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We study the propagation of bending waves along the free edge of a semi-

infinite piezoelectric plate within the framework of two-variable refined plate

theory (TVPT, a high-order plate theory), Reissner-Mindlin refined plate theory

(RMPT, a first-order plate theory), and the classical plate theory (CPT). The

piezoelectric plate has macroscopic symmetry of orthogonal mm2 The

governing equations are derived using Hamilton principle. The dispersion

relations for electrically open and shorted boundary conditions at the free

edge are obtained analytically. The difference in dispersion property between

the three plate theories is analyzed. The numerical results show that the

dispersion curves predicted by TVPT and RMPT are similar and have small

difference over the complete frequency range, which means both the two

theories are valid for the analysis of edge waves in a piezoelectric plate. But the

wave velocity calculated by CPT is much larger than the two theories above and

is no longer valid for high frequency and thick plate. The electrical boundary

condition at the free edge has an insignificant effect on phase velocity and

group velocity which can be ignored for the analysis of edge waves in a

piezoelectric plate governed by bending deformation. The velocity of

bending edge waves in a semi-infinite piezoelectric plate is positively related

to that of Rayleigh surface wave in a traction-free piezoelectric half-space. The

edgewave velocity can be enhanced when the piezoelectric plate is considered

as one with weaker anisotropy.
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Introduction

Edge waves, which propagate along the edge of a thin plate and decay transversely

with distance from the edge, have attracted much attention in the past 60 years since the

existence of a flexural wave guided by the free edge of a semi-infinite isotropic elastic thin

plate was reported by Konenkov (1960). Edge waves have great potential for the

applications in the measurement of material properties and non-destructive
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evaluation of thin elastic structures, such as aircraft wings,

submarine hulls, rotor blades, and so on (Lawrie and

Kaplunov, 2012). In view of these important application, the

existence and propagation of edge waves in various elastic thin

plates, such as transversely isotropic plates (Piliposian et al.,

2010), orthotropic plates (Norris, 1994; Thompson et al., 2002),

cubic symmetric materials (Belubekyan and Engibaryan, 1996),

anisotropic materials (Fu, 2003), and laminated plates (Liu et al.,

1991; Zakharov and Becker, 2003; Fu and Brookes, 2006; Lu et al.,

2007), have been well studied. Lawrie and Kaplunov (2012) gave

a periodic overview of edge waves and resonance on elastic

structures before the 2010s. Most of the above results were

derived using Kirchhoff plate theory. It was demonstrated that

the edge waves in elastic thin plate were also theoretically

predicted by Mindlin plate theory including shear

deformation and rotatory inertia (Norris et al., 1998) and

Ambartsumian refined plate theory considering high-order

shear deformation (Piliposian and Ghazaryan, 2011). The

former was proved to be in agreement with experimental and

finite element results (Lagasse and Oliner, 1976; Norris et al.,

1998). It was shown that the velocity of edge waves predicted by

Kirchhoff plate theory, which is valid only for very low frequency,

is much larger than the results of experiment and finite element.

Piezoelectric materials are widely used to develop electro-

mechanical transducers for converting mechanical energy to

electric energy or vice versa, and acoustic wave devices for

frequency operation and sensing. The subject of elastic wave

propagation in various piezoelectric materials and structures

has received increasing attention from the mechanics

community in the last few decades. Recent results mainly

include surface waves in piezoelectric half-space (Collet and

Destrade, 2004; Collet and Destrade, 2005), elastic half-space

covered by piezoelectric layer (Nie et al., 2020a; Zhang et al.,

2022) or the reverse configuration (Liu and He, 2010; Huang et al.,

2014), interface waves in piezoelectric bi-material (Yang and Yang,

2009; Otero et al., 2012), guided waves in piezoelectric plate

(Zhang et al., 2012; Nie et al., 2020b), and multilayered plate

(Gao and Zhang, 2020; Xia et al., 2021), functionally graded

piezoelectric material (Liu et al., 2021; Lakshman, 2022) and so

on. So far, most of the available results on elastic wave in

piezoelectric materials and structures are for the infinite media

extended in one or two dimensions. It is known that the vibration

energy carried by edge waves can be confined to the edge region of

the plate and decays rapidly with distance from the edge which

means that there will be very little motion away from the active

edge. This property has unique advantage in fixing and support of

acoustic wave device compared to that of bulk wave and surface

wave, since devices can be mounted to supporting structures at the

side very close to the active edge without affecting the device

performance. From this, the edge waves have great promise for

achieving the miniaturisation of acoustic wave devices which is

exactly demand for the future development of micro-electro-

mechanical systems (MEMS). Compared with elastic waves

propagation in the infinite piezoelectric materials, which have

been widely studied and also have been used in many engineering

fields, the results related to edge waves in the thin piezoelectric

plates are still limited, and some interesting properties are waiting

to be further revealed. Recently, Piliposian and Ghazaryan (2011)

studied the existence and propagation of bending waves localized

at the free edge of a piezoelectric plate within the framework of

Ambartsumian refined plate theory. The condition for existence of

a localized bending wave was given. Nie et al. (2021) investigated

bending waves propagation along the free edge of a semi-infinite

piezoelectric plate perfectly bonded with a metal strip plate using

the first-order Reissner-Mindlin refined plate theory. The

propagation of bending wave with multi-mode was shown.

Piezoelectric plates considered in (Piliposian and Ghazaryan,

2011) and (Nie et al., 2021) are both assumed as the

transversely isotropic media. In this paper, we study the

propagation of bending waves localized along the free edge of a

semi-infinite piezoelectric plate of orthogonal symmetry using

two-variable refined plate theory (TVPT, a high-order shear

deformation theory), Reissner-Mindlin refined plate theory

(RMPT, a first-order shear deformation theory), and the

classical plate theory (CPT). Our aim is to examine the

difference in dispersion property between the three plate

theories and to reveal the effects of electrical boundary applied

on the free edge and material property on wave propagation. To

the best of our knowledge, the propagation of edge waves in an

orthogonal piezoelectric plate has not been previously studied and

also has not been analyzed in the context of TVPT.

Problem formulation and plate
theories

A semi-infinite piezoelectric plate of thickness h is shown in

Figure 1. The plate (−∞< x<∞; 0≤y<∞; −h/2≤ z≤ h/2) is

FIGURE 1
Geometry of a semi-infinite piezoelectric plate.
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referred to rectangular coordinates (x, y, z) and is bounded by a

free edge at y = 0. The plate is made of orthogonal piezoelectric

medium with macroscopic symmetry of mm2 and is poled along

z-direction. We consider bending wave propagating along the

free edge of such plate. The constitutive relations of orthogonal

piezoelectric medium are expressed as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σxx
σyy
σzz
σyz
σxz
σxy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 c13 0 0 0
c22 c23 0 0 0

c33 0 0 0
c44 0 0

sym. c55 0
c66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εxx
εyy
εzz
γyz
γxz
γxy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 e31
0 0 e32
0 0 e33
0 e24 0
e15 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× ⎡⎢⎢⎢⎢⎢⎣Ex

Ey

Ez

⎤⎥⎥⎥⎥⎥⎦
(1)

⎡⎢⎢⎢⎢⎢⎣Dx

Dy

Dz

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎣ 0 0 0 0 e15 0
0 0 0 e24 0 0
e31 e32 e33 0 0 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εxx
εyy
εzz
γyz
γxz
γxy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ ⎡⎢⎢⎢⎢⎢⎣ κ11 0 0

0 κ22 0
0 0 κ33

⎤⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎣Ex

Ey

Ez

⎤⎥⎥⎥⎥⎥⎦

(2)
where cij, κij and eij (i, j = 1–6) are the elastic constants, dielectric

and piezoelectric constants; σkl, εkl, Ek, and Dk (k, l = x, y, and z)

are the stress, strain, electric field and electric displacement,

respectively. The non-trivial strain-displacement and electric

field-potential relations are as follows

εxx � zu

zx
, εyy � zv

zy
, γxy � zu

zy
+ zv

zx

γyz �
zw

zy
+ zv

zz
, γxz �

zw

zx
+ zu

zz
,

Ex � −zφ
zx

, Ey � −zφ
zy

, Ez � −zφ
zz

.

(3)

where u, v, and w are the mechanical displacement components

along the x-axis, y-axis and z-axis; φ is the electric potential.

Two-variable refined plate theory

According to the TVPT (Shimpi, 2002; Shimpi and Patel,

2006), the transversal displacement w, which is independent of z,

can be expressed as a combination of the bending component

and the shear component, i.e.,

w(x, y, t) � wb(x, y, t) + ws(x, y, t) (4)

where wb and ws denote the bending component and shear

component of transversal displacement w, respectively.

Also, the in-plane displacements u and v consisting of

bending and shear components are

u � ub + us, v � vb + vs (5)

where ub and vb represent the bending components of in-plane

displacement u and v; us, and vs are the shear components of u

and v, respectively.

Assuming that the bending components of in-plane

displacement ub and vb play the same roles as u and v in

CPT, gives

ub � −z zwb

zx
, vb � −z zwb

zy
(6)

The shear components of in-plane displacement are

considered as the following functions

us � f(z) zws

zx
, vs � f(z) zws

zy
(7)

where f (z) signifies the generalized shape function describing

the transverse shear deformation and stress distribution

through the thickness of the piezoelectric plate. In this two-

variable refined plate theory (Shimpi, 2002; Shimpi and Patel,

2006), we assume.

f(z) � z

4
− 5z3

3h2
(8)

The mechanical displacements can be rewritten as

u(x, y, z, t) � h[1
4
(z
h
) − 5

3
(z
h
)3] zws

zx
− z

zwb

zx

v(x, y, z, t) � h[1
4
(z
h
) − 5

3
(z
h
)3] zws

zy
− z

zwb

zy

w(x, y, z, t) � ws(x, y, t) + wb(x, y, t)
(9)

The non-zero strains are

εxx � −z z
2wb

zx2 + h[1
4
(z
h
) − 5

3
(z
h
)3] z2ws

zx2 ,

εyy � −z z
2wb

zy2 + h[1
4
(z
h
) − 5

3
(z
h
)3] z2ws

zy2 ,

γxy � −2z z2wb

zxzy
+ 2h[1

4
(z
h
) − 5

3
(z
h
)3] z2ws

zxzy
,

γyz � [5
4
− 5(z

h
)2] zws

zy
, γxz � [5

4
− 5(z

h
)2] zws

zx

(10)

First-order Reissner-Mindlin refined plate
theory

According to the RMPT (Reissner, 1945; Mindlin, 1951),

the transversal displacement only includes a bending

component and is also independent of z. The shear

components of in-plane displacement vary linearly through

the plate thickness. From this, the displacement fields for

RMPT can be obtained by letting the shape function be

linear, i.e., f(z) = z in Eq. 9, which gives
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u(x, y, z, t) � zϑx(x, y, t) − z
zw

zx

v(x, y, z, t) � zϑy(x, y, t) − z
zw

zy

w(x, y, z, t) � w(x, y, t)
(11)

where w (x,y,t) = wb (x,y,t) is the transversal displacement of

middle plane of the plate. ϑx (x,y,t) and ϑy (x,y,t) are unknown

functions defining transversal shears. The non-zero strains are

reduced to

εxx � z(zϑx
zx

− z2w

zx2), εyy � z(zϑy
zy

− z2w

zy2),
γxy � z(zϑx

zy
+ zϑy

zx
− 2

z2w

zxzy
), γxz � ϑx, γyz � ϑy

(12)

Classical plate theory

Neglect of the transversal shears, i.e., ϑx (x,y,t) = ϑy
(x,y,t) = 0 in Eq. 12, we obtain displacement fields for

the CPT

u(x, y, z, t) � −z zw
zx

, v(x, y, z, t)
� −z zw

zy
, w(x, y, z, t)

� w(x, y, t)
(13)

The non-zero strains can be further reduced to

εxx � −z z
2w

zx2
, εyy � −z z

2w

zy2
, γxy � −2z z2w

zxzy
(14)

For the above three plate theories, the distribution of the

electric potential φ in the piezoelectric plate should satisfy the

Maxwell equation which is approximately assumed as a

combination of a half-cosine and linear variation (Quek and

Wang, 2000; Ke et al., 2014)

φ � −cos(βz)ϕ(x, y, t) + 2zϕ0

h
(15)

where β = π/h. ϕ(x, y, t) is the spatial and time variation of the

electric potential in the mid-plane of the piezoelectric plate. ϕ0 is

the value of the external electric voltage along z-direction.

Using Eq. 3, the electric fields can be written as

Ex � cos(βz) zϕ
zx

, Ey � cos(βz) zϕ
zy

, Ez � −β sin(βz)ϕ − 2ϕ0

h

(16)

Derivation of governing equations

Two-variable refined plate theory

The strain energy Πu of the piezoelectric plate is

given by

Πu � 1
2
∫

A
∫h

2

−h
2

(σxxεxx + σyyεyy + σyzγyz + σxzγxz + σxyγxy)dzdA
−1
2
∫

A
∫h

2

−h
2

( −DxEx −DyEy −DzEz)dzdA
(17)

where A denotes the domain occupied by the mid-plane of

piezoelectric plate. Substituting Eqs 10, 16 into Eq. 17 yields

Πu � 1
2
∫

A
( −Mx1

z2wb

zx2 +Mx2
z2ws

zx2 −My1
z2wb

zy2 +My2
z2ws

zy2 )dA
+1
2
∫

A
( −Mxy1

z2wb

zxzy
+Mxy2

z2ws

zxzy
+ Qx

zws

zx
+ Qy

zws

zy
)dA

−1
2
∫

A
∫h

2

−h
2

{Dx cos(βz) zϕ
zx

+Dy cos(βz) zϕ
zy

−Dz[β sin(βz)ϕ + 2ϕ0

h
]}dzdA

(18)

where the bending momentsMx1,Mx2,My1 andMy2, the twisting

moments Mxy1 and Mxy2, the shearing forces Qx and Qy, are

respectively defined by

Mx1 � ∫h
2

−h
2

σxxzdz � −h
3

12
(c11z2wb

zx2
+ c12

z2wb

zy2
) + 2he31

π
ϕ (19a)

Mx2 � ∫h
2

−h
2

σxx(z4 − 5z3

3h2
)dz

� h3

1008
(c11z2ws

zx2
+ c12

z2ws

zy2
) − 2he31(π2 − 10)

π3
ϕ (19b)

My1 � ∫h
2

−h
2

σyyzdz � −h
3

12
(c12z2wb

zx2
+ c22

z2wb

zy2
) + 2he32

π
ϕ (19c)

My2 � ∫h
2

−h
2

σyy(z4 − 5z3

3h2
)dz

� h3

1008
(c12z2ws

zx2
+ c22

z2ws

zy2
) − 2he32(π2 − 10)

π3
ϕ (19d)

Mxy1 � ∫h
2

−h
2

2σxyzdz � −h
3c66
3

z2wb

zxzy
(19e)

Mxy2 � ∫h
2

−h
2

2σxy(z4 − 5z3

3h2
)dz � h3c66

252
z2ws

zxzy
(19f )

Qx � ∫h
2

−h
2

σxz(54 − 5z2

h2
)dz � 5hc55

6
zws

zx
− 20he15

π3

zϕ

zx
(19g)

Qy � ∫h
2

−h
2

σyz(54 − 5z2

h2
)dz � 5hc44

6
zws

zy
− 20he24

π3

zϕ

zy
(19h)
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The kinetic energyΠk of the piezoelectric plate is calculated by

Πk � 1
2
∫

A
∫h

2

−h
2

ρ[(zu
zt
)2

+ (zv
zt
)2

+ (zw
zt
)2]dzdA

� ρh3

24
∫

A
{[ z

zt
(zwb

zx
)]2

+ [ z
zt
(zwb

zy
)]2}dA

+ ρh3

2016
∫

A
{[ z

zt
(zws

zx
)]2

+ [ z
zt
(zws

zy
)]2}dA

+ ρh

2
∫

A
(zwb

zt
+ zws

zt
)2

dA (20)

The work done by external force Πw is

Πw � 1
2
∫

A
[Nx(zw

zx
)2

+Ny(zw
zy
)2]dA (21)

where Nx � −2e31ϕ0 and Ny � −2e32ϕ0 are the normal forces

induced by the external electric voltage ϕ0 along the x- and y-axis,

respectively.

The governing equations can be derived by Hamilton

principle

δ∫t

0
(Πu − Πw − Πk)dt � 0 (22)

Substituting Eqs 18, 20, 21 into the above equation, letting the

coefficients of δwb, δws, and δϕ be zero, the governing equations

can be obtained as

δwb:
z2Mx1

zx2 + z2My1

zy2 + z2Mxy1

zxzy
−Nx(z2wb

zx2 + z2ws

zx2 ) −Ny(z2wb

zy2 + z2ws

zy2 ) �

ρh(z2wb

zt2
+ z2ws

zt2
) − ρh3

12
z2

zt2
(z2wb

zx2 + z2wb

zy2 )
(23a)

δws:
z2Mx2

zx2 + z2My2

zy2 + z2Mxy2

zxzy
− zQx

zx
− zQy

zy
− ρh3

1008
z2

zt2
(z2ws

zx2 + z2ws

zy2 )+
ρh(z2wb

zt2
+ z2ws

zt2
) −Nx(z2wb

zx2 + z2ws

zx2 ) −Ny(z2wb

zy2 + z2ws

zy2 ) � 0

(23b)

δϕ: ∫h
2

−h
2

{zDx

zx
cos(βz) + zDy

zy
cos(βz) +Dz[β sin(βz)]}dz � 0

(23c)

First-order Reissner-Mindlin refined plate
theory

Using Hamilton principle and taking account of Eqs 12, 16,

the governing equations for the RMPT can be obtained as

δϑx:
zMx

zx
+ zMxy

zy
− Qx � ρh3

12
(z2ϑx
zt2

− z3w

zxzt2
) (24a)

δϑy:
zMy

zy
+ zMxy

zx
− Qy � ρh3

12
(z2ϑy
zt2

− z3w

zyzt2
) (24b)

δw:
z2Mx

zx2 + z2My

zy2 + z2Mxy

zxzy
−Nx

z2w

zx2 −Ny
z2w

zy2 �

ρh
z2w

zt2
+ ρh3

12
z2

zt2
[(zϑx

zx
+ zϑy

zy
) − (z2w

zx2 +
z2w

zy2)]
(24c)

δϕ: ∫h
2

−h
2

{zDx

zx
cos(βz) + zDy

zy
cos(βz) +Dz[β sin(βz)]}dz � 0

(24d)
where the bending moments Mx and My, the twisting

moment Mxy, the shearing forces Qx and Qy, are

respectively defined by

Mx � ∫h
2

−h
2

σxxzdz

� h3

12
[c11(zϑx

zx
− z2w

zx2
) + c12(zϑy

zy
− z2w

zy2
)] + 2he31

π
ϕ

(25a)

My � ∫h
2

−h
2

σyyzdz

� h3

12
[c12(zϑx

zx
− z2w

zx2
) + c22(zϑy

zy
− z2w

zy2
)] + 2he32

π
ϕ

(25b)

Mxy � ∫h
2

−h
2

2σxyzdz � h3c66
6

(zϑx
zy

+ zϑy
zx

− 2
z2w

zxzy
) (25c)

Qx � ∫h
2

−h
2

σxzdz � c55hϑx − 2he15
π

zϕ

zx
(25d)

Qy � ∫h
2

−h
2

σyzdz � c44hϑy − 2he24
π

zϕ

zy
(25e)

Classical plate theory

The governing equations for CPT are

δw:
z2Mx

zx2 + z2My

zy2 + z2Mxy

zxzy
−Nx

z2w

zx2 −Ny
z2w

zy2

� ρh
z2w

zt2
− ρh3

12
z2w

zt2
(z2w
zx2 +

z2w

zy2) (26a)

δϕ: ∫h
2

−h
2

{zDx

zx
cos(βz) + zDy

zy
cos(βz) +Dz[β sin(βz)]}dz � 0

(26b)
where the bending moments Mx, My, and the twisting moment

Mxy are

Mx � ∫h
2

−h
2

σxxzdz � −h
3

12
(c11z2w

zx2
+ c12

z2w

zy2
) + 2he31

π
ϕ (27a)
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My � ∫h
2

−h
2

σyyzdz � −h
3

12
(c12z2w

zx2
+ c22

z2w

zy2
) + 2he32

π
ϕ (27b)

Mxy � ∫h
2

−h
2

2σxyzdz � −h
3c66
3

z2w

zxzy
(27c)

Solution of the localized bending
waves

Two-variable refined plate theory

For bending wave propagating along x-direction we seek the

general solution satisfying the governing Eq. 23 in the form

wb(x, y, t) � Aebkyeik(ct−x),

ws(x, y, t) � Bebkyeik(ct−x),

ϕ(x, y, t) � Debkyeik(ct−x) (28)

where i � ���−1√
, c is the phase velocity, k is the wavenumber, b is a

parameter to be determined. A, B and D are unknown

amplitudes. Substituting Eq. 28 into Eq. 23 and taking

account of Eq. 19, we can obtain

{η2
12
[c11 − 2(c12 + 2c66)b2 + c22b

4 − ρc2(1 − b2)] + Ny

h
b2 − Nx

h
− ρc2}A+

(Ny

h
b2 − Nx

h
− ρc2)B + 2

π
(e31 − e32b

2)D � 0

(29a)

(Ny

h
b2 − Nx

h
− ρc2)A +

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

η2

1008
[c11 − 2(c12 + 2c66)b2 + c22b

4 − ρc2(1 − b2)]
+5
6
(c55 − c44b

2) + Ny

h
b2 − Nx

h
− ρc2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
B+

[2(π2 − 10)
π3 (e31 − e32b

2) − 20

π3 (e15 − e24b
2)]D � 0

(29b)
2
π
(e31 − e32b

2)A + [2(π2 − 10)
π3 (e31 − e32b

2) − 20

π3 (e15 − e24b
2)]B−

1
2
[(κ11 − κ22b

2) + π2

η2
κ33]D � 0

(29c)

where η = kh is the non-dimensional wavenumber. Eq. 29 is a

system of linear homogeneous equations with respect to the

unknown amplitudes A, B and D. A non-trivial solution

requires that the determinant of coefficient matrix of Eq.

29 vanishes which obtains a 10-order equation in

undetermined parameter b. There are ten roots of b

representing the propagation direction of the ten partial

waves, respectively. In order to satisfy the attenuation

condition that the displacements and electric potential

should vanish as y → ∞, we only take the five negative

roots denoted by bm (m = 1–5). The general solution to the

governing equation can be rewritten as

wb � ∑5
m�1

Ame
bmkyeik(ct−x),

ws � ∑5
m�1

αmAme
bmkyeik(ct−x),

ϕ � ∑5
m�1

βmAme
bmkyeik(ct−x) (30)

where αm � Bm/Am and βm � Dm/Am are amplitude ratios given

in Appendix A.

At the free edge y = 0, the bending moments and twisting

moments should be zero, i.e., My1 = My2 = Mxy1 = Mxy2 = 0. We

further consider two types of electrical boundary conditions at

the edge y = 0, i.e., ∫h/2−h/2 Dydz � 0 for electrically open case, and

ϕ � 0 for electrically shorted case. Substituting the general

solution Eq. 30 into the above mechanical and electrical

boundary conditions, a system of 5-order linear homogeneous

equations with unknown amplitudes Am yields, i.e., T · A � 0,

where A = [A1, A2, A3, A4, A5]
T. Elements of matrix T for

electrically open case at the free edge are given by

T1m � η2

12
( − c12 + c22b

2
m) − 2

π
e32βm,

T2m � η2

1008
( − c12 + c22b

2
m)αm − 2(π2 − 10)

π3 e32βm,

T3m � η2

3
c66bm, T4m � η2

252
c66bmαm,

T5m � 5η
6
e24bmαm + 2η

π
κ22bmβm (31)

The elements of matrix T for electrically shorted case are the

same except for T5m � βm.

First-order Reissner-Mindlin refined plate
theory

We consider the following solution satisfying the governing

Eq. 24

ϑx � Aikebkyeik(ct−x),

ϑy � Bkebkyeik(ct−x),

w � Debkyeik(ct−x),

ϕ � Febkyeik(ct−x) (32)

whereA, B,D and F are unknown amplitudes. Substituting Eq. 32

into Eq. 24 obtains

η2

12
( − c11 + c66b

2 + ρc2 − 12c55
η2

)A − η2b

12
(c12 + c66)B

− η2

12
[c11 − (c12 + 2c66)b2 + ρc2]D − 2

π
(e31 + e15)F � 0 (33a)

η2b

12
(c12 + c66)A + η2

12
(b2c22 − c66 + ρc2 − 12c44

η2
)B

− η2

12
[b3c22 − b(c12 + 2c66) − bρc2]D + 2b

π
(e32 + e24)F � 0 (33b)
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η2

12
[ − c11 + b2(c12 + 2c66) − ρc2]A + η2

12
[b3c22 − b(c12 + 2c66) − bρc2]B

−η
2

12
[c11 − 2b2(c12 + 2c66) + b4c22 − 12

η2
ρc2 − 12

η2h
(Nx − b2Ny) − ρc2(1 − b2)]D

−2
π
(e31 − b2e32)F � 0

(33c)
2
π
(e15 + e31)A + 2b

π
(e24 + e32)B + 2

π
(e31 − b2e32)D

−1
2
(κ11 − b2κ22 + π2κ33

η2
)F � 0 (33d)

Equation 33 is a system of linear homogeneous equations

with respect to the unknown amplitudes A, B, D, and F. A non-

trivial solution requires that the determinant of coefficient matrix

vanishes which obtains an 8-order equation in b. To satisfy the

attenuation condition, only the four negative roots denoted by bn
(n = 1–4) are remained. The general solution can be written as

ϑx � ∑4
n�1

Anike
bnkyeik(ct−x), ϑy � ∑4

n�1
αnAnke

bnkyeik(ct−x),

w � ∑4
n�1

βnAne
bnkyeik(ct−x), ϕ � ∑4

n�1
χnAne

bnkyeik(ct−x)
(34)

where αn � Bn/An, βn � Dn/An, and χn � Fn/An are amplitude

ratios given in Appendix B.

At the free edge y = 0, the bending moment, twisting moment

and shear force should be zero, i.e., My = Mxy = Qy = 0. The

electrical boundary conditions at the free edge are the same as the

case of TVPT. Using the general solution Eq. 34 and the

corresponding boundary conditions, a system of 4-order linear

homogeneous equations with unknown amplitudes An can be

obtained, i.e., T · A � 0, where A = [A1, A2, A3, A4]
T. Elements of

matrix T for electrically open case are

T1n � η2h

12
[c12(1 + βn) + c22(bnαn − b2nβn)] + 2he32

π
χn,

T2n � iη2hc66
12

(bn − αn + 2bnβn), T3n � η(c44αn − 2bne24
π

χn),
T4n � 2ηe24

π
αn + ηbnκ22

2
χn

(35)
The elements of matrix T for electrically shorted case are the

same except for T4n � χn.

Classical plate theory

We consider the following solution of Eq. 26

w � Kebkyeik(ct−x), ϕ � Jebkyeik(ct−x) (36)

where K and J are unknown amplitudes. Substituting Eq. 36 into

Eq. 26 obtains

{η2
12
[c11 − 2(c12 + 2c66)b2 + c22b

4 − ρc2(1 − b2)] + Ny

h
b2

−Nx

h
− ρc2}K + 2

π
(e31 − e32b

2)J � 0 (37a)

2
π
(e31 − e32b

2)K + [1
2
( − κ11 + κ22b

2) − π2

2η2
κ33]J � 0 (37b)

Equation 37 is a system of linear homogeneous equations

with respect to the unknown amplitudes K and J. A non-trivial

solution requires that the determinant of coefficient matrix

vanishes which yields a 6-order equation in b. To satisfy the

attenuation condition, we only take the three negative roots

denoted by bj (j = 1–3). Eq. 36 is rewritten as

w � ∑3
j�1
Kje

bjkyeik(ct−x), ϕ � ∑3
j�1
βjKje

bjkyeik(ct−x) (38)

where βj is the amplitude ratio given by

βj �
4η2(e31 − e32b2j)

η2π(κ11 − κ22b2j) + π3κ33
(39)

At the edge y = 0, the traction-free criterion requires My =

Mxy = 0. Based on the general solution Eq. 38 and the

corresponding boundary conditions, a system of 3-order linear

homogeneous equations with constants Aj can be obtained,

i.e., T · A � 0, where A = [A1, A2, A3]
T. Elements of matrix T

for electrically open condition are

T1j � −hη
2

12
(c12 − c22b

2
j) − 2h

π
e32βj, T2j � hη2

3
c66bj, T3j � 2η

π
κ22bjβj

(40)

The elements of matrix T for electrically shorted case are the

same except for T3j � βj.

When the determinant of the matrix T carried out within the

framework of TVPT, RMPT and CPT vanishes, we obtain the

dispersion relations for localized bending waves propagating in

the semi-infinite piezoelectric plate.

Numerical results and discussions

In this section, we give some numerical results to demonstrate

the dispersion property of localized bending waves propagating

along the free edge of an orthogonal piezoelectric plate. The

piezoelectric plate is considered as PZN-0.07PT with material

constants listed in Table 1 (Zhang et al., 2002).

Based on the dispersion relations derived using TVPT, RMPT

and CPT, we calculate the dispersion curves of localized bending

waves for the three plate theories shown in Figure 2, where

boundary condition at the free edge is imposed as electrically

open case, the external electric voltage ϕ0 � 0. It is noted that the

difference between these three plate theories mainly lies in the
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shape function f(z) defining the transverse shear deformation

along the thickness of the piezoelectric plate. f(z) is shown as a

cubic order in the z-thickness direction for TVPT, a linear function

for RMPT, and zero for CPT, respectively. It is found from Figure 2

that the bending wave velocity for CPT is the highest, followed by

RMPT, and TVPT is the lowest. The dispersion curves predicted

by TVPT and RMPT are very close over the complete frequency

range, while there is a significant difference in wave velocity

between CPT result and the two results above, especially for

high non-dimensional wavenumber η. The acceptable difference

for the three plate theories is only within the range of very low non-

dimensional wavenumber η (less than 0.2). It is known that edge

wave velocity predicted by the first-order Mindlin plate theory

agrees with experimental and finite element results (Lagasse and

Oliner, 1976; Norris et al., 1998). Our calculation shows a very

small difference between TVPT and RMPT which verifies the

validity of the present results. Generally, the classical plate theory,

which commonly neglects the effect of transverse shear and results

in the overestimated wave velocity, is valid only for very low

wavenumber and thin plate. The high-order plate theories are

more accurate than first-order plate theories and are more

applicable to the applications of high frequencies and thick

plates. These results show that both TVPT and RMPT are valid

for the analysis of edge waves in a piezoelectric plate and, to a

certain extent, TVPT is more accurate than RMPT for high

wavenumber and thick plate where CPT is not valid.

Based on the dispersion relations derived by TVPT, we

calculate the phase velocity and group velocity of localized

bending waves for electrically open case and shorted case listed

in Tables 2, 3, respectively. The group velocity cg is calculated

through cg = c + kdc/dk. It is observed that the phase velocity and

group velocity of electrically open case are slightly larger than that

of electrically shorted case. In view of the unnoticeable differences

in phase velocity and group velocity between the two electrical

boundary conditions, one can ignore the effect of electrical

boundary imposed at the free edge when propagation of

localized edge waves in a piezoelectric plate is considered. The

TABLE 1 Material constants used in the numerical examples.

Materials cij (1010 Nm−2) ρ (kg m−3) eij (C m−2) κij/κ0

c11 c12 c13 c22 c23 c33 c44 c55 c66 ρ e31 e32 e33 e15 e24 κ11/κ0 κ22/κ0 κ33/κ0

PZN-0.07PT 14.5 15.3 12.7 18.0 15.0 14.1 6.5 0.34 7.1 8,038 −8.65 −17.44 3.69 6.25 3.24 6,953 1847 291

PZN-0.09PT 9.7 10.2 9.6 12.4 11.9 12.8 6.6 0.33 6.1 8,316 −7.85 −16.35 2.35 6.72 7.85 800 1,133 678

PIN-0.47PMN-0.28PT 18.3 9.8 3.6 11.9 11.5 18.0 6.4 0.67 5.0 8,125 −6.5 −18.65 6.48 17.78 12.91 6,164 2059 3,503

Where κ0 = 8.854 × 10−12 F m−1 is the dielectric constant of vacuum.

FIGURE 2
Dispersion curves of localized bending waves for different
plate theories.

TABLE 2 Phase velocity of different electrical conditions at the free
edge calculated by TVPT.

η Phase velocity of
electrically open case
(m s−1)

Phase velocity of
electrically shorted case
(m s−1)

0.01 12.9998 12.9998

0.05 67.99983 67.99982

0.10 131.9997 131.9996

0.15 191.9995 191.9994

0.20 247.9994 247.9992

0.25 297.9993 297.9990

0.30 341.9992 341.9989

0.35 379.9991 379.9990

0.40 413.9989 413.9988

0.45 441.9989 441.9986

0.50 465.9989 465.9986
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acceptable results can be obtained through either electrically open

boundary condition or electrically shorted boundary condition.

Figure 3 shows the effect of external electric voltage ϕ0 on

phase velocity of localized bending waves, where c0 is the phase

velocity for the case of ϕ0 � 0, the plate thickness h = 1 mm. It is

found that the external electric voltage affects the phase

velocity in the range of low wavenumber. There is nearly no

effect when wavenumber is high enough. The wave velocity can

be enlarged when a negative electric voltage is applied. On the

contrary, wave velocity decreases under the influence of a

positive electric voltage. For a given wavenumber, the wave

velocity becomes larger as the magnitude of electric voltage

becomes larger.

To demonstrate the effect of material property on dispersion

curve of localized bending waves we calculate the wave velocities

for three different piezoelectric materials all with symmetry of

orthogonal mm2, i.e., PZN-0.07PT, PZN-0.09PT and PIN-

0.47PMN-0.28PT. The used material constants are found in

Table 1 (Zhang et al., 2002; He et al., 2011; Zhang et al., 2011).

Figure 4 shows the dispersion curves of the above three

piezoelectric plates for electrically shorted case at the free edge,

where ϕ0 � 0. It is known that the propagation of edge waves in a

semi-infinite isotropic elastic plate is the analogue of the classical

Rayleigh surface wave in a traction-free half-space under plane

strain.We thus calculate the Rayleigh surface wave velocities of the

considered three piezoelectric materials for the corresponding

electrical boundary condition using plane strain model which

are given by 1,599.9, 1,127.5, and 1902.3 ms−1 for PZN-0.07PT,

PZN-0.09PT, and PIN-0.47PMN-0.28PT, respectively. Combined

Figure 4 and Rayleigh surface wave velocities calculated, it is

observed that the velocity of bending edge waves is positively

related to that of Rayleigh surface wave, the larger the Rayleigh

surface wave velocity the faster the localized bending wave

propagation along the edge of the semi-infinite piezoelectric plate.

To reveal the effect of anisotropy on dispersion property of

bending edge waves, comparison of dispersion characteristics for

orthogonal piezoelectric plate (class mm2) and for transverse

isotropic piezoelectric plate (class 6 mm) in the context of TVPT,

is shown in Figure 5. The materials parameters used in this

calculation are taken as follows: PZN-0.07PT is used as the

mm2 piezoelectric plate whose material constants is found in

Table 1; the 6 mm piezoelectric plate is reduced by assuming c22 =

c11 = 18 Nm−2 × 1010 Nm−2, c23 = c13 = 15 Nm−2 × 1010 Nm−2, c55 =

c44 = 0.34 Nm−2 × 1010 Nm−2, e24 = e15 = 3.24 cm−2, e32 = e31 =

–17.44 cm−2, and κ22 = κ11 = 1847κ0 from the PZN-0.07PT. It is

TABLE 3 Group velocity of different electrical conditions at the free
edge calculated by TVPT.

η Group velocity of
electrically open case
(m s−1)

Group velocity of
electrically shorted case
(m s−1)

0.01 26.62703 26.62702

0.05 134.1109 134.1102

0.10 255.9993 255.9992

0.15 365.9991 365.9988

0.20 459.9989 459.9984

0.25 532.9988 532.9983

0.30 587.9987 587.9985

0.35 631.9982 631.9980

0.40 675.9991 675.9977

0.45 695.9981 695.9980

0.50 707.9979 707.9978

FIGURE 3
Effect of external electric voltage on phase velocity of
localized bending waves.

FIGURE 4
Dispersion curves for different piezoelectric materials.
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shown from Figure 5 that the edge wave velocity of the 6 mm

piezoelectric plate is higher than the mm2 piezoelectric plate, for

a fixed non-dimensional wavenumber η. It means that the wave

velocity of bending edge wave increases when the piezoelectric

plate is considered as a weaker anisotropic medium.

Conclusion

Propagation of localized bending waves along the free edge of

a semi-infinite piezoelectric plate of orthogonal mm2 is studied

using TVPT, RMPT, and CPT. The dispersion relations for

electrically open and shorted cases at the free edge are

obtained analytically. The difference in wave velocity between

the three plate theories is analyzed. The effects of electrical

boundary condition at the edge, material property as well as

the external electric voltage on dispersion characteristic are

discussed through some numerical examples. It is found that

the wave velocity calculated by TVPT and RMPT are very close

over the complete frequency range, which means both the two

theories are valid for the analysis of edge waves in a piezoelectric

plate. But CPT result, which shows a significant difference in

wave velocity comparing with that of TVPT and RMPT, is

unacceptable for high frequency and thick plate. The

electrically boundary condition at the free edge of the semi-

infinite piezoelectric plate has an insignificant effect on phase

velocity and group velocity. Either electrically open boundary or

electrically shorted boundary can produce an acceptable result.

The velocity of bending edge waves in a piezoelectric plate is

positively related to that of Rayleigh surface wave in a traction-

free piezoelectric half-space. A large velocity of Rayleigh surface

wave results in a large velocity of bending wave propagating

along the edge of a semi-infinite piezoelectric plate. The edge

wave velocity is enhanced when the piezoelectric plate is

considered as a weaker anisotropic medium.
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Appendix A

The expressions of Am, Bm and Dm related to the amplitude

ratios αm and βm are given by

Am �

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

η2

1008
[c11 − 2(c12 + 2c66)b2m + c22b

4
m − ρc2(1 − b2m)]

+5
6
(c55 − c44b

2
m) + Ny

h
b2m − Nx

h
− ρc2

2(π2 − 10)
π3 (e31 − e32b

2
m) − 20

π3 (e15 − e24b
2
m)

−20
π3 (e15 − e24b

2
m) + 2(π2 − 10)

π3 (e31 − e32b
2
m) −1

2
(κ11 − κ22b

2
m) − π2

2η2
κ33

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Bm �

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−Ny

h
b2m + Nx

h
+ ρc2

2(π2 − 10)
π3 (e31 − e32b

2
m) − 20

π3 (e15 − e24b
2
m)

−2
π
(e31 − e32b

2
m) −1

2
(κ11 − κ22b

2
m) − π2

2η2
κ33

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Dm �

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

η2

1008
[c11 − 2(c12 + 2c66)b2m + c22b

4
m − ρc2(1 − b2m)]

+5
6
(c55 − c44b

2
m) + Ny

h
b2m − Nx

h
− ρc2

−Ny

h
b2m + Nx

h
+ ρc2

−20
π3 (e15 − e24b

2
m) + 2(π2 − 10)

π3 (e31 − e32b
2
m) −2

π
(e31 − e32b

2
m)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Appendix B

The expressions of An, Bn, Dn and Fn related to the amplitude

ratios αn, βn and χn are given by
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