriptors of two-phase
microstructures, consisting of solid and pores and their mass transport properties. To that
end, we generate a vast database comprising 90,000 microstructures drawn from nine
different stochastic models, and compute their effective diffusivity and permeability as well
as various microstructural descriptors. To the best of our knowledge, this is the largest and
most diverse dataset created for studying the influence of 3D microstructure on mass
transport. In particular, we establish microstructure-property relationships using analytical
prediction formulas, artificial (fully-connected) neural networks, and convolutional neural
networks. Again, to the best of our knowledge, this is the first time that these three
statistical learning approaches are quantitatively compared on the same dataset. The
diversity of the dataset increases the generality of the determined relationships, and its size
is vital for robust training of convolutional neural networks. We make the 3D
microstructures, their structural descriptors and effective properties, as well as the
code used to study the relationships between them available open access.

Keywords: diffusivity, permeability, virtual materials testing, deep learning, porous materials, mass transport,
structure-property relationship

1 INTRODUCTION

The performance of functional materials is significantly influenced by the underlying 3D structure
andmorphology (Torquato, 2002;Willot and Forest, 2018). Thus, optimizing 3Dmicrostructures for
high performance in particular applications is one of the main goals in many branches of materials
research. Typically, the amount of candidate materials structures is enormous and beyond the reach
of conventional experimental screening (Dunn et al., 2020; Saunders et al., 2021) (for example, the
number of potential pharmacologically active molecules is at least 1020 and theoretically estimated at
1060) (Hoffmann and Gastreich, 2019). To overcome this limitation, virtual materials testing is an
approach of increasing importance, where mathematical models are used for both the analysis of
artificially generated materials structures, as well as for the investigation of their effective properties.
By systematically varying the model parameters, a large number of virtual but realistic 3D
microstructures can be drawn from stochastic models just at the cost of computer simulations.
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These structures serve as geometry input for spatially-resolved
numerical simulations of effective properties. In this way,
together with the computation of various descriptors of the
3D microstructures, quantitative microstructure-property
relationships can be established.

Typically, the mathematical models of random porous
microstructures with two phases, solid and pores, are located
in the (continuous) Euclidean space. If we restrict ourselves to
discrete representations on a computational grid, say a cube of N3

lattice points, the number of theoretically possible structures is
2N

3
. Although many of those structures are not suitable to

describe real materials, still a huge number of structural
scenarios remains for which this is the case. In virtual
materials testing, 3D microstructures are typically explored by
means of parametric models that span some region of interest,
using tools from mathematical morphology and stochastic
geometry (Lantuéjoul, 2002; Chiu et al., 2013; Jeulin, 2021).
These microstructure models can be calibrated with
experimental data gained, e.g., by tomographic imaging or
simply be inspired by experimentally observed structures.
There are numerous examples for artificial generation and
virtual testing of functional materials, including applications
for lithium ion batteries (Feinauer et al., 2015; Hein et al.,
2016; Westhoff et al., 2018a; Prifling et al., 2019; Hein et al.,
2020; Allen et al., 2021; Prifling et al., 2021a; Birkholz et al., 2021;
Furat et al., 2021), solid oxide fuel cells (Abdallah et al., 2016;
Neumann et al., 2016; Moussaoui et al., 2018), amorphous silica
(Prifling et al., 2021b), gas diffusion electrodes (Neumann et al.,
2019a), open-cell foams (Westhoff et al., 2018b), organic
semiconductors (Westhoff et al., 2015), mesoporous alumina
(Wang et al., 2015), solar cells (Stenzel et al., 2011), electric
double-layer capacitors (Prill et al., 2017), platelet-filled
composites (Röding et al., 2018), fiber-based materials (Röding
et al., 2016; Townsend et al., 2021), and pharmaceutical coatings
for controlled drug release (Barman et al., 2019).

The focus of the present paper is on quantifying the influence
of 3D microstructure on mass transport properties of porous
materials and, specifically, in effective diffusivity and fluid
permeability. There are numerous microstructural descriptors
that are useful for the prediction of those properties. The most
fundamental one is porosity, followed by specific surface area
i.e., the pore-solid interface area per unit volume. However, there
are many more sophisticated structural descriptors considered in
literature, e.g., various measures of tortuosity, pore size
distributions, constrictivity, and two-point correlation
functions. Various combinations of such descriptors have been
used to establish microstructure-property relationships of varying
complexity. The most well-known relationship for permeability is
perhaps the Kozeny-Carman equation which in its basic form
only uses porosity and specific surface area to describe the
underlying 3D microstructure (Kozeny, 1927; Carman, 1937).
For effective diffusivity, there exist equally simple formulas, in
some cases involving only porosity (Masaro and Zhu, 1999). Later
on, analytical expressions of this type have been developed where
more complex structural descriptors have been taken into
account, such as constrictivity and tortuosity (Barman et al.,
2019; Neumann. et al., 2020), as well as two-point correlation

functions (Berryman, 1985; Torquato, 1991; Jiao and Torquato,
2012; Liasneuski et al., 2014; Hlushkou et al., 2015; Ma and
Torquato, 2018). Some of these formulas still are sufficiently
simple to allow a certain physical interpretation. On the other
hand, numerous attempts have been made to use high-
dimensional regression methods and machine learning in
order to obtain more accurate prediction models, where the
descriptors of 3D microstructures and mass transport
properties, as input and output variables, still have physical
underpinnings. But the relationships derived between them
are, in a sense, more data-driven and less determined by the
underlying physics, where this effect amplifies with increasing
dimension and complexity of the prediction model. For example,
in van der Linden et al. (2016), the permeability and 27 different
microstructural descriptors were computed for 536 granular
materials structures. This information was then used to
develop (log-)linear relationships and find relevant subsets of
descriptors through variable selection procedures. In Stenzel et al.
(2017), effective conductivity (mathematically equivalent to
effective diffusivity) and numerous structural descriptors
including constrictivity and tortuosity were computed for
8,119 microstructures, where conventional regression, random
forests, and artificial neural networks (ANNs) were used for
prediction. In Röding et al. (2020), permeability, tortuosity
and two-point correlation functions were computed for 30,000
structures, where log-linear regression and ANNs were used for
prediction. Although machine learning regression using ANNs is
less transparent compared to analytical prediction formulas and
hence less interpretable, the benefit of this approach is that
arbitrarily complex relationships can be represented by a feed-
forward network due to the universal approximation theorem
(Cybenko, 1989; Hornik et al., 1989). Hence, machine learning
regression can be considered a data-science approach that leads to
insight into new relationships and into which descriptors are
most useful for prediction (Umehara et al., 2019; Röding et al.,
2020). A third option is the prediction of effective properties
using convolutional neural networks (CNNs). Note that
conventional ANNs learn to perform nonlinear regression
using predefined descriptors, whereas CNNs perform their
own descriptor extraction directly from the microstructure,
expressed as nonlinear compositions of convolution filters.
These are then used as input to a conventional ANN that
performs the regression (Kawaguchi et al., 2021). CNNs have
been used for predicting both permeability (Srisutthiyakorn,
2016; Wu et al., 2018; Araya-Polo et al., 2019; Sudakov et al.,
2019; Graczyk and Matyka, 2020; Kamrava et al., 2020) and
effective diffusivity (Wu et al., 2019; Wang et al., 2020), although
in many cases with small datasets and/or only with 2D structures.
Generally, CNNs have the tendency to be even less transparent
than ANNs in terms of understanding how the prediction works.

In the present paper, we investigate an extremely broad range
of virtual two-phase microstructures which are drawn from nine
different stochastic models. For each model type, 10,000
microstructures are generated for different specifications of
model parameters leading, e.g., to varying porosities and
length scales. Hence, in total, our study comprises 90,000
microstructures. For each structure, both effective diffusivity
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and permeability are computed. Furthermore, a multitude of
structural descriptors is determined, like porosity, specific surface
area, median pore radius, radius of the characteristic bottleneck,
constrictivity, tortuosity (and its distribution), chord lengths (and
their distribution), spherical contact distribution, and two-point
correlation functions. The dimension of the largest possible
descriptor space is equal to 236. As already mentioned above,
we utilize analytical prediction formulas as well as ANNs and
CNNs to establish microstructure-property relationships. Due to
the large diversity of the dataset considered in this paper, the
determined relationships are not specific to any particular
morphology, but rather quite generally applicable. For CNNs,
in particular, large amounts of data are needed to ensure robust
training and good generalization to new data. Thus, to the best of
our knowledge, the data considered in this paper is the largest and
most diverse dataset for the study of effective diffusivity and
permeability, which has been reported so far in the literature. To
facilitate further development of microstructure-property
relationships and their predictive power, the microstructures,
their corresponding morphological and effective properties, and
the code used to study microstructure-property relationships are
available open access (Prifling et al., 2021c). Note that besides the
comprehensive database for porous materials considered in the
present paper, there are several further research activities of this
kind for other types of materials, e.g., for composite particulate
materials occurring in crushed ores (Ditscherlein et al., 2021).

The rest of this paper is organized as follows. In Section 2 the
definitions of various structural descriptors are explained as well
as their estimation from 3D image data. They are used as input
variables for establishing microstructure-property relationships.
Then, in Section 3, two descriptors of effective properties, namely
diffusivity and permeability of the pore space, are presented,
which serve as output variables. Section 4 introduces the
stochastic models used for the artificial generation of 3D
microstructures, whereas in Section 5 three different
approaches are explained which are applied to establish the
microstructure-property relationships. Finally, a discussion of
the results obtained in this paper is provided in Section 6.

2 STRUCTURAL DESCRIPTORS AND
THEIR ESTIMATION

The goal of this section is to explain the definitions of various
structural descriptors considered in this paper as well as methods
for their estimation from simulated 3D image data, where the
underlying stochastic 3D microstructure models described in
Section 4 are stationary and isotropic. This implies that the
pore space is a stationary and isotropic random set as well, which
will be denoted by Ξ in the following, i.e., its distribution is
invariant with respect to translations of and rotations around the
origin (Lantuéjoul, 2002; Chiu et al., 2013; Jeulin, 2021). Note that
all microstructures that are drawn from these stochastic models
fulfill periodic boundary conditions in x-, y- and z-directions.
This is taken into account when estimating the structural
descriptors as presented below. In addition to simple scalar
descriptors of Ξ such as volume fraction, specific surface area

or constrictivity, we also consider more complex descriptors like
the chord length distribution, the spherical contact distribution
and the distribution of geodesic tortuosity. In practice, we
represent these distributions by their quantiles, starting from
5%- up to 95%-quantiles in 5% steps.

2.1 Porosity
To begin with, we consider one of the simplest but most
important structural descriptors, namely the porosity ε ∈ [0, 1],
i.e., the volume fraction of the random pore space Ξ ⊂ R3, where
ε � E(]3(Ξ ∩ [0, 1]3)) and ]3 denotes the three-dimensional
Lebesgue measure. This characteristic can be easily
estimated from 3D image data by the point-count method
(Chiu et al., 2013). Note that this estimation method has
obviously not to be adapted further to account for periodic
boundary conditions.

2.2 Specific Surface Area
A further relevant scalar descriptor is the specific surface area of
the interface between solid and pores, denoted by S > 0. It is
defined as the expected surface area of the pore space per unit
volume. In order to estimate this characteristic from voxelized
binary images, we compute weighted sums by considering local
2 × 2 × 2 voxel configurations, where we use the weights proposed
by Schladitz et al. (2007). Periodic boundary conditions are taken
into account by a circular padding of size one in each direction
using the Matlab command “padarray” (MATLAB, 2021).

2.3 Geodesic Tortuosity
Next, we consider the geodesic tortuosity of the pore space, which
is a purely geometric quantity that significantly influences
effective properties (Stenzel et al., 2016; Barman et al., 2019;
Neumann. et al., 2020; Holzer et al., 2021). It is important to point
out that different concepts of tortuosity exist in the literature
(Clennell, 1997; Ghanbarian et al., 2013; Tjaden et al., 2018). The
general idea is to consider shortest paths from a predefined
starting plane to a target plane, which have to be completely
contained in the pore phase. This means, that we consider the
shortest path with respect to the geodesic metric of the pore space
(Lantuéjoul and Maisonneuve, 1984). Then, the distribution of
the lengths τgeo of those shortest paths, divided by the distance of
the two planes, is denoted by d(τgeo). Recall that, in this paper, the
distribution d(τgeo) is represented by 19 quantiles, starting from
5%- up to 95%-quantiles in 5% steps. Furthermore, mean
geodesic tortuosity, denoted by m(τgeo) ≥ 1, is defined as the
mean value of the random variable τgeo, whereas its standard
deviation is denoted by σ(τgeo). A more formal definition of these
quantities within the framework of random sets can be found in
Neumann et al. (2019b), whereas a slightly different definition of
geodesic tortuosity is presented in Barman et al. (2019).
Regarding the estimation of the distribution of geodesic
tortuosity from 3D image data, we compute the shortest paths
with the Dijkstra algorithm (Jungnickel, 2007), where the
transport direction is from low x-values to high x-values. Note
that the transport paths are allowed to “leave” the sampling
window in the y- and z-directions in order to account for
periodic boundary conditions.
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2.4 Constrictivity
In order to define the constrictivity of the pore space, denoted by
β ∈ [0, 1], we first describe the continuous pore size distribution
(CPSD) as well as the concept of simulated mercury intrusion
porosimetry (MIP). The continuous pore size distribution
CPSD: [0,∞)→ [0, 1] has been introduced in Münch and
Holzer (2008) and is based on a morphological opening
(Serra, 1982; Soille, 2003). More precisely, for each radius
r ≥ 0, the value CPSD(r) is given by the volume fraction of
the pore space that can be covered by a potentially overlapping
union of spheres with radius r, which have to be completely
contained in the pore space. The radius rmax is now defined as the
radius for which CPSD(rmax) equals half of the porosity,
i.e., CPSD(rmax) � CPSD(0)/2. The estimation of CPSD(r)
from image data relies on the computation of the so-called
Euclidean distance transform (Maurer et al., 2003; Soille,
2003), which allows to perform an erosion followed by a
dilation using a ball with radius r as structuring element. In
order to take periodic boundary conditions into account, the
computation of the Euclidean distance transform has to be
adapted as follows. At first, a circular padding is applied to
the binary image leading to a 3D image, which is twice as
large in each of the three directions. In a second step, the
Euclidean distance transform is computed on the enlarged
image. Afterwards, a 3D cutout with the same size as the
original image, whose centroid corresponds to the centroid of
the enlarged Euclidean distance transform, is cut out of the
enlarged Euclidean distance transform. Finally, a circular shift
is applied to this cutout using the “circshift” command in Matlab
in order to restore the original spatial arrangement of the voxels
(MATLAB, 2021).

The concept of simulated mercury intrusion porosimetry
(MIP) is similar to that of the CPSD, except that MIP depends
in general on a predefined direction. More precisely, the union of
potentially overlapping balls of radius r considered above has to
form an intrusion from the given direction, when computing the
correspondingly modified volume fraction MIP(r). This
accounts for bottlenecks in the pore space such that the values
of the function MIP: [0,∞)→ [0, 1] are always less or equal than
the corresponding values of CPSD: [0,∞)→ [0, 1],
i.e., MIP(r)≤CPSD(r) for all r ≥ 0. In order to simulate the
intrusion from low x-values to high x-values, the Hoshen-
Kopelman algorithm is used (Hoshen and Kopelman, 1976),
where it is straightforward to apply periodic boundary
conditions in y- and z-directions. Note that due to our
stationarity and isotropy assumptions, the values of MIP do
not depend on the choice of the predefined direction. However,
within the present paper, this quantity is computed in x-direction,
where the intrusion starts at low x-values. Analogously to rmax,
the radius rmin is defined as the radius for whichMIP(rmin) equals
half the porosity, i.e., MIP(rmin) � CPSD(0)/2.

The constrictivity of the pore space is now given by
β � (rmin

rmax
)2 ∈ [0, 1] (Münch and Holzer, 2008), where a

constrictivity of one occurs if there are no constrictions within
the pore space at all. The lower the constrictivity, the more the
transport within the pore space is hindered by bottlenecks. This
geometric characteristic has turned out to significantly influence

effective properties of functional materials (Holzer et al., 2013). A
formal definition of constrictivity within the framework of
random sets can be found in Neumann et al. (2019b).

2.5 Chord Length Distribution
The chord length distribution of the pore space, which is
modelled by a stationary random set Ξ ⊂ R3, is defined as
follows (Ohser and Mücklich, 2000; Ohser and Schladitz, 2009;
Chiu et al., 2013). Given a predefined direction
φ ∈ [0, π2] × [0, 2π), the chord length distribution of the
random set Ξ in direction φ is the distribution of the length L
of the so-called typical line segment (selected at random) in Ξ ∩ ℓ,
where ℓ denotes the line passing through the origin in direction φ.
The distribution of L is denoted by d(L) and, again, represented
by 19 quantiles, starting from 5%- up to 95%-quantiles in 5%
steps. Note that d(L) does not depend on the particular choice of
φ, when considering stationary and isotropic random sets. The
mean and the standard deviation of the chord length distribution
are denoted by m(L) and σ(L), respectively. In the present paper,
observing Ξ ∩ ℓ ∩W within some sampling windowW ⊂ R3, the
chord length distribution is estimated by counting subsequent
voxels belonging to the pore space along the x-axis and
computing the empirical distribution function of the lengths of
these voxel sequences. Note that periodic boundary conditions
can be simply accounted for by merging the first and the last
chord in Ξ ∩ ℓ ∩ W, provided that both chords belong to the
pore space.

2.6 Spherical Contact Distribution
Consider the (random) distance H from the typical point of
Ξc � R3\Ξ to the nearest point within Ξ. The function FH:
[0, ∞) → [0, 1] with FH(r) � P(H≤ r) for each r ≥ 0 is called
the spherical contact distribution function of Ξ. Note that the
values of FH are given by

FH(r) � 1 − P(Ξ ∩ B(o, r) � ∅)
1 − ε

for each r≥ 0,

where B(o, r) ⊂ R3 denotes the closed ball with radius r centered
at the origin (Chiu et al., 2013). The mean, standard deviation and
distribution of H are denoted by m(H), σ(H) and d(H),
respectively. These quantities can be estimated from voxelized
3D image data using the algorithm proposed by Mayer (2004),
which relies on the computation of the Euclidean distance
transform. Thus, periodic boundary conditions are taken into
account by computing the Euclidean distance transform with
respect to periodic boundary conditions as described above in
Section 2.4. As in case of the distribution of geodesic tortuosity
and the chord length distribution, the distribution d(H) is
represented by 19 quantiles.

2.7 Two-Point Correlation Function
For a stationary and isotropic random set Ξ ⊂ R3 describing the
pore space of a porous material, the two-point (pore-pore)
correlation function C: [0, ∞) → [0, 1], which is also called
covariance function (Serra, 1982; Ohser and Schladitz, 2009), is
defined as
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C(r) � P(o ∈ Ξ, x ∈ Ξ) for each r≥ 0, (1)

where x ∈ R3 is an arbitrary point with distance r to the origin
(Matheron, 1975; Torquato, 2002; Chiu et al., 2013). This
quantity can be estimated from voxelized image data by the
Fourier method described in Ohser and Schladitz (Ohser and
Schladitz, 2009), where no further step is required to account for
periodic boundary conditions. In practice, we represent the two-
point correlation function by C(0), C(1), . . ., C(167), where 167 �⌈ ������������

3 · (0.5 · 192)2
√ ⌉ is the maximal distance of two points within

the sampling window W � [0,192]3 with respect to periodic
boundaries. Note that the pore-solid and solid-solid correlation
functions are uniquely determined by the pore-pore correlation
function.

3 EFFECTIVE TRANSPORT PROPERTIES

In this section we briefly explain two effective transport
properties, namely diffusivity and permeability of the pore
space, for which numerical simulations are carried out to
estimate these quantities from 3D image data.

3.1 Diffusivity and M-Factor
Effective tortuosity of the pore space is usually defined by

τeff � ε · D0

Deff
,

where D0 denotes the intrinsic diffusivity and Deff the effective
diffusivity of the pore phase (Cooper et al., 2016). Note thatDeff≤D0,
because the solid phase acts as obstacle hindering the diffusion
process. The characteristic Deff plays a major role in a broad
spectrum of applications including water flow (Sahimi, 2011;
Bear, 2018), battery electrodes (Newman and Thomas-Alyea,
2004; Thorat et al., 2009; Kehrwald et al., 2011; Nguyen et al.,
2020), solid oxide fuel cells (Cooper et al., 2013), biology (Jiao and
Torquato, 2012) and heat transfer (Nellis and Klein, 2009; Kaviany,
2012). This quantity is estimated from voxelized image data using
the TauFactor app for Matlab (Cooper et al., 2016). More precisely,
effective diffusivity is obtained by numerically solving Laplace’s
equation on Ξ, i.e., the following second-order differential
equation is solved:

∇2c � 0 onΞ, (2)

where c denotes the concentration of the diffusing species. Apart
from mass conservation within the pore space, one has to ensure
that the diffusing species can not intrude into the solid phase,
which is formally described the following equation at the interface:

∇c°n � 0 on zΞ, (3)

where the outward pointing unit normal is denoted by n and ◦
denotes the scalar product. Finally, the following equations are
the driving force for the flux in x-direction:

c � 0 onΞ ∩ x0 and c � 1 onΞ ∩ xmax, (4)

where x0 and xmax denote the two parallel planes described by
x � 0 and x � 192, respectively. Note that periodic boundary
conditions are applied in y- and z-direction. Further technical
details regarding the implementation of the equations above can
be found in (Cooper et al., 2016).

TheM-factor, defined asM�Deff/D0, is now given byM� ε/τeff,
where it holds thatM ∈ [0, ε] and, equivalently, τeff ≥ 1, according
to Eq. 21.14 in the book of Torquato (2002). In particular, lower
values ofM correspond to more pronounced transport limitations,
whereas a high value of M indicates nearly no hindrance of
diffusion processes.

3.2 Permeability
The lattice Boltzmann method is a numerical framework for
solving partial differential equations based on kinetic theory, and
is used to simulate fluid flow through porous microstructures
(Gebäck and Heintz, 2014; Gebäck et al., 2015). The Navier-
Stokes equations for pressure-driven flow are solved for the
steady state. No-slip, bounce-back boundary conditions are
used on the interface between the two phases and periodic
boundary conditions are applied orthogonal to the flow
direction. We use the two relaxation time collision model with
the free parameter λeo � 3

16. This ensures that the computed
permeability is independent of the relaxation time (and
thus the viscosity) (Ginzburg et al., 2008). The relaxation time
trel � − 1

λe
is kept at 1.25. The flow is driven by a constant pressure

difference across the structure in the transport direction along the
x-axis (Zou and He, 1997), and a linear gradient is used as initial
condition. The computational grid has the same resolution as the
binary structure arrays, i.e., 192

3
. After convergence to steady-

state flow, the permeability κ is extracted from Darcy’s law
(Torquato, 2002),

�u � −κΔp
μd

. (5)

Here, �u is the average velocity, Δp is the applied pressure
difference, μ is the dynamic viscosity, and d is the length of the
microstructure in the flow direction. The permeability is
independent of the fluid and the pressure difference and is
hence a property solely of the microstructure, provided that
the Reynolds number is sufficiently small (< 0.01). This also
ensures that the velocity is proportional to the pressure difference.
Note that, since we are dealing with simulated microstructure
data on the voxel grid, computed permeabilities are given in
(voxel unit)2.

4 MICROSTRUCTURE GENERATORS

In order to determine microstructure-property relationships
which are as general as possible, we generate a large set of
periodic microstructures with different types of geometries.
More precisely, from each of nine different types of spatial
stochastic models we draw 10,000 microstructures such that 1)
their porosities are (approximately) uniformly distributed in the
interval [0.3, 0.95], and 2) the values of further transport-relevant
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microstructure characteristics (like specific surface area, rmin and
rmax) are located in the same ranges. As a consequence, also the
values of effective diffusivity and permeability are located in the
same ranges for the nine different types of stochastic
microstructure models. Some of the microstructures
considered in the present paper are defined in the
(continuous) Euclidean space, whereas others are generated
directly on a computational grid. Finally, all structures are
converted into 1923 binary arrays with periodic boundary
conditions. The different types of microstructures, described
below in detail, are (I) fiber systems, (II) channel systems, (III)
spatial stochastic graphs, (IV) level sets of Gaussian random
fields, (V) level sets of spinodal decompositions, (VI) hard
ellipsoids, (VII) smoothed hard ellipsoids (VIII) soft ellipsoids,
and (IX) smoothed soft ellipsoids. Examples of microstructures
drawn from the nine different model types are shown in Figure 1.
Note that, as can be seen in Figure 2, the microstructure models
considered in the present paper are designed in such a way that
the resulting sets of artificially generated microstructures are
disperse in the sense that their microstructure descriptors cover

a wide spectrum of values. In particular, keeping the value of a
certain microstructure descriptor fixed, the values of other
characteristics can still be varied “independently” (to a
certain extent). However, on the other hand, note that due to
inherent correlations between some pairs of geometric
microstructure descriptors, the space of values that can be
covered is naturally limited. For example, porosity values
close to one typically go along with a low mean geodesic
tortuosity. To summarize, the 90,000 microstructures drawn
from the nine different stochastic models lead to an extensive
dataset representing a broad range of morphologies, which
allows us to attribute a certain generality of the
microstructure-property relationships determined in the
present paper.

4.1 Fiber Systems
The fiber systems considered in this paper are generated using
essentially the method described in Townsend et al. (2021),
with modifications to allow for periodic and isotropic
structures. Individual fibers are first represented as a set of

FIGURE 1 | Examples of the different types of microstructures, showing an artificially generated fiber system (I), channel system (II), spatial graph (III), level set of a
Gaussian random field (IV), level set of a spinodal decomposition (V), as well as systems of hard ellipsoids (VI), smoothed hard ellipsoids, (VII), soft ellipsoids (VIII), and
smoothed soft ellipsoids (IX). Note that the solid phase is always depicted in blue, whereas mass transport takes place in the transparent porous phase.
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nodes generated by a random walk. The angle between the
directions of two consecutive steps of the random walk are
drawn from a spherical von Mises distribution (Mardia and
Jupp, 1999). The parameters of the von Mises distribution are
the mean direction μdir, which is computed using the angle
between the previous two nodes, and the concentration θdir,
which specifies the global bending tendency of the fibers. The
random walks have a fixed length of 8 nodes. The step length
is drawn from a normal distribution with mean 16 voxels and
standard deviation 2 voxels. To generate the skeleton of a
fiber, we plot a smooth Bézier curve (Gallier, 2000) through
its node points. A curvature parameter ρ for the Bézier curves
controls the local bending tendency of the fibers. This
skeleton is discretized on the 1923 voxel grid and then
dilated to obtain the final cylindrical fibers with radius r,
subject to periodic boundary conditions. The concentration
parameter θdir and the curvature ρ are drawn from the
uniform distribution on the intervals (Torquato, 2002;
Furat et al., 2021) and [0.25, 0.75], respectively.

Furthermore, the fiber radius r is drawn at random from
the set of integers {2, 3, 4, 5, 6, 7, 8}. Starting from a fully
porous structure (without any fibers), new fibers are added
until the desired porosity is reached. The method is
implemented in MATLAB (2021).

4.2 Channel Systems
Systems of channels are generated using essentially the same code
as for the fiber systems considered in Section 4.1, treating the
fibers as porous channels instead. The parameters of the random
walks, the Bezier curves, and the fiber radii are sampled in the
same fashion as in Section 4.1. Starting from a fully solid
structure (without any channels), new channels are added
until the desired porosity is reached.

4.3 Spatial Stochastic Graphs
Spatial stochastic graph structures are generated using a model
that has been introduced in Gaiselmann et al. (2014), where it has
been applied to mimic the 3D microstructure of solid oxid fuel
cells. The spatial graph model is based on a homogeneous Poisson
point process X � {Xn}n∈N with parameter λ > 0 (Last and
Penrose, 2017), where λ � E#{n ∈ N: Xn ∈ [0, 1]3} is the
expected number of points per unit volume, with #A denoting
the cardinality of a set A. Note that by this frequently used point-
process model the situation of complete spatial randomness is
depicted, i.e., there is no interaction between the points Xn. For a
more formal introduction to the concept of point processes, the
reader is referred, e.g., to the monographs of Daley andVere-Jones
(2005) and Daley and Vere-Jones (2008). Next, the relative
neighborhood graph GX � (X, EX) (Toussaint, 1980) is
constructed, where the set X of vertices is given by the atoms
Xn of the underlying homogeneous Poisson process. In order to
define the edge set EX, a so-called critical region R(p1, p2) �
B(p1, ‖p1 − p2‖) ∩ B(p2, ‖p1 − p2‖) for p1, p2 ∈ R3 is
considered, where ‖p‖ denotes the Euclidean norm of p ∈ R3.
The edge set EX is now given by EX � {(Xi,Xj) ∈X ×X: #(R(Xi,Xj) ∩
X) � 2}, This means that there is an edge between two points Xi

andXj if and only if there is no further point ofXwithin the critical
region R(Xi, Xj) except for Xi and Xj themselves. Finally, each edge
e ∈ EX is dilated using a sphere as structuring element (Soille,
2003). The radius of the sphere follows a Gamma distribution with
expectation μΓ and variance σ2Γ, where each edge is dilated
independently from the other edges. In order to obtain an
approximately uniformly distributed porosity between 0.3 and
0.95, we draw the model parameters λ, μΓ and σ2Γ from the uniform
distribution on the intervals [10–5, 5 · 10–4], [1, 10] and [1, 6],
respectively. Then, after generating 25,000 samples of such
microstructures, it was possible to select 10,000 of them leading
to the desired uniform distribution of porosities on the interval
[0.3, 0.95]. The generation of 3D microstructures by the spatial
stochastic graph model described above is carried out by in-house
Java software using the Geostoch framework (Mayer et al., 2004).

4.4 Level Sets of Gaussian Random Fields
Level sets of Gaussian random fields are a well-known concept of
stochastic geometry (Lantuéjoul, 2002; Chiu et al., 2013) which,
among others, is used for modeling the 3D microstructure of

FIGURE 2 | Specific surface area (in (voxelunit)−1) (A), mean geodesic
tortuosity (B), standard deviation of geodesic tortuosity (C), characteristic
bottleneck radius rmin (in voxelunit) (D), constrictivity (E) and mean chord
length (in voxelunit) (F) as a function of porosity, where 250 structures
have been randomly selected for each of the nine different microstructure
models, depicted by nine distinct colors. Note that the roman numbers in the
legend correspond to the numbering of the nine stochastic model types
mentioned at the beginning of Section 4.
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anodes in lithium-ion batteries (Kremer et al., 2020) and
electrodes in solid oxide cells (Moussaoui et al., 2018). In the
present paper, periodic Gaussian random fields are generated
using an approach based on the fast Fourier transform (FFT)
(Lang and Potthoff, 2011). It utilizes the spectral density of the
covariance function to generate a random field with the desired
covariance structure. In particular, zero-centered white noise
(independent and normal distributed) is generated in the
spatial domain, transformed to the Fourier domain, and
multiplied by the square root of the spectral density, where
four types of spectral densities (power-law, exponential,
Gaussian, and circular top-hat) are used to generate 2,500
structures of each kind (Röding et al., 2020). After linear
rescaling and applying inverse FFT, a Gaussian random
field with mean zero and the specified covariance function
is obtained. The parameters of the different spectral densities
are chosen to ensure a suitable range of length scales. Finally,
binary microstructures are obtained as level sets of the random
fields, i.e., the desired porosities are obtained by thresholding
at appropriate quantiles of the Gaussian random field intensity
distributions. The method is implemented in MATLAB
(2021).

4.5 Level Sets of Spinodal Decompositions
Phase separation dynamics through the spinodal decomposition
mechanism are simulated by solving a system of Navier-Stokes
and Cahn-Hilliard equations (Miranville, 2019). A field of
spatially resolved concentrations, denoted by ψ(x, t) ∈ [0, 1], is
evolved in time using the lattice Boltzmannmethod (Krüger et al.,
2017). Initially, the values of ψ are uniformly distributed in the
interval [0, 1], independently for all grid points on a 963 grid. The
spatiotemporal evolution of the concentration profile is
determined by several factors such as surface tension, density
and viscosity ratio between the two phases. These three
characteristics are chosen log-uniformly distributed in their
respective ranges to yield a slightly different behaviour of the
interfacial geometry. Furthermore, the numbers of time steps,
which control the degree of coarsening of the structures, are
chosen such that a suitable range of length scales is obtained. Note
that the Lifshitz-Slyozov law states that the typical length scale in
the structure is proportional to the cubic root of the simulation
time (Lifshitz and Slyozov, 1961). After terminating the
simulations, the solutions are upscaled to 1923 voxels. Finally,
in the same way as described in Section 4.4 for Gaussian random
fields, the desired porosities are obtained by thresholding at
appropriate quantiles of the concentration intensity
distributions. The spinodal decomposition simulations are
implemented using in-house software based on the lattice
Boltzmann method (Gebäck and Heintz, 2014; Gebäck et al.,
2015).

4.6 Hard Ellipsoids
Configurations of hard (i.e., non-overlapping) ellipsoids have
been used as models for e.g., separation columns (Bertei et al.,
2014) and are simulated using a hard-particle Markov Chain
Monte Carlo (MCMC) algorithm (Brooks et al., 2011).
Initially, the ellipsoids are placed at random locations and

with random orientations. Then, the configurations are
relaxed by performing random translations and rotations of
all particles until no pairs of particles overlap. If the desired
porosity is larger than 0.5, non-overlapping configurations
can be generated easily at constant porosity as described
above. Otherwise, as a preliminary procedure, the steps
described above are performed for a porosity of 0.5 and
then the resulting configuration is compressed in small
steps, until the target porosity is reached. The magnitudes
of proposed translations and rotations are adaptively selected
such that the acceptance probability is held at 0.25. The
number of ellipsoids is between 8 and 512, yielding a wide
range of length scales. In addition, the ellipsoids are given by
vectors of semi-axes (1, 1, α) where the random variable α is
uniformly distributed in the interval [0.25, 1] (oblate) with
probability 0.5 and, otherwise, uniformly distributed in [1, 4]
(prolate). The microstructures drawn from this model are
generated using in-house developed software (Röding, 2017;
Röding, 2018) implemented in Julia (Bezanson et al., 2017).

4.7 Smoothed Hard Ellipsoids
Configurations of smoothed hard ellipsoids are generated in the
same manner as the hard ellipsoid systems described in Section
4.6, with the only difference that the final discretized structure is
smoothed with a Gaussian filter, the standard deviation of which is
randomly sampled in the range of [2, 16] voxels (Gonzalez and
Woods, 2008; Russ, 2007). This yields structures with a semi-
continuous solid phase in contrast to the systems of hard ellipsoids
described in Section 4.6, which consist of discrete particles. Note
that similar structures have been used in Prill et al. (2017) as a
model for porous electrodes, where spheres instead of random
ellipsoids are considered.

4.8 Soft Ellipsoids
Configurations of soft (i.e., overlapping) ellipsoids are created
in a similar fashion as the systems of hard ellipsoids considered
in Section 4.6, but without implementing a specific overlap
criterion. Instead, ellipsoids with random locations and
orientations are sequentially added until the desired
porosity has been obtained. The ellipsoid sizes relative to
the simulation window are selected at random to yield an
appropriate range of length scales. As in the case of hard
ellipsoid systems considered in Section 4.6, soft ellipsoids are
given by vectors of semi-axes (1, 1, α), where α is uniformly
distributed in [0.25, 1] (oblate) with probability 0.5 and,
otherwise, uniformly distributed in [1, 4] (prolate). The
method is implemented in Bezanson et al. (2017).

4.9 Smoothed Soft Ellipsoids
Configurations of smoothed soft ellipsoids are generated in the
same manner as the systems of soft ellipsoids considered in
Section 4.8, with the only difference that the final discretized
structure is smoothed with a Gaussian filter, the standard
deviation of which is randomly sampled in the range of
[2, 16] voxels (Russ, 2007; Gonzalez and Woods, 2008).
This yields structures with a smoother, more continuous
solid phase.
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5 MICROSTRUCTURE-PROPERTY
RELATIONSHIPS

For the 90,000 samples of 3D microstructures generated by the
stochastic models described in Section 4, the structural
descriptors explained in Section 2 as well as the effective
transport properties stated in Section 3 are computed. This
data is then used to establish microstructure-property
relationships by means of three different approaches, namely
analytical prediction formulas, (artificial) fully-connected neural
networks (ANNs) and convolutional neural networks (CNNs).
For this, the data is randomly shuffled and split into three subsets
of training, validation, and test data, respectively. This is done in a
stratified manner such that an equal number of microstructures
of each type is included in each of the three datasets. The split,
which is the same for each of the three types of prediction models,
is 70% training data (7,000 per type of microstructure and 63,000
in total) and 15% each for the validation and test data (1,500 per
type of microstructure and 13,500 in total).

Several error measures are considered to assess predictive
performance. For fitting the prediction models, the mean
squared error (MSE) loss is used, where

MSE � 1
k
∑k
j�1

(ŷj − yj)2. (6)

Here y1, . . . , yk is the ground truth data of a given output
variable and ŷ1, . . . , ŷk are the corresponding estimates predicted
by the model. Depending on context, the MSE loss is used either
on the output variables themselves or on transformed outputs.
Further details can be found below in Sections 5.1–5.3 for the
three types of microstructure-property relationships considered
in this paper. Note that the MSE loss is an appropriate loss
function for optimization because it is differentiable. In contrast,
for final assessment, the mean absolute percentage error (MAPE)
loss is used, where

MAPE � 100
k

∑k
j�1

ŷj − yj

yj

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣. (7)

However, because the MAPE loss is not everywhere
differentiable, it is less well-behaved as an optimization target,
but on the other hand it is more interpretable.

In addition, we consider the coefficient of determination
R2 ∈ [0, 1], which is given by

R2 � 1 −
∑k
j�1
(yj − ŷj)2

∑k
j�1
(yj − �y)2

, (8)

where �y denotes the empirical mean of the ground truth data
y1, . . . , yk. Since the values for permeability cover several orders of
magnitude, the value of R2 would be dominated by those terms
that involve large values. For this reason, we also consider the
coefficient of determination on the log scale, denoted by
R2
log ∈ [0, 1]. In particular, it holds

R2
log � 1 −

∑k
j�1
(log(yj) − log(ŷj))2

∑k
j�1
(log(yj) − �ylog)2

, (9)

where �ylog is defined as the empirical mean of the sample log(y1),
. . ., log(yk).

Before the derivation of microstructure-property relationships
is discussed, we first quantify the “amount of information” that is
contained in the different structural descriptors with regard to
permeability, effective tortuosity and theM-factor. For this purpose,
we make use of the measure of general functional dependence,
which has been introduced in (Xu et al., 2017). In contrast to
several widely used quantities such as Pearson’s ρ, Kendall’s τ or
Spearman’s ρ, this characteristic, denoted by 0 ≤ δ(x, y) ≤ 1, relies
neither on a linear nor on a monotone relationship between the
quantities x and y. Thus, it can be used to quantify the importance
of a single (scalar) structural descriptor x on an effective property y,
where higher values correspond to a higher “amount of
information”. The upper limit of 1 is reached if and only if x is
a function of y or vice versa since in general it holds δ(x, y) � δ(y, x).
The corresponding results are shown in Table 1. Note that the
values for the effective tortuosity are always larger than for the
M-factor, which is probably caused by the fact that τeff already
contains the porosity ε. However, it is worth mentioning that a low
value of the functional dependence measure does not automatically
imply that this quantity should not be considered for predicting a
certain effective property. This is due to the fact that δ(x, y) only
contains some information on the predictive power of xwith regard
to y, but not regarding the usefulness of x in combination with other
structural descriptors. This also explains the fact that the
normalized quantity M turned out to be predicted with higher
accuracy than τeff, and therefore we stick to M for the rest of this
work. It is also interesting to point out that m(L) and σ(L) seem to
be closely related to permeability and effective tortuosity,
considering that the chord length distribution is rarely used in
the literature for establishingmicrostructure-property relationships.

5.1 Analytical Prediction Formulas
In this section, microstructure-property relationships are derived
by analytical prediction formulas, whose parameters are fitted by
least-squares regression (Sen and Srivastava, 2012). More
precisely, we use the trust-region-reflective algorithm
(Coleman and Li, 1994; Coleman and Li, 1996) for
unconstrained least-squares problems and the interior point
algorithm (Byrd et al., 2000; Waltz et al., 2006) for
constrained ones. Since there are no hyperparameters in case
of analytical prediction formulas, we merge the training set with
the validation set for computing the fitting parameters and use the
test set for assessing performance. Altogether, we state nine
analytical prediction formulas and their fitting parameters.
Afterwards, a comparison of these formulas is carried out,
including an interpretation of the results.

To begin with, we consider several relationships between
geometric microstructure descriptors given in Section 2 and
the M-factor stated in Section 3. Recall that according to
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Equation 21.14 in the book of S. Torquato (Torquato, 2002), it
holds thatM ∈ [0, 1], which is also ensured for the predictions M̂
ofM presented below. At first, we consider a type of a parametric
formula, which has been originally proposed in Stenzel et al.,
2016) and later reconsidered in Eq. 4 of Neumann. et al. (2020).
More precisely, the M-factor is predicted by

M̂ � εc1βc2m(τgeo)c3 . (10)

To ensure that M̂ ∈ [0, 1], we use the constraints c1 ≥ 1 and
c2 ≥ 0, which leads to the following results: c1� 1, c2� 0 and c3� −8.45.
More precisely, the best fit in a least-squares sense does not
contain the constrictivity β, whereas the exponent of the porosity
equals the lower limit of one. Note that Formula (Eq. 10) for
predicting the M-factor has been modified in Neumann. et al.
(2020) to ensure that M̂ ∈ [0, 1] holds also for the dilute limit by
using the constrictivity β within the exponent of porosity. More
precisely, in Neumann. et al. (2020) the following parametric
prediction formula is proposed:

M̂ � εc1+c2βm(τgeo)c3 , (11)

where the additional constraint c1 + c2 ≥ 0 is used to ensure
that M̂ ∈ [0, 1]. This leads to c1 � 1.25, c2 � − 1.25 and c3 � − 7.82.
Finally, we consider a formula for predicting the M-factor by
porosity as well as the mean and standard deviation of geodesic
tortuosity of the pore space, see Barman et al. (2019):

M̂ � c1m(τgeo)c2σ(τgeo)c3εc4 , (12)

where least-squares fitting gives that c1 � 1.18, c2 � − 9.17, c3 � 0.03
and c4 � 1.02.

Having discussed parametric formulas for predicting the
M-factor, we now predict the permeability κ using geometric
microstructure descriptors given in Section 2. Since the values of
κ can cover several orders of magnitude, the fitting of parameters
is carried out on the log scale. First, we consider the prediction
formula

κ̂ � c1ε
c2βc3S−2m(τgeo)c4 , (13)

which has been introduced in Neumann. et al. (2020). By least-
squares regression, we obtain that c1 � 0.16, c2 � 2.05, c3 � 0.64
and c4 � − 7.31. Moreover, we consider still another type of a
parametric prediction formula for κ, proposed in Neumann. et al.
(2020). Namely,

κ̂ � c1(c2rmin + c3rmax)2εc4m(τgeo)c5 , (14)

where least-squares fitting gives that c1 � 0.24, c2 � 0.92, c3 � 0.08,
c4 � 1.6 and c5 � − 6.82. Note that for fitting the parameters in
Eq. 14we use the additional constraint c2, c3 ∈ [0, 1] with c2 + c3 �
1. Thus, we use a convex combination of rmin and rmax, which is
subsequently squared to ensure the right unit of permeability.
Last not least, a further parametric prediction formula for κ,
which has been discussed in the literature, is given by

κ̂ � c1ε
c2S−2m(τgeo)c3 , (15)

see Röding et al. (2020), where least-squares regression leads to
c1 � 0.14, c2 � 2.07 and c3 � − 8.57.

In addition to the results mentioned above, we consider the
following prediction formula for κ:

κ̂ � c1ε
c2+c3βS−2m(τgeo)c4 , (16)

which uses the constrictivity β within the exponent of the
porosity ε, similar to Eq. 11, where the fitting parameters are
given by c1 � 0.14, c2 � 3.07, c3 � − 1.38 and c4 � − 7.37.
Furthermore, we predict κ by the porosity ε, the mean geodesic
tortuosity m(τgeo) and the median rmin via

κ̂ � c1ε
c2m(τgeo)c3r2min, (17)

where least-squares fitting on the log scale gives that c1 � 0.25,
c2 � 1.6 and c3 � − 6.6. Finally, we consider a prediction
formula for κ which involves the mean chord length m(L) of
the pore space:

κ̂ � c1m(L)c2εc3+c4βrc5minm(τgeo)c6 , (18)

where we use the constraint c2 + c5 � 2 in order to obtain the right
unit (voxels2), and the fitting parameters are given by c1 � 0.1, c2 �
0.63, c3 � 1.38, c4 � − 0.2, c5 � 1.37 and c6 � − 6.74.

Regarding the prediction of effective diffusivity, the data
visualized in the top row Figure 3 lead to the following results.
It is interesting to observe that the problem of Eq. 10
described in Neumann. et al. (2020), namely not fulfilling
that M̂ ≈ 1 in the dilute limit (ε → 1), does not occur, see
Figure 3A, since fitting the coefficients leads to c2 � 0, i.e., the
constrictivity β is not used for predicting effective diffusivity.
Furthermore, note that the performance of Eq. 10 is similar to
the performance of Eqs. 11, 12 even though the latter one does
not involve constrictivity, see Figures 3A–C.

In contrast to the prediction of effective diffusivity, the
performance of the analytical prediction formulas for
permeability significantly varies case by case, see Figures
3D–I. In particular, Eq. 15 leads to the lowest predictive
power in terms of MAPE, where the low value of the
coefficient of determination R2 is attributed to an
overestimation of permeability in the regime of large
permeability values, see Table 2. This also holds with regard
to Eqs. 13, 16, which both lead to a similar MAPE of
approximately 18%. On the other hand, a remarkable
improvement can be observed by disregarding constrictivity
and including instead rmin, as in Eq. 17, or a convex

TABLE 1 | Functional dependence measure δ(x, y) between a scalar structural
descriptor x and an effective property y.

x/y κ τeff M

ε 0.674 0.927 0.916
S 0.726 0.833 0.467
β 0.631 0.864 0.638
rmin 0.685 0.856 0.242
rmax 0.798 0.847 0.565
m(τgeo) 0.474 0.964 0.851
σ(τgeo) 0.632 0.866 0.742
m(L) 0.900 0.872 0.614
σ(L) 0.902 0.883 0.677
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combination of rmin and rmax, as in Eq. 14, where both prediction
formulas lead to a MAPE of approximately 15%. However, it is
worth mentioning that Eq. 17 only uses three adjustable
parameters and three geometric descriptors of the underlying
3D microstructure. In addition, the small value c3 � 0.08 of the
parameter corresponding to rmax in Eq. 14 highlights the
importance of the direction-dependent characteristic rmin,
which in contrast to rmax also contains information about
bottleneck effects. The best performance with regard to MAPE
is obtained when additionally using the mean chord length as in
Eq. 18, where one has to note that this prediction formula also
contains the highest number of parameters as well as
microstructure descriptors. However, it is interesting to note
that such a simple quantity as the mean chord length turns
out to be beneficial in terms of further improving the predictive
power see Table 2.

5.2 Artificial Neural Networks
In addition to the analytical prediction formulas Eqs. 10–18
presented above, we investigate artificial neural networks (ANNs)
for the prediction of mass transport properties. Note that a

conventional, fully-connected ANN is a composition of linear
and nonlinear operations. The building blocks are fully-
connected (also called dense) layers, each of which consists of
a certain number of nodes. The input to each node is a weighted
sum of the outputs from the nodes in the previous layer, to which
a nonlinear so-called activation function f: R→R is applied. As

FIGURE 3 | Prediction of effective transport properties using analytical formulas. Top row (from left to right): Prediction of M-factor via Eqs. 10–12. Middle row
(from left to right): Prediction of permeability via Eqs. 13–15. Bottom row (from left to right): Prediction of permeability via Eqs. 16–18. Note that the scatter plots
show results based on the test data.

TABLE 2 | Error measures computed on the test set, corresponding to the
analytical prediction formulas Eqs. 10–18 for M-factor and permeability,
respectively. Note that in case of predicting permeability, the quantity R2

log denotes
the coefficient of determination on the log scale.

Equation R2 MAPE R2
log

(10) 0.993 5.76 -
(11) 0.994 5.44 -
(12) 0.994 5.15 -
(13) 0.218 18.94 0.985
(14) 0.920 14.84 0.990
(15) 0.219 21.33 0.982
(16) 0.331 18.34 0.986
(17) 0.915 14.81 0.990
(18) 0.820 11.63 0.992

Frontiers in Materials | www.frontiersin.org December 2021 | Volume 8 | Article 78650211

Prifling et al. Mircostructure-Property Relationships for Mass Transport

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


a whole, the network describes a nonlinear mapping from some
input to some output that can be arbitrarily complex. During
training of an ANN, the parameters (weights of the sums) are
optimized with respect to a loss function that penalizes deviations
from the target output (Schmidhuber, 2015).

The first layer is, in a sense, the input layer, the dimension of
which depends on the set of microstructural descriptors used. The
first layer is followed by a certain number of fully-connected
layers, so-called hidden layers, which are described below in more
detail. The final layer is the output layer, which in our case of a
scalar output consists of a single node only. For the hidden layers,
the exponential linear unit (Elu) activation function is used
(Clevert et al., 2016), which is given by

f(x) � x, if x> 0,
c ex − 1( ), if x≤ 0,{ (19)

where we put c � 1.
We investigate 12 different sets of geometric microstructure

descriptors, re-using all sets of descriptors considered in the
analytical prediction formulas Eqs. 10–18 and also adding
new ones involving more complex descriptors like
distributions/quantiles of e.g., geodesic tortuosity, chord length
distributions, spherical contact distribution and the two-point
correlation function. The descriptor sets are summarized in
Table 3. The inputs, i.e. the microstructure descriptors, are
linearly rescaled such that in each case, the input data
provided by the training set has zero mean and unit variance,
which often improves convergence during training (LeCun et al.,
2012). Furthermore, the outputs are transformed in the following
fashion. The values ofM ∈ (0, 1) and κ ∈ (0,∞) cover some orders
of magnitude. To simplify training, the logit-transformed
M-factor y � log(M/(1 − M)) and the log-transformed
permeability y � log(κ) are used as the target outputs. This
yields the benefit that the inverse-transformed predictions
belong to (0, 1) and (0, ∞), respectively.

The networks are implemented in Tensorflow 2.4.1 (Abadi et al.,
2015) and optimized with respect to MSE loss (on the logit and log
scales). Glorot/Xavier uniform initialization is used for all weights

(Glorot et al., 2010), as well as stochastic gradient descent (SGD)
with momentum (Qian, 1999; Bottou, 2010) for optimization. A
random search hyperparameter optimization (Bergstra and Bengio,
2012) is performed to quantify the importance of the number of
hidden layers, the number of nodes per layer, the batch size (in each
update in the SGD), the momentum and the learning rate of the
SGD. It turns out that 4 hidden layers, each with 64 nodes, is a
reasonable choice, where the number of weights varies from 12,801
to 27,713 depending on the dimension of the descriptor input. The
network architecture is illustrated in Figure 4. Furthermore, a batch
size of 128 and a momentum of 0.9 is chosen, but those particular
values turned out to be not critical with regard to the performance.
Also, we consider different kinds of regularization such as weight
decay, i.e., l2 regularization (Krogh and Hertz, 1992) and dropout
regularization (Srivastava et al., 2014), where both did not lead to any
improvement. It is also worth mentioning that batch normalization
(Ioffe and Szegedy, 2015), another common regularization method,
is not investigated here because combining it with the Elu activation
function (Clevert et al., 2016) has been found not useful. Finally, it
turned out that the learning rate (LR) has considerable impact on the
results. Therefore, we design an LR scheme with a step-wise
increasing and then step-wise decreasing learning rate. More
precisely, let LR ∈ {10–4.5, 10–4, 10–3.5, 10–3, 10–2.5} for 1,000
epochs (iterations over the whole training set) each, and then, we
choose LR ∈ {10–2, 10–2.5, 10–3, 10–3.5, 10–4} for 4,000 epochs each. In
total, the training procedure comprises 25,000 epochs. For each set of
inputs, i.e., microstructural descriptors, 100 networks are trained
using different random seeds. Note that the random seed controls
the weight initializations in the network as well as the shuffling of
data in the SGD. The model yielding the minimal validation loss
(over all epochs and all runs) for each set of microstructural
descriptors is selected. On a single NVIDIA T4 GPU, the
average execution time for each run is 3.7 h.

Scatter plots visualizing the prediction results for M-factor and
permeability are shown in Figures 5, 6, respectively.
Furthermore, error measures for the prediction of M-factor
and permeability are shown in Tables 4 and 5, respectively. It

TABLE 3 | Descriptor sets used as input for the ANNs, together with the
dimensions of the corresponding input vectors. Note that Models 8, 9 and 10
involve four scalar quanities and one distributional characteristic described by 19
quantiles, whereas the two-point correlation function in Model 1 is evaluated for
168 different radii.

Model Descriptors Dimension

1 ε, S, m(τgeo) 3
2 ε, S, m(τgeo), β 4
3 ε, m(τgeo), σ(τgeo) 3
4 ε, m(τgeo), β 3
5 ε, m(τgeo), rmin 3
6 ε, m(τgeo), rmin, rmax 4
7 ε, m(τgeo), rmin, β, m(L) 5
8 ε, S, m(τgeo), σ(τgeo), d(τgeo) 23
9 ε, S, m(L), σ(L), d(L) 23
10 ε, S, m(H), σ(H), d(H) 23
11 ε, S, C 170
12 all 236

FIGURE 4 | Illustration of the ANN architecture with 4 hidden layers,
each with 64 nodes, where only a smaller number of nodes is shown in this
figure for clarity. Furthermore, the input in this figure is 5-dimensional, but in the
present paper the input dimension varies from 3 to 236, see Table 3.
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turns out that the predictions obtained by ANNs are consistently
better than those obtained by the analytical prediction formulas
considered in Section 5.1, when the same descriptors are used as
input. In addition, adding more complex descriptors like
quantiles (of tortuosity, etc.) improves the results even further.
Unsurprisingly, the best results are obtained using all the
computed descriptors.

Note that some of the ANNmodels (Models 1–7 in Table 3)
involve exactly the same sets of descriptors as input which are
used in the analytical models for the prediction of M and/or κ.

Not surprisingly, the ANNs outperform the corresponding
analytical prediction formulas (with the same descriptor sets)
in all cases in terms of MAPE evaluated on the test set.
Furthermore, in the case of geodesic tortuosity τgeo, there
are clear improvements when adding more detailed
information on the distribution of τgeo, i.e., starting with ϵ,
m(τgeo), σ(τgeo) and then adding 19 quantiles of d(τgeo), the
MAPE is reduced from 3.84 to 3.38% for the M-factor, and
from 29.25 to 10.01% for permeability. Also, descriptor sets
involving detailed information on the distributions of chord

FIGURE 5 | Prediction of M-factor using ANNs. Top row (from left to right): Prediction ofM via Models 1–3. Second row (from left to right): Prediction ofM via
Models 4–6. Third row (from left to right): Prediction ofM via Models 7–9. Bottom row (from left to right): Prediction ofM via Models 10–12. Note that the scatter plots
show results based on the test data.
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lengths and spherical contact distances perform well. With
regard to the prediction of the M-factor, these high-
dimensional descriptors perform better than the ANN
model (no. 10 in Table 3) involving the two-point
correlation function. However, for the prediction of
permeability, the ANN model involving the two-point
correlation function performs better than the model (no. 8)
involving the distribution of tortuosity.

Note that theModels 3 and 4 which do not use neither rmin nor
the specific surface area S, perform substantially worse than all
other models with regard to permeability. Not surprisingly,

including all descriptors (Model 12) yields the best
performance for predicting both M and κ. However,
comparing models with low-dimensional (Models 1–7) and
high-dimensional (Models 8–12) descriptor sets, the best low-
dimensional descriptor (Model 7) gives very good performance.
In particular, going from 5 to 236 input dimensions reduces the
MAPE from 2.74 to 2.03% for M and from 7.47 to 6.51% with
regard to κ. Considering that this reduction in error requires a
massive reduction in interpretability of the model, it is not
obvious how to make this trade-off between model complexity
and performance.

FIGURE 6 | Prediction of permeability using ANNs. Top row (from left to right): Prediction of κ via Models 1–3. Second row (from left to right): Prediction of κ via
Models 4–6. Third row (from left to right): Prediction of κ via Models 7–9. Bottom row (from left to right): Prediction of κ via Models 10–12. Note that the scatter plots
show results based on the test data.
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5.3 Convolutional Neural Networks
In a CNN, as opposed to a conventional ANN, the main
building blocks are convolutional layers. A typical CNN
architecture comprises convolutional layers, pooling layers,
and fully-connected layers. In the convolutional layers, the
input is convolved with several convolution kernels, whose
entries are trainable parameters. The convolutions themselves
are linear operations, but a nonlinear activation function
f: R→R is applied to the result to produce the outputs,
called feature maps. In the pooling layers, the feature maps
are downsampled by computing, e.g., the mean or maximum
on small (typically non-overlapping) patches of the feature
maps from the preceding layer, reducing the resolution such
that the next convolutional layer can extract information from
another spatial scale. After the convolutional and pooling
layers, fully-connected layers are typically used to obtain a
scalar output. The first part of the CNN can be thought of as a
feature extractor that produces geometrical features which are
qualitatively similar to the ones used for the analytical
prediction formulas and ANNs considered in the previous
sections of this paper, whereas the second part corresponds
directly to the ANNs themselves.

The size of the microstructures themselves is too large to be
practically feasible from a computational point of view.
Therefore, we downsample to half the size in all directions
by averaging. The result is a 963 array for each structure with
values in {0, . . . , 8} stored as 8-bit unsigned integers. Apart
from a linear scaling factor, this preprocessing step is
equivalent to having an average pooling filter with a 2 ×
2 × 2 window as the first layer in the CNN. Preprocessing
the structures in this manner allows for a larger batch size
without running out of GPU memory. During training, the
input arrays are batch-wise converted to 32-bit floating point
precision and rescaled to [ − 1/2, 1/2] prior to the gradient
update. The outputs are transformed in the same way as for the
ANNs. The first part of the CNN consists of three
convolutional blocks, each with two convolutional layers
with Elu activations and one average pooling layer. The
convolutional layers use 3 × 3 × 3 kernels, and the number

of filters, i.e. kernels, used is 16, 32, and 64 in the respective
blocks. The average pooling layers use 2 × 2 × 2 windows. The
second part of the CNN consists of 4 fully-connected layers
with Elu activations, each with 64 nodes, i.e. the same as for the
ANNs considered in the previous section. The total number of
weights is 2,324,689. The network architecture is illustrated in
Figure 7.

The weight initialization procedure, optimizer, and
momentum are the same as for ANNs. However, the batch
size is 16 and the learning rate (LR) schedule is also different:
Let LR ∈ {10–4, 10–3.75, 10–3.5, 10–3.25} for 25 epochs each, then
LR � 10–3 for 100 epochs, and finally LR ∈ {10–3.25, 10–3.5,
10–3.75, 10–4} for 50 epochs each, in total comprising 400
epochs. In contrast to ANNs, we now introduce a data
augmentation scheme for the training data, involving
random flips, rotations, and circular shifts of the structure
array in both dimensions orthogonal to the mass transport
direction. The mass transport is invariant with respect to these
transformations such that a data augmentation scheme like this
will act as a regularizer that increases the generalization
performance of the network (Hernández-García et al., 2018).
On a single NVIDIA V100 GPU, the average execution time is
140 h. The model yielding the minimal validation loss over all
epochs is selected. Because of the large computational workload
for CNNs, we do only one run for M-factor and one for
permeability.

In addition to this ordinary CNN, we train the same
architecture with a different kind of input data. Instead of
using the structure arrays, we compute the Euclidean distance
transform in the pore space which effectively comprises a
spatial map of local pore sizes (Russ, 2007). To the best of
our knowledge, this approach of using the distance transform
as a representation of the pore space has not been used before
as inputs to a CNN, where these inputs are again rescaled to
963 arrays. The only differences compared to the ordinary
CNN are that the input data has to be stored in 32-bit floating
point precision (leading to high demands in storage space, ∼
320 GB for training, validation, and test) and that the data are

TABLE 4 | Error measures for the prediction ofM via ANNs where MSE is given for
the training, validation and test sets, and MAPE for the test set. Note that MSE
is evaluated on the logit scale and MAPE on the linear scale.

MSE MAPE (in %)

Model Training Validation Test Test

1 0.0073 0.0077 0.0075 3.55
2 0.0055 0.0064 0.0062 3.07
3 0.0081 0.0084 0.0084 3.84
4 0.0075 0.0089 0.0089 4.03
5 0.0067 0.0069 0.0076 3.59
6 0.0053 0.0061 0.0065 3.10
7 0.0043 0.0055 0.0054 2.74
8 0.0062 0.0068 0.0071 3.38
9 0.0061 0.0073 0.0078 3.25
10 0.0063 0.0080 0.0077 3.03
11 0.0077 0.0102 0.0103 3.66
12 0.0021 0.0037 0.0034 2.03

TABLE 5 | Error measures for the prediction of κ via ANNs, where MSE is given for
the training, validation and test sets, and MAPE for the test set. Note that MSE
is evaluated on the logit scale and MAPE on the linear scale.

MSE MAPE (in %)

Model Training Validation Test Test

1 0.0241 0.0296 0.0298 10.99
2 0.0176 0.0227 0.0225 9.44
3 0.1387 0.1473 0.1491 29.25
4 0.6256 0.6815 0.6830 76.63
5 0.0206 0.0236 0.0240 10.35
6 0.0164 0.0211 0.0214 9.31
7 0.0132 0.0176 0.0163 7.47
8 0.0181 0.0247 0.0236 10.01
9 0.0114 0.0174 0.0170 7.39
10 0.0180 0.0228 0.0208 8.49
11 0.0203 0.0254 0.0243 9.51
12 0.0069 0.0131 0.0140 6.51
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batch-wise rescaled by a factor 1/24 (the 95%-quantile of the
distance transform values is approximately 24).

Scatter plots visualizing the prediction results for M-factor
and permeability are shown in Figure 8. Furthermore, error
measures are shown in Table 6 for both M and κ and for both
the ordinary CNN (briefly denoted by CNN) and the
distance-transform CNN (denoted by DT-CNN). As can be
seen, all CNNs perform better than their best ANN

counterparts, the best models attaining 1.65% (M-factor)
and 3.78% (permeability) MAPE, although this is at the
expense of even less interpretability than for the highest-
dimensional descriptor used for the ANNs. Also, the
differences between the ordinary CNN and the DT-CNN
are not substantial and neither one of them is consistently
better. This is possibly because the ordinary CNN learns
similar information as that already supplied to the DT-

FIGURE 7 | Illustration of the CNN architecture. The inputs, arrays of size 963, are fed into the convolutional part of the network, consisting of three convolutional
blocks, each in turn consisting of two convolutional layers (the numbers of filters are indicated in the figure) followed by an average pooling layer. The feature maps
produced as output from the convolutional part are passed to 4 fully-connected layers with 64 nodes each.

FIGURE 8 | Prediction results using different CNNs, showing (A) prediction of M using an ordinary CNN, (B) prediction of M using a DT-CNN, (C) prediction of κ
using an ordinary CNN, and (D) prediction of κ using a DT-CNN. Note that the scatter plots show results based on the test data.
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CNN. Hence, we conclude that given the increased
computational workload of the distance transform, there
are at least no substantial benefits of using the DT-CNN
over the ordinary CNN.

6 CONCLUSION

We investigate microstructure-property relationships for
artificially generated porous materials, developing prediction
models for diffusivity and permeability based on the geometry
of the pore space. The basis for this is a comprehensive dataset
of 90,000 structures with size of 1923 voxels, which are
generated by 9 different stochastic 3D microstructure
models. To the best of our knowledge, this is the largest
and most diverse dataset for studying diffusivity and
permeability published so far in the literature.
Microstructural descriptors like porosity, specific surface
area, tortuosity and its distribution, constrictivity, spherical
contact distributions, chord length distribution and two-point
correlation functions are used in various combinations as
input to both analytical prediction formulas and artificial
neural networks (ANNs). Furthermore, the structure itself
as well as a distance transform in the pore space, capturing
the shortest distance to the solid phase, is used as input to
convolutional neural networks (CNNs). In terms of mean
absolute percentage error (MAPE), the best analytical
models attain 5.15% (diffusivity) and 11.63% (permeability)
error. The ANNs outperform the analytical prediction
formulas with the same inputs, which indicates that the
microstructure-property relationships are more complex
and nonlinear than can be expressed through simple
analytical models. In addition, ANNs can naturally
incorporate high-dimensional descriptors like distributions
(which haven been characterized by quantiles), and
correlation functions. The best ANN models attain a MAPE
of 2.03% (diffusivity) and 6.51% (permeability). However, one
downside of ANNs is that their results are not as interpretable
as those based on analytical prediction formulas. Furthermore,
the CNNs outperform the best-performing ANNs, where the
best CNN models attain 1.65% (diffusivity) and 3.78%
(permeability) MAPE. This comes at the price of a
significant increase in training time and use of

computational resources, and yet another decrease in
interpretability of the results. The fact that the prediction
quality of best-performing ANNs comes at least reasonably
close to that of CNNs indicates that the microstructural
descriptors considered in this paper strongly influence mass
transport and are thus suitable for predicting diffusivity and
permeability. To our knowledge, analytical prediction
formulas, ANNs, and CNNs have not been compared
quantitatively on the same dataset before, and in particular
not on such a large and diverse dataset. To facilitate further
development of microstructure-property relationships, we
make the artificially generated microstructures, their
descriptors, and the code used to study the relationships
between them available open access (Prifling et al., 2021c).
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