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Cemented tailing backfill (CTB) in underground mine inevitably experiences seepage field,
which complicates its mechanical behavior. In this study, the mechanical properties and
microstructure characteristics of CTB under different seepage water pressures (SWPs)
were investigated. The results show that, with the increase in SWP, the mechanical
properties of CTB decrease, but the decreasing trend reduces gradually. Higher SWP
leads the microstructure of CTB looser and more porous, and the largest proportion of
pores initiated and propagated by SWP is micropores, which means the damage in CTB
under seepage is mostly caused by micropores. Besides, the mechanical properties of
CTB under seepage decrease exponentially with the increase in porosity and present
linearly inverse proportional relation to the pore area fractal dimension. Results above
indicate that SWP has a significant deterioration effect on the mechanical properties and
microstructure of CTB. The research could not only extend the knowledge of mechanical
properties and microstructure characteristics of CTB under seepage but also provide a
theoretical reference for mechanical index determination and stability analysis of CTB in
water-rich underground mines.
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INTRODUCTION

Cemented tailing backfilling is the most effective way to maximize the utilization of tailings and to
minimize the amounts of environmental hazards (Ke et al., 2017a; Cao et al., 2018; Li et al., 2021a; Li
et al., 2021b; Tana et al., 2021). It has become the preferred mining method for the sustainable
development of underground mining industry (Fall and Samb, 2009; Ke et al., 2017b; Yu et al., 2021;
Chen et al., 2022). One of the global concerns in this means is the high cost of cemented tailing
backfill (CTB) due to the high cement dosage. A decrease in cement dosage can significantly reduce
the cost for the binder; cost takes up 60% to 80% of CTB total cost (Ghirian and Fall, 2013; Ghirian
and Fall, 2014; Tan et al., 2019; Li et al., 2021d). However, the desired strength of CTB is mainly
provided by the hydration of cement. Reducing the cement content will severely restrict the strength
of CTB and cause potential security threats to mining operations (Yilmaz et al., 2015; Behera et al.,
2021). Usually, the strength index of CTB is bound to be conservatively designed under safety first
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situation, resulting in large cement consumption and high cost.
The mechanical properties of CTB are the fundamental basis for
determining its reasonable strength index (Xu et al., 2019; Qiu
et al., 2020; Yin et al., 2020; Qi et al., 2021). Therefore, it is of great
theoretical value and practical application significance to clearly
understand the mechanical properties of CTB under different
conditions.

At present, numerous researches have already been carried out
to investigate the effect of various factors on the mechanical
properties of CTB. Cao et al. (2018) concluded that uniaxial
compressive strength (UCS) of CTB increases with the higher
cement-tailings ratio and solid concentration. Xu et al. (2020) and
Jiang et al. (2020) studied the influence of curing age on the
mechanical properties of CTB, which concluded that the increase
in curing age could remarkably improve the UCS of CTB. Fall
et al. (2010), Wu et al. (2021), Chen et al. (2021a), Chen et al.
(2021b), and Haiqiang et al. (2016) noted that curing temperature
had a significant impact on the strength development of CTB, and
the appropriate temperature conducive to improving the
mechanical performance of CTB is approximately 50°C.
Yilmaz et al. (2009) investigated the influence of curing
pressure on mechanical properties of CTB by a self-designed
test system and observed that the compressive strength
development of CTB curing under vertical pressure was higher
than that without vertical pressure ones, which could be mainly
due to the applied pressure during curing process and improved
consolidation process of the CTB material. Xiu et al. (2021) and
Cao et al. (2019a) studied the effects of loading rates on the UCS
of CTB and found that the increase in loading rate had a
strengthening effect on the UCS, and the correlation between
the UCS and the loading rates was more consistent with
exponential function when the loading rates were between 0.1
and 2 mm/min. Wang et al. (2020a) reported that cyclic loading
and unloading had perceptible effect on the mechanical
properties of CTB, and the direct reason for the change of
UCS is the change of deformation modulus caused by cyclic
loading and unloading. In addition, to improve the mechanical
properties of CTB, many scholars investigated the influence of
alternative binders [fly ash (Behera et al., 2020), lime (Sharma and
Kumar, 2021), limestone powder (Zheng et al., 2016), granulated
blast furnace slag (Mashifana and Sithole, 2021), copper slag
(Chen et al., 2021c), and lithium slag (He et al., 2019)], synthetic
fibers [polypropylene fibers (Chakilam and Cui, 2020),
polyacrylonitrile fibers (Cao et al., 2019b), and glass fibers
(Zhou et al., 2021)], and plant fibers [rice straw (Wang et al.,
2020b; Chen et al., 2020) and corn straw (Wang et al., 2021a)] on
the mechanical properties of CTB. The above literatures obtained
plentiful valuable results and enhanced the understanding of the
mechanical properties of CTB. However, there is no relevant
research that considered the influence of groundwater seepage
on the mechanical properties of CTB. The groundwater is the most
common fluid in mining, which is related to more than 60% of
mine engineering damage. It is one of the most important factors
affecting mine engineering safety, especially in water-rich
underground mines. Many researches have been conducted to
reveal the influence of water seepage on the mechanical properties
of rock materials. Wang et al. (2015) found that there were obvious

weakening effects of seepage pressures on the mechanical
properties after coarse sandstone damages. Xiao et al. (2020)
applied triaxial compressive test on red sandstone under
seepage pressure and concluded that seepage pressure reduced
the stress eigenvalues of rocks and affected its value of strain
stiffness. Kou et al. (2021) reported that seepage pressure promotes
tensile crack initiation and propagation of artificial rock-like
materials, and its ultimate failure mode transforms from pure
shear failure mode to the mixed tensile-shear one with the increase
in seepage pressure. The CTB, a kind of artificial functional
composite materials, is filled with a large number of micropores
and microcracks. Groundwater can easily flow through these
micropores form seepage, which would induce the initiation
and propagation of defects such as micropores and microcracks
in CTB, and result in the change of its mechanical properties.

This article aims to explore the effect of SWP on the
mechanical properties and microstructure characteristics of
CTB. The seepage experiments were applied to simulate the
damage of CTB caused by different SWPs. The mechanical
properties of CTB with different SWPs were evaluated by UCS
test. Then, microstructure characteristics of CTB were analyzed
using nuclear magnetic resonance (NMR) and scanning electron
microscopy (SEM). Next, the relationships among mechanical
properties (UCS and elastic modulus), microstructure
characteristics (pore size distribution, porosity, and fractal
dimension), and SWP were established. The research results
can provide a theoretical and fundamental basis to determine
the UCS and elastic modulus indexes and analyze the stability of
CTB in water-rich underground mines.

MATERIALS AND METHODS

Experimental Materials
Tailings
The tailings used for preparing CTB specimens were derived from
a copper mine in Jiangxi Province, China. The particle size
distribution of the tailings was analyzed using a laser particle
size analyzer (Winner 2000), as shown in Figure 1. The effective
diameter d10, median diameter d50, and constrained diameter d60
were 5.62, 68.41, and 90.88 µm, respectively, indicating the
particle size of the tailings was medium to fine. The
nonuniformity coefficient Cu and curvature coefficient Cc of
the particles were 16.17 and 2.15, respectively, indicating a
wide size distribution and a well particle gradation continuity
of tailings. Furthermore, the main chemical compositions of the
tailings were determined via X-ray fluorescence spectroscopy
(XRF-1800), and the details of main chemical compositions of
the tailings are shown in Table 1. The proportions of SiO2 and
CaO in the tailings were 33.02% and 15.68%, respectively, which
is benefit to the strength development of CTB.

Binder and Water
The binder used in the preparation of CTB specimens was
ordinary Portland cement (P.O32.5), commonly used in the
copper mine. The chemical compositions of the P.O32.5 are
listed in Table 2, and the specific gravity and specific surface
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area of the P.O32.5 are 3.15 and 1.1 m2/g, respectively. The mixed
water was common tap water.

Experimental Methods
The experimental procedure is shown in Figure 2, which
consisted of CTB specimen preparation, seepage experiment,
NMR test, UCS test, and SEM test.

CTB Specimen Preparation
Three CTB specimens were prepared for each experimental
condition, and the average results of each experimental
condition are shown for further analysis. Cylindrical molds
with a diameter of 50 mm and a height of 100 mm were used
to make the CTB specimens, and the backfill pulp was mixed with
the cement–tailing mass ratio of 1:4 and the solid mass
concentration of 76% according to backfilling practice in the
copper mine. Then, uniformly stirred pulp was poured into theFIGURE 1 | Particle size distribution of tailings.

TABLE 1 | Chemical composition of the tailings.

Composition SiO2 CaO Fe S Al2O3 MgO K Mn F Cu P Pb

wt% 33.02 15.68 10.37 4.55 2.56 1.82 0.37 0.085 0.080 0.065 0.049 0.0095

TABLE 2 | The chemical composition of P.O32.5.

Compositions CaO SiO2 Al2O3 Fe2O3 SO2 MgO Na2O Other

wt% 63.66 21.26 4.5 2.8 2.58 1.66 0.18 3.36

FIGURE 2 | Schematic diagram of experiments routine.
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cylindrical molds and gently vibrated the sample holders a few
times to eliminate bubbles. The CTB specimens were taken out of
the molds after 2 days and cured in a constant temperature and
humidity standard curing box (temperature of 20°C ± 1°C,
humidity of 90%) for 28 days. Finally, the diameter and height
of the cured CTB specimen were measured and recorded before
the experiments.

Seepage Experiment
In this study, the seepage experiments were carried out on KSR-
100 backfill triaxial creep test system (Jiangsu Yongchang
Instrument Corporation, Suzhou, China). The KSR-100 owns
three independent control systems for axial pressure, confining
pressure, and seepage pressure, with the maximum axial load,
confining pressure and seepage pressure being 100 kN, 10 MPa,
and 10 MPa, respectively. Usually, the height of mining stope is
less than 100 m, and there is a gap between the CTB and roof; the
SWP in CTB is less than 1.0 MPa during mining operation.
Thus, the SWPs were set to 0, 0.2, 0.5, and 0.8 MPa in the
experiment, and the confining pressure kept constant at
1.0 MPa as it should be limited to be greater than the
maximum SWP. Besides, the seepage water was tap water
and has a pH of 7.0. The specific experimental scheme is
shown in Table 3.

The stress state of CTB specimen during seepage experiment
is presented in Figure 3. The seepage experiment steps are as
follows: (1) placing porous discs at both ends of CTB specimen
and wrap them (except at both ends) with a layer of heat-shrink
film and installing them on the base of the KSR-100; (2)
simultaneously applying confining pressure and axial
pressure to 1.0 MPa at a loading rate of 2 kPa/min; (3)
applying seepage pressure to predetermined value at the
same loading rate when confining pressure and axial pressure
were stable and kept for a period of time (approximately 72 h
according to the experiment results) until the water seepage
volume-time curve changed steadily; (4) unloading seepage
pressure and simultaneously unloading confining pressure
and axial pressure at the same unloading rate of 2 kPa/min;
and (5) terminating the seepage experiment and taking out the
sample for subsequent experiments.

NMR Test
The heat-shrink film was removed from the CTB specimens
after seepage experiment, and the excess moisture was wiped
off from the surface of CTB specimens. Then, the CTB
specimens were fully wrapped with a layer of
polytetrafluoroethylene film to avoid moisture loss before
the NMR test. An NM-60 NMR instrument (Suzhou

Niumag Analytical Instrument Corporation, Suzhou, China) was
applied to perform the NMR test on CTB specimens, and the
distribution of transverse relaxation time (T2) of CTB specimens
can be obtained. The NMR test detail parameters refer to literatures
(Gao et al., 2020; Hu et al., 2020; Wang et al., 2021b).

UCS Test
After the NMR test, the CTB specimens were removed to an
electronic universal testing machine (WDW-20H; Jinan
Huaxing Instrument Corporation, Jinan, China) for UCS test.
The loading speed was 0.5 mm/min. Then the stress–strain
curve, UCS, and elastic modulus of CTB specimens can be
obtained.

SEM Test and Image Preprocessing
Once the UCS test was accomplished, one cubic sample with a
side length of approximately 1 cm was cut from the center part of
the broken CTB specimen for SEM test. An SEM system
(MLA650F, USA) was applied to observe the microstructure of
the CTB specimens, and more than 10 SEM images for each CTB

TABLE 3 | Seepage experiment scheme.

Specimen number Cement/tailings Concentration (wt.%) SWP (MPa) Confining pressure (MPa)

ST-1, ST-2, ST-3

1:4 76

0

1.0ST-4, ST-5, ST-6 0.2
ST-7, ST-8, ST-9 0.5
ST-10, ST-11, ST-12 0.8

FIGURE 3 | Schematic diagram of stress of CTB specimen during
seepage experiment.
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specimen were obtained. Prior to the test, the cubic sample was
dried at 50°C and sprayed with gold.

It is generally accepted that the SEM micrograph is
difficult to be directly used for quantitative analysis,
although in this article the SEM micrograph was binary-
processed using the MATLAB image processing toolbox
and the obtained binary SEM micrograph was a black-and-
white bitmap, in which the black and white regions represent
the pore and structure, respectively. Correspondingly, for
each experimental condition, nine SEM micrographs were
preprocessed, and their mean results were used for further
quantitative analysis.

RESULTS AND DISCUSSION

Effect of Seepage onMechanical Properties
of CTB
The UCS and elastic modulus are the two most important
mechanical property parameters of CTB. Therefore, the UCS
and elastic modulus of CTB under different SWPs were obtained
for analysis. As shown in Figure 4, with an increase in SWP
from 0 to 0.8 MPa, the UCS of CTB specimens decreased from
6.11 to 4.08 MPa; the elastic modulus decreased from 7.27 × 102

to 4.14 × 102 MPa. The UCS loss rates of CTB specimens were
17.18%, 28.97%, and 33.22%, and the elastic modulus loss rates
of CTB specimens were 24.07%, 37.14%, and 43.05% when the
SWP increased from 0 to 0.2 MPa and, 0.5 and 0.8 MPa,
respectively. The results suggested that SWP had an obvious
weakening effect on the UCS and elastic modulus of CTB,
whereas the weakening effect was decreasing overall with the
increase in SWP; that is, the higher the SWP, the less apparent
the weakening effect on mechanical properties of CTB. The
weakening effect of SWP on the UCS and elastic modulus are
consistent with the findings reported by Hou et al. (2020). In
addition, the mechanical properties of CTB are related to its
internal microstructure (Yang et al., 2019; Zhou et al., 2019;
Tana et al., 2021); the results indicated that the seepage would
cause a certain degree of damage to the internal microstructure
of CTB.

Microstructure Characteristics of CTB
Under Different SWPs
Effect of SWP on Porosity of CTB
The porosity is a key feature reflecting the variation in
microstructure characteristics of CTB. The porosity of CTB
specimens under different SWPs was obtained from NMR test
results, as shown in Figure 5. It can be noted that the porosity
increased obviously with the increase in SWP.With an increase in
SWP from 0 to 0.8 MPa, the porosity of CTB specimens increased
from 4.687% to 15.337%. The porosity of CTB specimens
increased by 3.390, 7.699, and 10.650 when the SWP increased
from 0 to 0.2 MPa, 0.5 and 0.8 MPa, respectively. The results
proved that SWP had a significant promoting effect on the
initiation and propagation of pores and microcracks in CTB
specimens, which contributed to the porosity and microstructure
damage of CTB specimens. Meanwhile, a high SWP
corresponded to a higher promoting effect, whereas the
influence rate was gradually decreasing.

FIGURE 4 | Effect of seepage on (A) UCS and (B) elastic modulus of CTB specimens.

FIGURE 5 | Effect of seepage on porosity of CTB specimens.
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Effect of Seepage on Pore Size Distribution
Characteristics of CTB
According to the NMR measurement principle, a smaller T2 value
represents a smaller pore size, and vice versa. Figure 6 shows the T2
distribution of CTB specimens after adopting a different SWPs. It can
be found that there were three peaks at each T2 distribution. Peak 1
(leftmost peak) was obviously higher than peak 2 (middle peak), and
peak 2 was obviously higher than peak 3 (rightmost peak), indicating
that most of the main pores of CTB specimens were micropores,
followed by mesopores, and the least were macropores. The three
peaks were discontinuous, revealing that there was no direct link
channel among the three kinds of pores. Figure 7 shows the variation
law of peak area of CTB specimenswith SWP.As can be seen, with the
increase in SWP; peaks 1 and 2 areas of CTB specimens showed an
obvious increasing trend, whereas peak 3 area hardly changed. With
an increase in SWP from 0 to 0.8MPa, peak 1 area increased from
4.492 to 14.841, and peak 2 area increased from0.132 to 0.439, and the
areas of peaks 1 and 2 accounted for 98.67% to 99.63% of the total
peak area. Peak 1 area increased by 3.258, 7.508, and 10.349; and peak
2 area increased by 0.131, 0.202, and 0.307 when the SWP increased
from0 to 0.2MPa, 0.5 and 0.8MPa, respectively. The results suggested
that the pores in CTB specimens initiated and propagated by seepage
were mainly micropores and mesopores, and the macropore volume
hardly affected by SWP. To sum up, micropore volume of CTB was
the most increasing one as SWP increased, and the damage in CTB
under seepage was mostly caused by micropores.

Effect of SWP on Pore Area Fractal Dimension of CTB
Figure 8 shows the SEMmicrographs and their binarization results
of CTB specimens under different SWPs. With a larger SWP, the
microscopic surface of specimen was looser, and the pore area was
larger. The fractal dimension is one of the most important basic
parameters of microstructure characteristics of CTB. Thus, fractal
theory was used to analyze the effect of SWP on the pore area fractal
dimension of CTB specimens in this study. The pore area fractal
dimension of binarized SEM micrographs was determined via box
counting (Zhao et al., 2022; Zhang et al., 2020; Wu et al., 2019; Sun
et al., 2019). As shown in Figure 9, the changing regularity of SWP

on pore area fractal dimension of CTB specimens was similar to
SWP on porosity. With an increase in SWP from 0 to 0.8MPa, the
pore area fractal dimension of CTB specimens increased from 1.815
to 1.903. The pore area fractal dimension of CTB specimens
increased by 0.036, 0.067, and 0.088 when the SWP increased
from 0 to 0.2MPa, 0.5 and 0.8MPa, respectively. A large pore
area fractal dimension represents a high complexity of pores and a
worse uniformity of pores. These findings further indicated that a
higher SWP will make the microstructure of CTB looser and more
porous, resulting in more microcracks and pores. Microcracks
propagated and connected with pores, forming defects, which
deteriorated the microstructure and weakened the mechanical
properties of CTB (Mower and Long, 2016; Gu et al., 2020).

Relationship BetweenMechanical Properties
and Microstructure Characteristics
Relationship AmongUCS, ElasticModulus, and Porosity
The porosity of CTB has an important influence on its
mechanical properties. Figure 10 shows the relationship

FIGURE 6 | Effect of SWP on T2 distribution of CTB specimens.

FIGURE 7 | Effect of SWP on peak area of CTB specimens.
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among UCS, elastic modulus, and porosity. It can be
clearly seen that both the UCS and elastic modulus of CTB
decreased with the increase in porosity, and both
relationships were strongly nonlinear. The relationship
among UCS, elastic modulus, and porosity can be fitted as
σc � 5.012e

−n
7.484 + 3.393 (R2 � 0.9529) and E � 7.896e

−n
6.168 + 3.475

(R2 � 0.9487), respectively, where σc is the fitted UCS of CTB
(MPa), E is the fitted elastic modulus of CTB (102 MPa), n is
the porosity of CTB, and R is correlation coefficient. Both
correlation coefficients were greater than 0.9, which
demonstrated that the fitted equations were highly reliable.
Thus, the UCS and elastic modulus of CTB under different

FIGURE 8 | (A) SEM micrographs and (B) binary micrographs of CTB specimens.
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SWPs can be evaluated using the above two fitting functions
according to the porosity measured by NMR, which provides
an effective method for obtaining UCS and elastic modulus of
CTB under different SWPs.

Relationship Among UCS, Elastic Modulus, and Pore
Area Fractal Dimension
The relationships among UCS, elastic modulus, and pore area
fractal dimension for CTB are shown in Figure 11. It can be
clearly seen that both the UCS and elastic modulus of CTB
were negatively correlated with its pore area fractal dimension;
that is, the higher the pore area fractal dimension, the lower the
UCS and elastic modulus of CTB. The fitted line among UCS,
elastic modulus, and pore area fractal dimension for CTB were
σc � −23.66D + 48.49 (R2 � 0.9414), E � −35.35D + 71.22
(R2 � 0.9367), respectively, where D is the pore area fractal
dimension of CTB. The two high correlation coefficients
meant significant correlations and reliable fitting lines.
These results indicated that the complexity of pores would
lead to a lower UCS and elastic modulus of CTB, which was
consistent with the findings by Ouellet et al. (2007) and Liu
et al. (2020).

FIGURE 9 | Effect of SWP on pore area fractal dimension of CTB
specimens.

FIGURE 10 | Relationship among (A) UCS, (B) elastic modulus and porosity.

FIGURE 11 | Relationship among (A) UCS, (B) elastic modulus and pore area fractal dimension.
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CONCLUSION

In this study, the effects of SWP on the mechanical properties and
microstructure characteristics of CTBwere studied through a series
of laboratory experiments as follows: seepage experiments were
conducted to simulate the damage of CTB caused by seepage; UCS
tests were performed to obtain the mechanical properties of CTB.
Also, NMR and SEM tests were used to analyze the microstructure
characteristics of CTB. Based on the results presented in this article,
the following conclusions can be drawn:

(1) Seepage had a significant deterioration effect on the
mechanical properties of CTB. The UCS and elastic
modulus of CTB decreased with the increase in SWP,
whereas the decreasing trend reduced gradually with the
increase in SWP.

(2) Seepage promoted the initiation and propagation of
microcracks and pores in CTB. Higher SWP initiated and
propagated more microcracks and pores in CTB, resulting in
a looser and more porous microstructure of CTB, and a
higher porosity and pore area fractal dimension, which
seriously damaged the microstructure and weakened the
mechanical properties of CTB.

(3) The T2 spectrum showed that the pores in CTB with the
largest proportion initiated and propagated by seepage were
micropores, which means the damage in CTB under seepage
mostly caused by micropores.

(4) The UCS and elastic modulus of CTB under seepage decrease
exponentially with the increased porosity and present linearly
inverse proportional relation to the pore area fractal dimension.
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