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For the first time, composite coatings based on poly(dimethylsiloxane-block-ε-caprolactone)
copolymer and tricalcium phosphate were obtained on stainless steel plates by using the
electrophoretic deposition technique. The effect of different deposition times on the final
characteristics of the resulting coatings was also studied. Block copolymers were obtained
through a combination of anionic and ring-opening polymerization, with good homogeneity
and chemical composition (Ð < 1.3 and wPCL � 0.39). The composites obtained at different
electrophoretic deposition times revealed a linear dependence between the deposited weight
and time during assays. When immersing in simulated body fluid, a higher amount of residual
solids ( ∼ 20 %) were observed by thermogravimetric analysis after 7 days of immersion.
Scanning electronmicroscopymicrographs revealed a porousmicrostructure over themetallic
substrate and the absence of micro-cracks, and X-ray diffraction patterns exhibited diffraction
peaks associatedwith a hydroxyapatite layer. Finally, energy-dispersive X-ray analysis revealed
values of the Ca/P ratio between 1.40 and 1.50 in samples, which are closer to the
stoichiometric hydroxyapatite values reported in hard tissues. The results obtained in this
article confirm the usefulness of poly(dimethylsiloxane-block-ε-caprolactone) copolymer and
cheaper tricalcium phosphate as precursors of compact and homogenous coatings obtained
by electrophoretic deposition, which yields useful substrates for hydroxyapatite growth.
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1 INTRODUCTION

Biocompatible materials play an important role in the area of tissue engineering mainly because they
give a new vision of the development materials destined to the repair and regeneration of tissues or
the replacement of missing human bones and teeth, among other applications (Qu et al., 2019). One
of the main challenges for polymer´s researchers is to develop non-toxic, biodegradable, bioactive,
and osteoconductive materials with good mechanical properties at the time of application. For such a
purpose, composites formed from two or more materials with excellent properties (polymers,
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ceramics, and bioglasses) are widely used in tissue engineering
(Yeong et al., 2010; Qu et al., 2019; Bonetti et al., 2020; Ninago
et al., 2020; Redondo et al., 2020). Therefore, tissue engineering is
a promising area of growing interest in the design and obtaining
of polymer-based bioactive materials because of the large number
of opportunities that polymeric materials offer.

The use of these materials can be explained according to their
ability to be re-absorbed or degraded after a certain time of being
implanted without generating toxic products in the receptor
organism, and they provide more controllability on
physicochemical characteristics such as pore size, porosity,
solubility, biocompatibility, enzymatic reactions, and allergic
response (Yang et al., 2015; Clavijo et al., 2016; Ghassemi
et al., 2018; Quiroga et al., 2018; Ghalayani Esfahani et al.,
2019; Taale et al., 2019). In last years, various methodologies
capable of developing these new materials have appeared, such as
melt mixing (Pishbin et al., 2015), dissolution-leaching (Jordan
et al., 2005), and electrophoretic deposition (EPD) technique (El-
Ghannam, 2005; Cabanas-Polo and Boccaccini, 2015; Redondo
et al., 2020), among others.

The EPD technique is used for the fabrication of coatings
because of its simplicity, versatility, and usefulness on substrates
with complex geometry (Ghalayani Esfahani et al., 2019; Bonetti
et al., 2020; Pereira et al., 2020). EPD is an extremely promising
technique for producing organic/inorganic composite scaffolds
over several substrates (magnesium, titanium, and stainless steel,
among others) to avoid the release of metal ions due to corrosion
phenomena (Ghalayani Esfahani et al., 2019; Joy-anne et al.,
2019). In addition, a strong union between the material to be
implanted and the bone tissue is achieved with this type of
methodology (El-Ghannam, 2005; Cabanas-Polo and
Boccaccini, 2015). In particular, EPD of soft composites is an
attractive technique that can be used to produce uniform coatings
with a controlled microstructure, without requiring expensive
equipment (Clavijo et al., 2016; Pereira et al., 2020; Redondo et al.,
2020). The use of a polymer matrix in biodegradable composites
allows obtainingmaterials with specific geometries and provides a
platform for incorporation and release of biomolecules and drugs.
These materials can be used in varied applications such as
implants in orthopedic surgery, scaffolds, ligament union,
sutures, controlled release of drugs, flexible tubes for
cardiovascular surgery, and dental repairs, among others
(Zhao et al., 2008; Ghasemi-Mobarakeh et al., 2010; Ghalayani
Esfahani et al., 2019; Redondo et al., 2020).

Synthetic polymers such as poly(ε-caprolactone) (PCL), poly-
lactic acid (PLA), or poly (lactic-co-glycolic) acid (PLGA) are
biodegradable and can be used for applications in bone tissue
engineering (Boccaccini et al., 2010; Seuss et al., 2016; Pereira
et al., 2020). PCL is one of the Food and Drug Administration
(FDA)–approved biopolymers and has been extensively used in
biomedical applications because of its inherent properties of good
mechanical strength, biocompatibility, and biodegradability
(Thinakaran et al., 2020). In addition, within the most
prominent physicochemical properties of PCL, we can
mention its good compatibility with a large variety of
polymers (Miola et al., 2015; Joy-anne et al., 2019). Besides,
because of being a non-toxic polymer, it is widely used in

biomedical applications as long-term implantable devices,
scaffolds for tissue growth, drug-delivery systems, and 3D
printing or electrospinning devices, among others (Wietor
et al., 2011; Liang et al., 2013; Yazdimamaghani et al., 2015;
Redondo et al., 2020). PCL or PCL-based copolymers can be
obtained by various polymerization techniques such as “click”
chemistry, ring-opening polymerization (ROP), or hydrogen-
transfer polymerization (Öztürk et al., 2016; Öztürk and
Meyvacı, 2017; Savaş et al., 2021). In this sense, ROP is
defined as “polymerization in which a cyclic monomer yields a
monomeric unit that is either acyclic or contains fewer rings than
the cyclic monomer.” The technique is widely used for a lot of
systems with many monomers, initiators, and catalysts, including
lactones and silicones, among others (Öztürk andMeyvacı, 2017).

Silicones, or polysiloxanes, are other biocompatible polymers
that are used extensively in the field of biomedicine (Danesin
et al., 2012; Redondo et al., 2020). The chemical structure of these
polymers has a simple sequence of atoms: polysiloxanes:
Si(<)–O–Si(<)–. Usually, substituents at the Si atoms are
methyl groups, thus generating the poly(dimethylsiloxane)
(PDMS), which is obtained either by polycondensation of
Si(CH3)2(Cl)2 or by ROP of cyclic monomers, such as
hexamethyl (cyclotrisiloxane) (D3) or octamethyl
(cyclotetrasiloxane) (D4). In addition, PDMS derivatives are
widely employed in drug-delivery systems or nanotechnology
applications, among others (Nag et al., 2018a; Wolf et al., 2018;
Joy-anne, et al., 2019; Luo et al., 2019). PDMS-based
organic–inorganic materials have high degrees of flexibility,
excellent electrical-insulating properties, and exceptional heat
resistance at higher temperatures (Chen et al., 2018; Nag et al.,
2018b; Raj et al., 2018; Aoki, 2020). For example, composites from
PDMS and ceramic powder allow reducing the thermal stress
between the metal substrate and EPD film, while achieving a high
thermal conductivity and an enhanced electrical insulation
without sintering (Aoki, 2020).

Ceramic materials such as calcium phosphates and silicate
glasses are interesting biomaterials due to their bioactivity
properties (osteoconduction and osteoinduction) and their
ability to form a reactive hydroxyapatite (HA) layer. In recent
years, specific compositions of them have been used to obtain
hard and soft implants for tissue engineering (Zhou and Lee,
2011; Sartore et al., 2019; Wang et al., 2019; Pereira et al., 2020).
The development of bioresorbable and bioactive composites for
tissue engineering applications is being investigated worldwide,
and many approaches have been published by including
combinations of resorbable homopolymers such as PLA,
PLGA, and PCL, with HA, tricalcium phosphate (Ca3(PO4)2,
TCP), or bioactive glasses and glass-ceramics in different scaffold
architectures (Duruncan and Brown, 2001; Ma et al., 2001; Yang
et al., 2005; Ghassemi et al., 2018; Sungsee and Tanrattanakul,
2019). In the most usual approach, HA, TCP, and bioactive glass
particles are combined with polymeric biodegradable substrates
in order to obtain the desired scaffolds or coatings (Roether et al.,
2002; Taale et al., 2019; Mondal et al., 2020; Shah Mohammadi
et al., 2020).

HA particles exhibit a chemical composition and crystalline
structure similar to that of living bones, and show high
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osteoconductivity as well as bioresorbability in biological
environments (Maeda et al., 2007; Ramezani et al., 2017). One
of the main purposes for employing HA in the synthesis of
biodegradable polymeric scaffolds is its ability to modify surface
properties in the resulting composites, which are suitable for their
use in bone-tissue engineering (Ramezani et al., 2017; Qu et al.,
2019; Zhao et al., 2019). The deposition of the HA layer on
polymeric materials by using a simulated body-fluid (SBF)
solution is often generated by the increase in the
supersaturation of inorganic ions in the medium. On the other
hand, TCP excels in terms of degradability and bioactivity (two
important reasons for its frequent use in clinical applications),
and it has attracted much interest since it has been postulated as a
precursor of HA formation (Loher et al., 2006). Consequently, it
might be reasonable to use TCP as a Ca2+ ions–releasing source,
by supplying the desired Ca2+ ions when immersed in SBF and by
promoting HA synthesis (Yu et al., 2018; Dorozhkin, 2010).

In one of the previous work, we reported the capability of
block copolymers to induce the precipitation of a HA layer
(Redondo et al., 2018; Ninago et al., 2020; Redondo et al.,
2020). In this sense, the effect of molecular architecture (linear
or branched) of block copolymers and the use of Bioglass® on
EPD tests (t � 6 min) was analyzed. It was observed that linear
block copolymers promote a better HA deposition when in vitro
assays were performed. By taking into account these results, in
this work, bioactive coatings based on PDMS-b-PCL block
copolymer and TCP as a mineral filler were employed for HA
deposition by using the EPD technique. The emphasis of this
work is placed on the combination of these materials for the first
time, by obtaining bioactive coatings that promote HA growth. In
addition, the effect of EPD time was also studied. It is envisioned
that the coatings obtained from this methodology will combine
PDMS-b-PCL and HA composites in a synergic way, which could
be considered as an alternative for scaffolds in bone-tissue
engineering (Chen et al., 2019; Qu et al., 2019; Mondal et al.,
2020).

2 MATERIALS AND METHODS

Materials
The reagents used for anionic and ROP polymerization were
purified by the traditional procedures reported in the literature
(Uhrig and Mays, 2005; Redondo et al., 2020). Hexamethyl
(cyclotrisiloxane) monomer (D3, Sigma-Aldrich, 98 %) for
anionic polymerization and ε-caprolactone (ε-CL, Sigma-
Aldrich, 99 %) for block copolymer synthesis were purified by
mixing with the calcium hydride powder (CaH2, Sigma-Aldrich,
95 %), followed by heating and distilling under vacuum according
to conventional procedures. Tetrahydrofuran (THF, Ciccarelli),
cyclohexane (Dorwill), and methanol (Química Industrial) were
used for the reaction (Agudelo and Pérez, 2016), and stannous
octoate was used as a polymerization catalyst (Satti et al., 2017).

For EPD assays, the obtained block copolymers and TCP
(CARLO ERBA Reagents) were employed (Boccaccini et al., 2007;
Quiroga et al., 2018). Acetone (Sintorgan) was used as a solvent
and stainless steel (AISI 316L) plates as metallic substrates. For

bioactivity assessments, simulated body fluid (SBF) was prepared
according to the suggestions given by Kokubo and Takadama
(2006).

Synthesis of PDMS-OH Macroinitiator and
Linear Block Copolymer
2.1.1 PDMS-OH
The poly(dimethylsiloxane) (PDMS-OH) homopolymer was
synthesized by anionic polymerization, employing hand-made
polymerization reactors and high-vacuum techniques (Scheme 1)
(Ninago et al., 2017; Redondo, 2018). In brief, the sealed ampoule
of the D3 monomer (12.5 g, previously dissolved in 40–50 ml of
dry cyclohexane) was gently broken and poured into the reactor
flask, followed by the addition of the sec-Bu-Li+ ampoule (2.9 ml,
0.28 M). The reagents were gently mixed by employing manual
movements, and the reaction was left to proceed during ∼ 20 h at
room temperature. Then, the THF ampoule (10 ml) was broken,
and polymerization was left to proceed, at room temperature,
during 20 h. The reaction was finished by the addition of the well-
degassed methanol ampoule (5 ml), and the resulting PDMS-OH
polymer was then precipitated in cold methanol (Scheme 1).

2.1.2 PDMS-B-PCL Copolymer
The PDMS-b-PCL copolymer was synthesized by ROP
polymerization of ε-CL monomer, according to the
methodology already published by the group (Redondo et al.
2018). Copolymerization was carried out in a glass reactor under

SCHEME1 |Reactor for PDMS-OH synthesis. References: I: sec-Bu-Li+

ampoule; S: THF ampoule; M: D3 monomer in a cyclohexane ampoule; F:
methanol ampoule; R: main reactor; VLC: vacuum line connection.
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the nitrogen atmosphere, by employing degassed toluene as a
solvent and tin (II) 2-ethylhexanoate (Sn(Oct)2) as a catalyst, at
110°C for 24 h (Scheme 2). A catalyst/PDMS-OH ratio of 0.5 was
employed (Satti et al., 2017). The obtained copolymers were
precipitated, filtered, and stored until their use.

Characterization of the Linear Block
Copolymer and TCP Powder
2.1.3 Nuclear Magnetic Resonance (1H-NMR)
The 1H-NMR spectrum of PDMS-b-PCL copolymer was
performed by using an Avance DPX 400 spectrometer
(400 MHz for H and 100 MHz for C) employing CDCl3 as a
solvent. From the spectrum, the content of PCL in PDMS-b-PCL
(the weight fraction of PCL in the copolymer, wPCL) was
determined.

2.1.4 Size-Exclusion Chromatography
The molar mass and polydispersity were determined by using an
SEC-employing system, a Waters 515 HPLC pump, and a Waters
model 410 differential refractometer detector. Toluene and
polystyrene were employed as a solvent and standard for
calibration, respectively.

2.1.5 Fourier-Transform Infrared Spectroscopy
(FTIR-ATR)
Spectra of block copolymer and TCP particles were registered on
a Nicolet®iS5 spectrometer, equipped with an attenuated total
reflectance accessory (iD7-ATR). Samples were recorded with an
accumulation of 16 scans between 3,500–550 cm−1 range and a
resolution of 4 cm−1.

2.1.6 Differential Scanning Calorimetry
Thermal transitions of PDMS-OH macroinitiator and PDMS-b-
PCL copolymer were studied on a TA Instruments Calorimeter.

Samples ( ∼ 10 mg) were measured under an inert atmosphere of
nitrogen, with a flow of 50 ml min−1. First heating was performed
from -90–210°C at 10°C min−1. Then, samples were kept at 210°C
during 5 min in order to avoid the influence of previous thermal
history. After cooling at 10°C min−1, they were heated again from
-90–210°C at 10°C min−1. Glass-transition (Tg) and melting
temperature (Tm) of PDMS and PCL blocks were determined
from this second heating process. With the data obtained, the
percentage of crystallinity (% Xc) was obtained by following the
equation reported by Yam et al. (1999).

2.1.7 Thermogravimetric Analysis
Thermal stabilities of PDMS-b-PCL copolymer and TCP were
analyzed by using TGA equipment (Discovery TA Instruments
TGA5500 balance). The tests were studied under the nitrogen
atmosphere, with a flow of 25 ml min−1 and 2°C min−1 heating
rate, in the 30–700°C range. The percentage of weight loss versus
temperature was registered.

2.1.8 Laser Diffraction
Particle-size distribution of TCP was determined by using a
Horiba Partica LA-950 Laser Diffraction Particle Size
Distribution Analyzer (Kyoto, Japan).

2.1.9 X-Ray Diffraction
The crystal structure identification of TCP was determined by
XRD. The patterns were obtained on an Philips PW1710 X-ray
diffractometer (Philips, Holland), provided with a tube, a copper
anode, and a detector operating at 45 kV and 30 mA within 2θ
from 5 to 60°.

2.1.10 Scanning Electron Microscopy
The TCP particles were analyzed by SEM, by using a LEO 40XVP
scanning electron microscope, operated at 10 kV. To perform this
study, the samples were dispersed over 3M® aluminum

SCHEME 2 | Reaction pathway in the synthesis of PDMS-OH and PDMS-b-PCL copolymer.
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conductive tape by using air flow and coated with gold in an SPI
sputter coater. From this analysis, the topographical
characteristics of particles were obtained from the secondary
electron signal.

Electrophoretic Co-Deposition
Electrophoretic co-deposition assays were performed by
following the procedure reported in a previous work (Redondo
et al., 2020). For this purpose, a mixture of TCP/copolymer was
suspended into a water/acetone solution (10 % v/v) in a
[copolymer]:[TCP] ratio equal to 50:50 (wt/wt). It is important
to note that prior to the co-EPD deposition procedure, the
suspension was stabilized through magnetic stirring and
ultrasonic bath for 30 min, by following the procedure
previously reported (Redondo et al., 2020). A stainless-steel
sample, with rectangular geometry (20 mm × 7 mm x 0.5 mm)
was used as a substrate to be coated (working electrode). EPD was
carried out by employing an electrophoretic cell connected to an
adjustable source (ATTEN model TPR3020S, 220 V/50 Hz). The
deposition cell included two parallel stainless-steel foils as a
deposition and counter electrodes. The deposition area was
fixed at 15 mm × 7 mm, and the distance between electrodes
was 10 mm. The deposition conditions for all samples were the
following: 20 V by keeping suspension at 56°C and different
deposition times: 1, 10, 20, and 30 min. Finally, the samples
were removed from suspension and kept in a desiccator, at room
temperature.

Characterization of Coatings
2.1.11 Thickness, Deposited Weight, and Thermal
Analysis
Coating thicknesses were determined by the use of a digital
coating thickness measuring instrument (Digital meter-
Microprocessor). Ten values were measured in order to
determine the average thickness and standard deviation values.
In addition, the deposited weight (Wd) was calculated by
employing gravimetric techniques according to Equation 1:

Wd � Δm

Sd
, (1)

where Δm corresponds to the weight difference between the
metallic substrate and the coating, and Sd is the effective
deposition area (Redondo et al., 2020).

In addition, the thermal transitions of coatings were studied by
employing the aforementioned DSC calorimeter, following the
procedure described previously.

In Vitro Assays
Bioactivity tests were carried out by immersion of coatings in SBF
during 7 and 28 days at 37°C, replacing SBF solution every 3 days,
and by following the protocol already reported by Kokubo and
Takadama (2006). FTIR spectra of coatings (before and after
being soaked in SBF solution) were obtained by the scratching
material employing the aforementioned spectrometer.

Thermal stability of samples after incubation in SBF solution
was studied by TGA analysis. Surface appearance of coatings was
analyzed by SEM, by using a LEO 40XVP scanning electron

microscope, operated at 10 kV. In addition, energy-dispersive
X-ray detector (EDX, Model DX-4) with a UTW window was
used to quantify the elementary composition of samples. From
this analysis, it was possible to visualize the surface of the
coatings and the Ca/P ratio. Finally, HA identification was
determined by the XRD technique, employing
aforementioned equipment.

3 RESULTS AND DISCUSSION

Copolymers and TCP Powder
Figure 1 and Table 1 summarize the molar mass distribution of
PDMS-OHmacroinitiator and PDMS-b-PCL copolymer. PDMS-
OH presents a low dispersity value (Ð � 1.06), which agrees with
those obtained by anionic polymerization (almost a symmetric
and narrow chromatogram is observed). Besides, PDMS-b-PCL
shows Ð � 1.36. This value is similar to the values reported in the
scientific literature for the synthesis of homopolymers and
copolymers based of ε-CL using ROP (Duruncan and Brown,
2001; Ma et al., 2001; Redondo, 2018; Wang et al., 2019). In
addition, a clear shift of the PDMS-b-PCL chromatogram is also
observed in Figure 1. This fact constitutes clear evidence of the
increase in molar mass due to the incorporation of the PCL block
in the resulting copolymer. The PCL content in PDMS-b-PCL
copolymer was determined by 1H-NMR as wPCL � 0.39 (Zhou
and Lee, 2011; Sultana, 2018).

Figure 2 shows the FTIR-ATR spectra of the TCP precursor,
PDMS-OH macroinitiator, and PDMS-b-PCL copolymer.
PDMS-OH macroinitiator exhibits the typical absorption
bands detected at 2,963 cm−1 (associated with C–H vibration
bonds attached to Si atoms) (Liang and Ruckenstein, 1996; Wu
et al., 2006; Redondo, 2018); 1,261 cm−1 (associated with out-of-
phase vibrations of -Si(CH3)2- and O–Si–O groups) (Agudelo
and Pérez, 2016); and 1,094, 1,024, and 801 cm−1 (bands
associated with the vibration of the Si–O–Si and C–Si–C
bonds, respectively) (Agudelo and Pérez, 2016; Ninago et al.,
2017; Redondo, 2018). Regarding to PDMS-b-PCL copolymer,
absorption bands associated to the PCL block are observed at
2,960 and 2,865 cm−1 (vibration bands from methylene, -CH2,
groups) and 1,724 cm−1 (a pronounced signal attributed to the
stretching vibrations from carbonyl groups, >C�O) (Redondo,
2018). In addition, the corresponding absorption bands
associated to the PDMS block are also observed at 1,260,
1,091, 1,032, and 801 cm−1. On the other hand, the TCP
spectrum shows absorption bands at 1,088, 561, and 600 cm−1

(bands associated with bending out-of-plane of the PO4
3- group);

1,026 and 962 cm−1 (bands associated with the asymmetric
vibration of the PO4

3- group); and typical absorption bands of
TCP (Peña and Vallet- Regı, 2003; Reid et al., 2006; Mohandes
and Salavati-Niasari, 2014a; Park et al., 2014).

Figure 3 shows X-ray diffraction patterns of TCP. Twelve
peaks associated to the structure of TCP are detected at 2Ɵ ∼
24.8°, 25.8°, 28.1°, 29.0°, 31.8°, 32.8°, 34.1°, 39.8°, 46.7°, 48.1°, 49.5°,
and 53.1° (Cordero-Arias et al., 2015). The most prominent peaks
in the diffractogram are the following: 2Ɵ ∼ 25.8°, 31.8°, 39.8°,
46.7°, and 53.1°, which correspond to the planes (002), (211),
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(221), (222) y, and (004), respectively (Lala et al., 2016; Aguiar
et al., 2018).

The distribution of the particle size from the TCP powder is
shown in Figure 4A. From LD analysis, an average size of 12.1 μm
in a unimodal distribution with a smaller population shoulder
(with an average size of 2.9 μm) was determined. The SEM
micrograph of TCP shows irregular particles with
conglomerates of asymmetric morphology (Figure 4B), in
accordance with the literature reported by Ginebra et al.
(2004) and Nagase et al. (1989).

The thermal characterization of synthesized polymers is
shown in Table 1 and Figure 5. Regarding to DSC
measurements, PDMS-OH macroinitiator presents only a
thermal transition (TmPDMS) in the range of temperature
analyzed. Besides, three thermal transitions are detected in
PDMS-b-PCL copolymer: TgPCL and TmPCL of the PCL block
and TmPDMS of the PDMS semi-crystalline phase (Redondo et al.,
2018). Besides, % crystallinity (Xc) was obtained by taking into
account the PCL content and ΔHref � 136.1 J g−1 (Yam et al.,
1999). The value of Xc is reduced in PDMS-b-PCL copolymer
(26.3 %) when comparing to reference PCL homopolymer (44.7
%) due to the coupling of the PDMS block. Moreover, two

thermal transitions were detected in PCL homopolymer: TgPCL
and TmPCL.

On the other hand, the thermal degradation initiation
temperature (T0.05, for 5% mass loss) was calculated from
TGA curves (not shown). PDMS-OH macroinitiator shows a
T0.05 value at ∼ 304°C (Ninago et al., 2013; Ramezani et al., 2017;
Redondo, 2018). PCL homopolymer shows a T0.05 value at
341.5°C, becoming more noticeable after approximately 400°C
(the thermal degradation event which corresponds to polyester
chain decomposition) (Cai et al., 2014; Ninago et al., 2015;
Redondo, 2018). On the other hand, the following degradation
events in the copolymer were detected at 193°C (associated to the
rupture of polyester chains through the ester pyrolysis reaction
generating H2O, CO2, and 5-hexenoic acid); at 289°C (associated
to the PCL block decomposition); and at 366°C (associated to the
PDMS block degradation) (Persenaire et al., 2001; Ninago et al.,
2013; Redondo et al., 2018). Regarding to TCP, no decomposition
event was observed in the studied range.

Characterization of Coatings
Figure 6 shows thickness and deposited weight values for the
coatings obtained at different test times: 1, 10, 20, and 30 min. A
linear dependence between deposited weight and time was
observed (an R2 value of 0.98). In addition, an increase in
the thickness is also observed for higher EDP times at
constant deposition voltage. In accordance, higher thickness
and weight values are found at 30 min of EPD assay. In order to
obtain thicker coatings, it is convenient to extend the EPD time.
In this sense, Bartmanski et al. (2019) and Wang et al. (2002)
reported the same behavior in EPD tests obtaining a
nanohydroxyapatite coating. These authors stressed that the
prolongation of EPD time did not cause any adverse effects on
the coating structure and resulted in a significantly higher
thickness of the coatings. On the other hand, Figure 5
includes the thermal transitions of the coatings obtained. In
this sense, the glass transition and melting point of the PCL
block were detected at −64.0°C and 57.5°C, respectively. Besides,
the thermal transition of the PDMS block was also detected at
−45.2°C. In addition, a significant reduction in the Xc value for
PCL is observed: 3.3 % due to the incorporation of TCP particles
interfere in the ordering of the PCL chains during the
crystallization process. This phenomenon encourages the
decreasing of the Xc value. Chen et al. (2014) reported a
similar behavior during the study of PCL composites
reinforced with bioactive particles.

FIGURE 1 | SEC chromatograms: (_) PDMS-OH macroinitiator and (C)
PDMS-b-PCL copolymer.

TABLE 1 | Thermal characterization of synthesized polymers.

Sample Mn
a (g mol−1) Ð a wPCL

b TgPCL
c (°C) TmPDMS

c (°C) TmPCL
c (°C) Xc

c (°C) T0.05
d (°C)

PDMS-OH 12,300 1.06 -- -- -44.9 -- n/a 304.0
PCL 26,000 1.60 1.00 −66.0 -- 55.9 44.7 341.5
PDMS-b-PCL 21,300 1.36 0.39 −59.1 −42.4 50.4 26.3 205.1

aNumber average molar mass (Mn) and dispersity (Ð) determined by SEC and 1H-NMR.
bWeight fraction of PCL in copolymers (wPCL) determined by 1H-NMR.
cGlass-transition temperature (Tg), melting temperature (Tm), and degree of crystallinity (Xc) determined by DSC.
d5 % thermal degradation temperature (T0.05) determined by TGA.
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FIGURE 2 | Normalized FTIR-ATR spectra of TCP particles, PDMS-OH macroinitiator, and PDMS-b-PCL copolymer (spectra were shifted from the y-axis in order
to show differences).

FIGURE 3 | XRD spectrum of TCP particles.

FIGURE 4 | (A) Particle size distribution of TCP by LD and (B) SEM micrograph of TCP particles.
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In Vitro Assays
In vitro assays were performed by soaking in SBF solution for 7
and 28 days. For these tests, the sample with higher thickness
and weight values was selected (t � 30 min for EPD co-
deposition).

Figure 7 shows the normalized FTIR-ATR spectra of the
coating before and after immersion in SBF solution for 7 and
28 days, respectively. PCL and PDMS absorption bands are
distinguishable in all samples as well as the absorption bands
at 1,024 and 600 cm−1 (bands associated with the asymmetric
vibration and bending out-of-plane of the PO4

3- group,
respectively [Peña and Vallet- Regı, 2003; Reid et al., 2006;
Mohandes and Salavati-Niasari, 2014a; Park et al., 2014])
attributed to the TCP filler.

After immersion in SBF solution, new vibration bands were
detected at 3,183 cm−1 (stretching vibration attributed to the
crystal water and surface-adsorbed water molecules),
1,629 cm−1 (vibrations of the –COOH group), and 1,552 cm−1

(vibration of the CO3
2− group). These results are in good

agreement with those described by Mohandes and Salavati-
Niasari (2014b). In addition, this fact could be explained
considering the formation of carboxylic ethers in the coatings
and their interaction with a new-formed HA phase on the surface
(Chen et al., 2014; Mohandes and Salavati-Niasari, 2014b).

Figure 8 shows X-ray diffraction patterns of coatings after
being soaked in SBF solution during 7 and 28 days. XRD patterns
of coatings exhibit diffraction peaks associated to the HA phase
(Chen et al., 2014). The existence of characteristic diffraction
peaks associated with the HA phase are detected at 2Ɵ values of
26.0°, 31.9°, 33.0°, 34.1°, 39.9°, 46.8°, 49.6°, and 53.3°,
corresponding to the diffraction planes (002), (211), (300),
(202), (310), (222), (213), and (004), respectively (Mohandes
and Salavati-Niasari, 2014a; Mohandes and Salavati-Niasari,
2014b; Miola et al., 2015; Lala et al., 2016; Redondo et al.,
2020). This fact confirms the effectiveness of the
mineralization process. A similar behavior was observed in a
previous work, where composite coatings were obtained by
employing the same copolymer and Bioglass® as an inorganic
filler. The presence of HA was also detected as an acute and
intense signal that appeared at 2Ɵ ∼ 31.8° and other characteristic
diffraction peaks at 2Ɵ ∼ 25.9°, 29°, 39°, and 46.7° (Redondo et al.,
2020).

In a similar analysis, Dorozhkin (2010) and Suchanek and
Yoshimura (1998) stressed that chemical changes can occur in
bioceramic materials when they are exposed to in vitro
conditions. Therefore, in an acidic medium, it was found that
TCP particles can be partially dissolved by causing the liberation
of Ca2+ and PO4

3− ions to the solution. Consequently, the
increase of ions leads to the supersaturation of the biologic
fluid by promoting the precipitation of biological HA
nanocrystals. In this context, Roether et al., (2002) reported
that HA is formed on PLA/Bioglass composite materials after
7 days of immersion in SBF. Zhang et al., (2004) also reported that
after 7 days of immersion in SBF, PLA/Bioglass composite

FIGURE 5 | Thermal transitions of PDMS-b-PCL copolymer, PCL homopolymer, and coating (before soaking in SBF solution) by DSC.

FIGURE 6 | (■) Thickness and (▲) deposited weight of coatings obtained
by EPD procedures.
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materials fabricated by using thermally induced phase separation
(TIPS) developed HA on their surfaces. In addition, the absence
of stainless-steel substrate peaks confirms the successful co-
deposition methodology employed. According to the obtained
results, TCP/PDMS-b-PCL coatings evidenced the ability to form
a HA layer onto the composite substrate (Zhang et al., 2004;
Maeda et al., 2007).

Thermogravimetric tests before and after in vitro assessment
are shown in Figure 9. Weight loss events in coatings before being
soaked in SBF solution are undoubtedly attributed to degradation
processes of polymeric chains of PDMS and PCL since TCP
particles present thermal stability without degradation events at
TGA test temperatures.

The coatings exhibit a slight reduction in T0.05 temperatures
(239.2°C) when comparing to their respective polymers. The TGA

curve of the coating shows a weight loss event associated to the
rupture of the PCL block at 236°C, while the PDMS block
degradation is evidenced at 368°C (see the two peaks in the
first derivative dW/dT). The TGA analysis showed the individual
decomposition temperatures of the polymeric blocks that
constitute the copolymer. Öztürk et al., (2013) reported the
same behavior for the thermal analysis of triarm block
copolymers of poly(styrene-block-β-butyrolactone) (PS-b-PBL).
Regarding to the coating after being soaked in SBF solution, only
an event of degradation was observed. The decomposition started
at 300°C, and it is completed at 400°C, by reaching ∼ 89 % weight
loss. The first derivative dW/dT curve shows a single peak at
365°C.

When comparing, the weight loss percentage for the coating
before immersion in SBF solution is lower than that of the coating

FIGURE 7 | Normalized FTIR-ATR spectra of coatings before and after soaking in SBF solution.

FIGURE 8 | XRD spectra of coatings after immersion in SBF solution.
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after immersion in SBF solution. These results could be indicating
that the coating after immersion in SBF solution has a higher
content of the HA precipitate itself. This behavior could be
attributed to a better transformation of TCP into HA by a
dissolution–precipitation mechanism, which produces a new
inorganic phase (Suchanek and Yoshimura, 1998; Somrani
et al., 2003). Besides, it was possible to calculate the value of
the experimental [Polymer]:[TCP]e wt/wt ratio. The samples
tested show a higher TCP value when compared to the

theoretical value (50:50 wt/wt). That is to say, coatings before
and after immersion in SBF solution presented [Polymer]:[TCP]e
ratios equal to 26:74 (wt/wt) and 11:89 (wt/wt), respectively. In
this sense, the macromolecular structure in blocks encourages a
higher TCP deposition due to higher values was obtained after
soaking in SBF solution.

Figure 10 shows the SEM images of coatings after immersion
in SBF solution during 7 days (Figure 10A) and 28 days
(Figure 10B). In addition, EDX patterns were also included in
the figure in order to analyze the elementary composition of
coatings as well as the Ca/P ratio. A microporous structure is
observed in the SEM micrographs, with a thin continuous layer
without superficial fractures that covered the metallic substrate.
Besides, a more compact and uniform coating (surface covered) is
obtained for longer immersion times. Figure 10B reveals a more
compact and smoother surface, whereas Figure 10A exhibits the
presence of aggregates and a porous structure. Moreover, TCP
particles are evenly distributed within the polymer matrix,
obtaining a good mix between materials. Fauré et al., (2012)
reported a similar behavior of bioactive particles during the EPD
methodology: the particles that settle induce the incorporation of
more particles on the coating, thus achieving surfaces with the
interconnected macroporous and microporous structure.

Finally, EDX analysis revealed a value of the Ca/P ratio
between 1.40 and 1.50 for both immersion times (7 and
28 days), by exhibiting values closer to those reported in the
literature (Raynaud et al., 2002; Yu et al., 2018). In this sense,

FIGURE 9 | TGA and first derivative dW/dT curves of the coating before
(_) and after (--) immersion in SBF solution during 7 days.

FIGURE 10 | SEM micrographs (1,000x) and EDX spectra of coatings after immersion in SBF solution during (A) 7 days and (B) 28 days.
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Raynaud et al., (2002) and Yu et al., (2018) reported the same
behavior by using powders of apatite calcium phosphate with the
Ca/P ratio ranging from 1.50 to 1.67. These authors stressed that
HA growing could be attributed to the higher diffusion rate of
calcium species relative to that of phosphate anions inside the
polymeric matrix, which leads to a higher release of calcium from
the surface. Altogether, this induces a rapid formation of a thin
HA layer owing to the large surface area over which it is
distributed and significantly decreases when the PO4

3− content
in the solution approaches zero (Yu et al., 2018).

According to Ramezani et al., (2017), the rapid exchange of
Ca2+ andMg2+ ions with H+ or H3O

+ from SBF solution increases
the hydroxyl concentration of the solution. This change leads to
the superficial modification of the coating, which causes HA
nucleation. Then, the migration of PO4

3−, Ca2+, and OH− ions
from the surrounding fluid to the surface of the coating
accelerates the nucleation and precipitation of an HA layer
(Ramezani et al., 2017; Yu et al., 2018). In this sense, it is
plausible that the synergistic effects of co-EPD time + TCP/
PDMS-b-PCL promote a coating surface that induces the further
HA growth.

4 CONCLUSION

Poly(dimethylsiloxane-block-ε-caprolactone) copolymer was
obtained by a combination of anionic and ring-opening
polymerization. The resulting block copolymer showed a good
compatibility with the tricalcium phosphate powder to obtain
compact and potentially bioactive coatings by electrophoretic
deposition. A linear dependence of deposited weight and
thickness was observed for electrodeposition time. After
in vitro assays in SBF solution, new absorption bands and new
patterns assigned to tricalcium phosphate were detected by FTIR-
ATR and XRD analysis, while SEM-EDX analysis revealed similar

Ca/P ratio values those reported for natural bone tissues.
According to these results, the coatings obtained in this work
evidence an enhanced capacity to induce the precipitation of
tricalcium phosphate and suggest the chemical transformation of
tricalcium phosphate into HA through a
dissolution–precipitation mechanism.
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