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The high-temperature austenite phase is the initial state of practically all

technologically relevant hot forming and heat treatment operations in steel

processing. The phenomena occurring in austenite, such as recrystallization or

grain growth, can have a decisive influence on the subsequent properties of the

material. After the hot forming or heat treatment process, however, the

austenite transforms into other microstructural constituents and information

on the prior austenite morphology are no longer directly accessible. There are

established methods available for reconstructing former austenite grain

boundaries via metallographic etching or electron backscatter diffraction

(EBSD) which both exhibit shortcomings. While etching is often difficult to

reproduce and strongly depend on the investigated steel’s alloying concept,

EBSD acquisition and reconstruction is rather time-consuming. But in fact,

though, light optical micrographs of steels contrasted with conventional Nital

etchant also contain information about the former austenite grains. However,

relevant features are not directly apparent or accessible with conventional

segmentation approaches. This work presents a deep learning (DL)

segmentation of prior austenite grains (PAG) from Nital etched light optical

micrographs. The basis for successful segmentation is a correlative

characterization from EBSD, light and scanning electron microscopy to

specify the ground truth required for supervised learning. The DL model

shows good and robust segmentation results. While the intersection over

union of 70% does not fully reflect the model performance due to the

inherent uncertainty in PAG estimation, a mean error of 6.1% in mean grain

size derived from the segmentation clearly shows the high quality of the result.
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Introduction

Steel is still the world’s most important engineering and

construction material due to its excellent combination and

customizability of properties through tailored

microstructures. A special trait of steel respectively iron is

its polymorphism, i.e., it shows different crystal structures

depending on the temperature. The body-centered cubic

ferrite phase is present at room temperature, while the

face-centered-cubic austenite phase is present at elevated

temperatures. In steel manufacturing, hot-forming and heat

treatment operations often take place in the austenite phase.

After these operations, the steel is cooled down to room

temperature, and in case of low-alloyed steels, transforms

to varying room temperature microstructures like ferrite-

pearlite, bainite, or martensite, depending on cooling rate

and chemical composition. The evolution of the austenite

grain size during hot forming or heat treatment as well as

the final resulting austenite grain size are of high importance

as they either affect the processes or significantly influence the

type and properties of the final microstructure.

The introduction of thermo-mechanically controlled

processing (TMCP) has been one of the most significant

developments in steel processing, regarding product quality as

well as economic efficiency (Zhao and Jiang, 2018). Investigating

how the austenite grain size evolves during the entire TMCP,

from grain growth during slab reheating to recrystallization

during rough hot rolling stages to pancaking in the final hot

rolling stages, is crucial for understanding the TMCP as well as

for modelling it. This in turn is the basis for continued process

optimization and steel development.

The final austenite grain size after hot forming or heat

treatment, before cooling the steel, greatly influences the

phase transformation behavior and thereby the resulting

microstructure. In general, large austenite grain sizes

correspond to fewer nucleation sites for phase transformations

when cooling down from the austenite which promotes

diffusion-less martensitic transformation over diffusion-

dependent transformations, e.g., pearlite or bainite (Bargel and

Schulze, 2005). Regarding the martensitic transformation, finer

austenite grains can reduce the size of martensitic substructure

and increase the density of high misorientation angle boundaries

after quenching (Hidalgo and Santofimia, 2016) as well as lower

the martensite start temperature and increase the initial

transformation rate (Celada-Casero et al., 2019). It is well

known that the toughness of steels can be improved by grain

refinement (Gottstein, 2014). Related to bainitic and martensitic

steels, refining prior austenite grains (PAG) is considered the first

step in their microstructural refinement (Li et al., 2022).

Controlling the austenite grain size is also used for improving

other properties, e.g., refining the austenite grain size for

enhancing the abrasive wear resistance of ultra-high strength

martensitic steels (Haiko et al., 2020), improving the temper

embrittlement resistance of Cr-Mo steels (Khan and Islam, 2007;

Karthikeyan et al., 2017) or increasing amount and stability of

retained austenite in an austempered low-carbon bainitic steel to

achieve high-strength/high-toughness combinations (Lan et al.,

2017), amongst others. During multi-pass welding of linepipe

steels, the size of martensite–austenite constituents in the heat

affected zone (HAZ) can be reduced and the HAZ toughness

improved by controlling the maximum austenite grain size (Li

et al., 2014).

Hence, it is of paramount importance to measure and

quantify the prior austenite grain size. However, for the

investigated low-alloy steels, austenite is only present during

forming or heat treatment at higher temperatures, but not in the

final microstructure which poses the greatest challenge in the

assessment of the austenite grain size. Various approaches to

measure the prior austenite grain size, with their own, procedure-

inherent advantages and disadvantages, exist. Moreover, all

approaches have a particular degree of uncertainty in

common since PAG are not directly accessible.

PAG size can be measured indirectly by laser ultrasonic

through the scattering by discontinuities like grain boundaries

(Militzer et al., 2012). However, due to the indirect nature of

the measurement, there are many parameters than can

influence the result and an elaborate verification of the

procedure is necessary.

In contrast to the indirect measurements, PAG

reconstruction using orientation data from electron

backscatter diffraction (EBSD) yields not only mean grain

sizes but grain size distributions and is spatially resolved. This

reconstruction method can be applied if the product of the phase

transformation during cooling nucleates and grows inside its

parent grain with a known orientation relation (OR) (Germain

et al., 2012). For steel, this applies to the OR between austenite

(parent phase) and martensite respectively bainite (product or

child phases). PAG reconstruction by EBSD has become

widespread in the last years and is readily available in various

commercial or open-source software packages. Approaches for

reconstructing PAG include (Cayron, 2007; Germain et al., 2012;

Nyyssönen et al., 2016; Niessen et al., 2022). Disadvantages are

the time-consuming EBSD measurement and computationally

expensive reconstruction. Additionally, preliminary work

showed that the reconstruction works well mostly for

martensitic steels but performs worse on bainitic constituents.

The most widely used methods for determining PAG size

are probably still metallographic techniques for which several
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approaches exist. One is to highlight PAG by preferred

oxidation or precipitation, according to the methods of

Kohn or McQuaid-Ehn described in international standards

(ISO 643:2019 Steels—Micrographic determination of the

apparent grain size, no date). When applying them,

however, it must be kept in mind that microstructural

features will be changed by the heat treatment needed for

oxidation/precipitation and that they are not suitable for any

steel type. Thermal etching (García De Andrés et al., 2001;

García de Andrés et al., 2002; Pöhl et al., 2009; San Martín

et al., 2010) can also be used to delineate PAGs, however, the

expensive equipment as well as traces of old grooves from the

grain growth process are drawbacks (García de Andrés et al.,

2002). Usually, chemical etching is preferred due to its simple

application without the need for special experimental devices.

The etching after Bechet-Beaujard, a saturated aqueous picric

acid solution with the wetting agent sodium alkylsulfonate

(Bechet and Beaujard, 1955) is well-established and

widespread for quenched or quenched and tempered steels.

It is assumed that the effect of the etchant is based on attacking

micro segregations of phosphorus (Ucisik et al., 1978). Hence,

steels with low phosphorus contents, i.e., below 0.05% cannot

be reliably contrasted (Ogura et al., 1978). Additionally, this

etching is not always working for low and ultra-low carbon

steels. Tempering the sample at 650°C has been reported to

improve the contrasting but is not always recommendable due

to altering the microstructural features. In general, chemical

etchings for delineating PAG can be hard to reproduce, vary

depending on the chemical composition of the investigated

steel and be especially challenging for low phosphorous and/

or carbon levels. Furthermore, to achieve sufficient

contrasting, multiple steps of etching combined with back-

polishing can be necessary.

Most of the time, the PAG contrasting might be visible and

distinguishable for the observer, and sufficient for determining

mean grain sizes by comparison with reference states. However,

when an automated quantification and determination of grain

size distributions through computer vision is strived for, the

etchants often exhibit insufficient selectivity to reliably

distinguish substructures inside the PAG from PAG

boundaries (PAGB). For steels, the so-called Nital etching, a

mixture of ethanol and nitric acid, is one of the standard etchants

for analyzing the microstructures of un- and low-alloyed steels.

Due to its simplicity and ease of use, it is very popular. Although

Nital is originally not intended for PAG contrasting, it reveals

several information about them. PAGB can either rendered

visible directly due to topography differences or can be

recognized indirectly based on orientations of martensitic and

bainitic laths or sub-units. But since all other hierarchical

microstructure features are also contrasted, a PAG

segmentation using conventional methods is not possible.

Here deep learning (DL) comes into play. One common

DL technique is based on convolutional neural networks

(CNN) which has led to a paradigm shift in image

processing. The main advantage of such representation

learning methods is that they not only learn the

classification process itself, but simultaneously identify the

features needed for this classification (Forsyth, 2019).

Thereby, DL can solve tasks for which simple deterministic,

rule-based solutions do not work. Research fields like

autonomous driving and biomedicine acted as driving

forces for the application and spread of DL (Ronneberger

et al., 2015; Saleh et al., 2018; Natekar et al., 2020) but by now

it is well established in the materials science community, too.

Especially for microstructure analysis, i.e., the segmentation

and classification of micrographs, it offers promising new

potentials. Besides providing improved reproducibility,

objectivity, and automation, it can enable tasks where

conventional methods reached their limits.

Azimi et al. (2018) applied DL to classify the carbon-rich

second phase in dual-phase steels into pearlite, bainite,

martensite and tempered martensite. DeCost et al. (2019)

segment varying constituents in high-carbon steels. Durmaz

et al. (2021) used DL to segment lath-shaped bainite in

complex-phase steel microstructures, based on annotations

from correlative EBSD data. Numerous examples for DL

segmentation of grain or cell structures, across different

domains, can also be found, e.g., (Konovalenko et al., 2018a;

Konovalenko et al., 2018b; Bordignon et al., 2019; Furat et al.,

2019; Pazdernik et al., 2020; Das et al., 2022). In a recent

publication, the authors also applied DL to improve the

automated PAG quantification based on new chemical etching

on the basis of Bechet-Beaujard for improved delineation of PAG

(Laubet al., Forthcoming 2022). Due to the importance of this

topic on the one hand, and its diversity with many possible

research directions on the other hand, it is currently dealt with in

a large consortium, consisting of all contributing institutions.

The consortium follows the objective of finding an optimal

methodology and learning strategy to reliably detect PAGB in

a wide variety of martensitic and bainitic steels.

This paper represents the first publication of the

consortiums’ joint work. It focuses on the detection of PAG

in Nital-etched light optical micrographs of bainitic and

martensitic steels, implemented by a semantic segmentation

(pixel-wise classification) using established, state-of-the-art DL

methods. Particular attention is paid to the quality of the training

data for the DL segmentation. Therefore, correlative

characterization combining light optical microscope, scanning

electron microscope, as well as electron backscatter diffraction is

used to accomplish a well-funded, objective, and reproducible

ground truth needed for training a DL model. The model is not

only evaluated by standard ML metrics, but also by determining

the accuracy of mean grain sizes and grain size distributions of

the DL segmentation. Furthermore, the robustness of the DL

model regarding etching artefacts and image acquisition settings

will be analyzed.
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Materials and methods

Material

As investigated material, quenching dilatometry samples

(5 mm diameter) of a low carbon steel [0.088% C with a CEV

of 0.53% (I.I.W.)] with different cooling rates, each austenitized

at 950°C, were used. The cooling rates during the quenching

range from 2.5°C/s up to 3,600°C/s. The microstructural phases

can be identified as martensite and bainite. A selection of used

optical micrographs after Nital etching, representing the

material’s microstructure, are shown in Figure 1.

Correlative microscopy

Samples are characterized by applying a correlative

microscopy approach in which samples are analyzed by light

optical microscope (LOM), scanning electron microscope (SEM)

as well as electron backscatter diffraction (EBSD). In general,

correlative microscopy approaches allow to combine advantages

of several methods, eliminate disadvantages, and merge

information from complementary sources and across different

length scales. In addition, it is possible to gain insights and

references via the additional methods in the correlative approach

and to reduce later evaluations to one, the simplest, method

(Durmaz et al., 2021; Müller et al., 2021). In this work, the

additional correlative measurements with SEM and EBSD are

used for establishing the ground truth/annotations for the PAG

segmentation in the LOM images.

Correlative characterization was done according to the

method we previously published (Müller et al., 2021). All

samples were ground using 80–1,200 grid SiC papers, and

then subjected to 6, 3, and finally, 1 μm diamond polishing.

For investigation by EBSD, colloidal oxide polishing was

additionally performed after diamond polishing. To be able to

find and characterize the exact same area of a sample with

different methods, a region of interest (ROI) must be marked.

For this purpose, a ROI is marked using hardness indentations in

the form of an equilateral triangle of HV0.5 indents, with a base

and height of 500 µm each.

First, the EBSD measurement is performed, as it is usually

done on a non-etched sample surface. A Zeiss Merlin FEG-SEM

was used with an acceleration voltage of 25 kV, a probe current of

10 nA, and 15 mmworking distance. Areas of 400 × 400 µm were

scanned with a step size of 0.35 μm using a hexagonal grid, at a

magnification of ×200. The software EDAXOIMData Collection

(Version 7, 2015) was used. After EBSD measurements, samples

were re-polished for about 1 minute to remove the

contamination on the sample surface introduced by the EBSD

measurement, subsequently etched with 2.5 vol% Nital solution

(2.5 ml nitric acid, 97.5 ml ethanol) for about 15 s and

FIGURE 1
A selection of optical micrographs of representative sections of the used samples. The cooling rates of the quenching are: (A) 3,600°C/s, (B)
2,400°C/s, (C) 300°C/s, (D) 56°C/s, (E) 15°C/s, (F) 5°C/s. The samples shown in (A) and (B) show purely martensitic microstructures and (C—F) show
mainly bainitic microstructures. Sample (C) show lath-like bainitic microstructures that show visual similarities to martensitic packages. The bainitic
samples (D—F) illustrate the continuously increasing amount of carbon depletion in more distinctive carbon rich phases.
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micrographs from the same ROI were taken in LOM and SEM.

For LOM images, the light optical microscope of an Olympus

LEXT OLS 4100 laser scanning microscope was used. Images

were taken at a magnification of ×1,000 with an image size of

1,024 × 1,024 pixels, corresponding to an area of 129.6 ×

129.6 μm (pixel size = 126.6 nm). All images were acquired

with the same image contrast and brightness settings. For

SEM images, a Zeiss Merlin FEG-SEM using secondary

electron contrast at a magnification of ×850 with an image

size of 2048 × 1,536 pixels, corresponding to 97.2 × 72.9 μm

(pixel size = 47.5 nm) was used. The SEM was operated at an

acceleration voltage of 5 kV, a probe current of 300 pA, and a

working distance of 5 mm. All images were acquired with the

same image contrast and brightness settings in the SEM. To

capture the entire ROI, multiple images must be acquired for

both LOM and SEM. Images were taken with a certain overlap

and then stitched together.

To be able to combine the information from different

imaging techniques, the different resulting images must be

registered. The term image registration is defined as the

“overlay of (two or more) images of an identical area,

obtained at different points in time, from different angles and/

or with different sensors” (Zitová and Flusser, 2003). Simple

superpositions of these microstructural images purely by

rotational or translational adjustments are usually not

possible, since the physics underlying the image generation

can be very different for the different methods. For a general

explanation of challenges during correlative characterization and

image registration in metallography, the authors refer to Britz et.

Al Britz et al. (2017a). In previous works, image registration was

successfully applied using the plugins SIFT feature extraction and

bUnwarpJ in the open-source software ImageJ to the correlative

characterization with LOM, SEM and EBSD of industrial two-

phase and multi-phase steels (Britz et al., 2017a; Britz et al.,

2017b; Müller, Britz and Mücklich, 2021). The Scale-Invariant-

Feature Transform (SIFT (Feature Extraction - ImageJ, no date))

algorithm is used first to locate the same features in an EBSDmap

and the LOM and SEM image. The image quality map is a

suitable representation of the EBSD data as it has a similar

appearance to the other modalities. The common features

from SIFT feature extraction are then used to perform the

image registration using the bUnwarpJ (BUnwarpJ - ImageJ,

no date) algorithm. The transformation matrix that is calculated

during registration can later be used to register other EBSD-

derived maps, e.g., misorientation maps. For more details about

the correlative approach the authors refer to (Müller et al., 2021).

Compared to the previously studied two-phase and multi-

phase steels, the quenched and tempered steels with fully bainitic

or martensitic microstructures show a higher complexity with

more homogeneous structures as well as lower overall contrast

differences, which makes it challenging to automatically find

common features for image registration. In fact, automatic SIFT

feature extraction was only possible for coarse bainitic structures,

for fine bainitic or martensitic structures it was neither possible

with SIFT nor with other state-of-the-art feature extraction

techniques. Hence, for the image registration, a manual

selection of point correspondences is necessary. During this

elaborate task, common features, such as triple points of the

PAG, are marked in LOM and respective EBSD IQ map. The

number of selected correspondences has a large influence on the

quality of the registration. After collecting a representative

number of correlating landmarks, in this showcase at least

25 corresponding features per image were manually selected,

the image registration has been executed using the bUnwarpJ

algorithm. The effort of correlative characterization has to be

done only once, for generating the training data set for DL. An

everyday series application will be done with only LOM images.

EBSD reconstruction of prior austenite
grains

The crystallographic reconstruction of the PAG, needed for

the ground truth for the training data set, has been done using the

MATLAB R2021b toolbox MTEX 5.7 (Bachmann et al., 2010;

Niessen et al., 2022) provide a workflow, which loads the raw

EBSD data and reconstructs the PAG using different

preprocessing steps and filters. For the final reconstruction,

similarly oriented child grains within the PAG with a

tolerance of 12.5° have been filtered, using the function

mergeSimilar. Besides, default settings according to

(Bachmann et al., 2010; Niessen et al., 2022) were applied.

One big advantage of the MTEX workflow, compared to

others like (Cayron, 2007), is the ability to iteratively adjust

the respective OR of the parent grain starting from one of the

well-known OR (Nishiyama-Wassermann, Kurdjumow-Sachs or

Greninger-Troiano), yielding better reconstruction results. For

further information, the authors refer to the respective literature.

Annotations and final data set

The quality of the final dataset is essential to assure a well-

engineered and reliable segmentation pipeline. Although creating

the masks is based on the EBSD PAG reconstruction, manual

corrections of the masks are inevitable. Due to the working

principle of the crystallographic reconstruction, it is mostly

limited to martensitic microstructures. The higher the phase

fraction of the bainitic microstructural constituents, the less

reliable the reconstruction results become. Here, manual

corrections of the PAGB come into play. To obtain objective

and valid ground truth assignments, LOM and the high-

resolution SEM images are overlayed with the PAG

reconstruction, in order to correct the boundaries within the

masks. The high-resolution SEM allows to more objectively

identify visual features of PAGB based on the pronounced
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topography contrast in the SEM. The boundaries in the final

masks, consisting of the manual corrected EBSD reconstruction,

have a width of nine px. As postprocessing, the course of the

annotated boundaries was smoothened using a median filter with

a setting of eight px. Creating the dataset including masks is a

very time consuming and elaborate step in the presented

procedure. Though, it is crucial for the learning process of the

used segmentation pipeline. If the masks do not fit the visual

PAGB in the optical micrographs, learning can be prolonged if

there are contradictions, since the model tries to learn visual

features, which do not correspond to the correct labels.

Preliminary tests showed that using the EBSD reconstruction

without manual corrections would strongly degrade the

segmentation model performance.

The final dataset consisted of 13 different dilatometry

samples, each with a different cooling rate, including

correlative data (13 LOM, 13 SEM and eight EBSD) and

manually adjusted masks. Each image covers sample regions

of size 400 × 400 µm2 containing approximately 250 PAGs in

average. The corresponding resolution of the. tif format images is

4096 × 4096 px (pixel size of 97.7 nm).

Deep learning methodology

Through different layer architectures, CNNs obtain their

ability to process image data reproducibly in order to fulfil

specific tasks. The loss function is a measure for the model’s

adaption to the respective task and is minimized during the

training process. The parameters within the network’s

architecture, such as the settings of the filter kernels to extract

the proper feature maps, are adjusted in order to optimize the

density of the extracted information. Ronneberger et al.

Ronneberger et al. (2015) presented a groundbreaking

segmentation pipeline based on CNNs, originally developed

for medical image analysis, the so-called “UNet”. It consists of

two segments, one encoding part, compressing the image

information into a latent space representation, and one

decoding part, expanding the information in order to

reconstruct a segmented image of the original input. Through

the encoder-decoder mechanism, not only the semantic

information of the image’s content can be extracted, but also

the spatial information (Ronneberger et al., 2015) which allows to

create meaningful segmentation maps as outputs. In addition to

contraction and extraction path, there are connections between

the different levels of encoder and decoder (skip-connections)

resulting in a beneficial behavior of the model’s convergence.

Also, through skipping the convolutions and pooling operations,

finer details can be retained for the final segmentation, since the

information is not influenced by the gradient descent during the

training in the encoding procedure. Another beneficial aspect of

the UNet is the ability to work well with even very few training

images in combination with data augmentation. Therefore, it is

very attractive to domains, where it is difficult to gather large-

scale data sets, as it is usually necessary for DL applications.

The DL pipeline is based on the segmentation models

package (Iakubovskii, 2022) which uses the Keras

environment, implemented in python 3.8. Training was

executed in Google Colab Pro, using a Nvidia Tesla

P100 GPU. In the segmentation models package, the

respective backbone of the encoder can be chosen out of a

selection of the common CNN architectures. The input of the

UNet are the sliced patches of the micrographs. Based on the fact

that this showcase represents a binary classification problem, the

output of the UNet is binary, representing the PAGB

segmentation of those patches. Based on the corresponding

masks that are one-hot-end-encoded to be handled by the DL

approach, the model’s parameters are optimized during training

in order to yield an image segmentation result that shows the

least possible error to the respective masks.

During training the frozen encoder weights from the

available architectures, respectively pretrained on the

ImageNet database, consisting of more than 14 million

natural images, were applied. This concept, the so-called

transfer learning (Tammina, 2019), relies on the assumption

that the weights of the architecture’s layers, thus the filter kernels,

are already well adjusted to detect low-level, as well as high-level

visual features. Another significant difference between UNet and

the traditional CNN for classification is the size-independence of

the input (Azimi et al., 2018). Whereas CNNs for classification

tasks can only handle images with the same input as the training

images, UNet does not make use of fixed-size dense layers, which

are necessary for classification, and thus the limiting factor of the

input size. Therefore, the UNet architecture can be trained on

small patches and subsequently do inference on entire

microstructural images.

Before the actual training process, different preprocessing

steps must be applied to the original images. First, they need to be

split into individual patches. Here, the patch size must be selected

adequately to ensure that individual patches contain sufficient

long-range features to detect PAGB. Since grain boundaries are

not as frequent, the images are downscaled before tiling to

increase the feature density per patch. Thus, more context per

patch can increase the segmentation performance in cases where

the focus lays on long-scale features, such as grain boundaries

(Goetz et al., 2022). To provide more context information of the

different patches (256 px patch size), the images have been

cropped with a respective overlap of 56 px. Using those

settings, overall, 1,420 final patches have been created for

training, validation and testing (data splits of 75%, 15%, 10%,

respectively).

The validation data set is used during the training to validate

the training process and prevent overfitting. The test dataset is

used for independent testing and subsequent comparison of the

differently trained models. The best model has been selected

based on the used metrics, as well as on the performance on the
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unseen testing-dataset, also regarding the suitability for

subsequent postprocessing, which has been evaluated by a

materials science expert. For training, an extensive data

augmentation pipeline has been implemented, as it is

necessary to yield reliable results, especially due to the data

scarcity of microscopic images: rotation (65°), shift (15%),

shear (10%), zoom (20%) as well as vertical and horizontal

flip have been used. The missing edges, as result of the

augmentation process, have been filled by reflections of the

border regions. Finally, the well-established preprocessing-step

of rescaling the pixel values (between 0 and 255) to a range

between 0 and one and normalizing each color channel based on

the mean pixel value of the ImageNet database, as recommended

when using these pre-trained weights.

For semantic segmentation it has been established to use

intersection over union (IoU) as metric, being a measure of

overlap between predictions and ground truth, since it is more

sensitive and representative for segmentation tasks with

unbalanced data like here, than traditional metrics such as

pixel accuracy (Rahman and Wang, 2016). As described

above, the loss function can be seen as a numerical

representation of the DL algorithm’s objective. Thus, a

considered selection is essential for a well-adjusted

segmentation pipeline (Rahman and Wang, 2016). In this

case, the two classes for segmentation (PAGB and interjacent

hierarchical microstructure) are highly imbalanced. Hence, a

weighted dice loss function, considering the total amount of

pixels of each class has been proven to be beneficial. Furthermore,

an equally weighted, binary-crossentropy Jaccard loss has been

implemented, by adding it to the dice loss function yielding the

final loss term. It refers to a linear combination of a traditional

binary-crossentropy loss and a Jaccard loss (Wang et al., 2020),

with the latter being a representation the used metric of IoU.

Earlier experiments (Laubet al., Forthcoming 2022) have shown

that this combination of loss functions and architecture works

reliably for boundary segmentation tasks. As backbone the

DenseNet (Huang et al., 2017) has been selected. Compared

to well-known architectures, such as VGG, Inception or ResNet it

shows superior results in preliminary tests. This can be

concluded from earlier work. Reason for this could be the

high interconnectivity between the different layers within

DenseNet’s architecture (Huang et al., 2017). This leads to an

improved information flow throughout the network, which

makes them not only to reuse crucial information, but also to

be more efficient. As learning rate for the Adam optimizer a value

of 0.001 was selected and the batch size was set to 8.

Post-processing of deep learning
segmentation

Following the segmentation, a post-processing of the

segmentation result map is performed. Due to the use of the

softmax function, the segmented image is not a binary mask, but

a greyscale probability map. First greylevel threshold (50%) is

performed, followed by an area-opening (removing

objects <500 px) to remove small objects that were mistakenly

segmented as grain boundaries. Second, a watershed algorithm is

used to complete grain boundaries that were only partially

segmented. As algorithm, the distance transform watershed

from Fiji’s Plugin MorphoLibJ (Legland et al., 2016) was used.

For the initial distance transform, Borgefors’ setting (Feng and

Wettlaufer, 2018) was used and the dynamic parameter of the

subsequent flooding was chosen to be between 5 and 10,

depending on the segmentation result.

Since pixel accuracy and IoU do not fully express the model

performance, as will be discussed in the next section, and

ultimately, it is not about values of these metrics, but about

how exactly the grain sizes are measured, the output

segmentation map, after post-processing, is quantified to

determine the grain size distribution. From the distribution,

several mean values (area fraction mean, number fraction

mean, median) as well as the standard deviation are calculated

and compared to values and distribution of the ground truth to

get additional criteria to evaluate the segmentation quality and

assess the potential errors in grain size determination. In order to

determine the area fraction grain size, all detected grains have

been binned (bin width = 500 µm2) and the probability density

has been calculated.

Results and discussion

Before discussing segmentation results, the ground truth

assignment must be discussed. The ground truth for the LOM

images is based on correlative SEM images and EBSD

measurements which was the most objective and reproducible

way possible. In fact, without this correlative data, the

annotations could not have been created at all. However, there

is still a remaining uncertainty and subjectivity. The austenite

phase is the high temperature phase that is not present anymore

in the final microstructure at room temperature, and there is no

method available that can determine the PAG beyond all doubt.

As illustrated in Figure 2, the EBSD reconstruction method itself

does not delineate the PAG fully and correctly. Additionally, the

result strongly depends on the parameters and filters used during

the EBSD-based reconstruction. Hence, manual corrections

based on SEM images are needed which in turn can be

partially subjective, e.g., when PAG are not fully contrasted

from the etching and their path must be partially anticipated

by the human expert. Thus, there is an uncertainty inherent to

the task of determining PAG which will be fully present in any

training data and ground truth and is expected to reflect in

performance metrics of the DL model.

The final model was trained for 15 epochs and achieved an

overall IoU of 0.73 ± 0.005 on the training dataset and 0.70 ±
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0.007 on the validation dataset and a F1 score of 0.82 ± 0.004 and

0.80 ± 0.006, respectively. The training process on a Nvidia Tesla

GPU took about 1 h. It is noticeable that the model converges

very quickly and achieves a relatively high IoU (>65%) already

after three epochs. Reasons for this could be the usage of the

UNet in combination with DenseNet as encoder backbone as well

as the training data quality. The DenseNet architecture is well

known for a high efficiency which can be traced back to the

parameter reuse and the ability to systematically gather

“collective knowledge” through the high interconnectivity

(Huang et al., 2017). Towards the end of the training process,

the model starts to slightly overfit, which can be seen in the

beginning divergence of the performances on training and

validation dataset (Figure 3). Hence, the training process is

stopped at that point, where both training and validation IoU

reach 70%.

For this segmentation task, the overall IoU of about 70% gives

a very conservative estimation of the model performance. This

can be attributed to the uncertainty of PAG determination as well

as the annotation process. Also, not only IoU is considered, but

patches of the unseen validation dataset are evaluated and show

very promising segmentation results (Figure 4). Though, it

should be mentioned that through the data preparation

routine, a certain overlap between training and validation

patches can occur and thereby influence the metric IoU. For

this segmentation task, the IoU, although it is state-of-the-art

FIGURE 2
Overview of the different correlative data (left to right: LOM, SEM, IPF, IQ) with discrepancies (lower) between EBSD reconstruction (red) and
manual annotation (green) and the overlapping sections between EBSD reconstruction and manual annotations (black).

FIGURE 3
Metrics [(A): Loss, (B): IOU] of the model during training and validation.
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metric in the field of semantic segmentation, cannot exclusively

be used for quantifying the quality of the model. The

measurement of the IoU is based on the overlap of the

segmented pixels compared to the pixels, assigned to the

corresponding classes, in the ground truth mask. In this case,

a problem arises due to the process of annotations. The pixel

width of the boundaries in the ground truth mask has to be

chosen considerably. As the masks are provided by correlative

EBSD reconstructions and SEM images, the quality of the

registration between EBSD map, SEM image and LOM image

plays a significant role.

There are cases where there is a slight misalignment

between masks and visual PAGB features within the LOM.

There, the masks must be dilated until the regions of the

actual PAGBs are covered, i.e., the masks can cover bigger

areas than just the PAGB. There, a lower IoU for the

segmentation result can be expected. For this, a

compromise must be found between actual pixel width of

the PAGBs in the Nital-etched micrograph and the quality of

the annotated masks. Due to this fact, a domain-specific

quantitative analysis of the segmentation result is desired.

A comparison of the grain size distributions of the post-

processed and the annotated ground truth will be conducted

in the further course of this work, to reliably quantify the

quality of the segmentation results.

In case of the martensitic samples, most part of the PAGBs

can be segmented correctly, though, some parts are not closed or

show slightly different courses (Figure 4, blue). Since the working

principle of CNNs is based on apparent visual features, it cannot

reliably detect features of existing PAGBs, that are not visible.

Here, the importance of a well etched micrograph should be

mentioned. The model most likely would not be able to

reconstruct PAGBs, if none of them is contrasted. This

explanation can be supported through the slightly better

segmentation in bainitic samples, where the contrast between

boundaries and actual “grains” is higher than it is the case in

martensitic microstructures. Slower cooling rates allow that more

alloying elements can diffuse towards the boundaries, as it is the

case in bainitic microstructures. Though, in bainitic

microstructures not only the PAGB are contrasted, but

additionally the visible packet boundaries. The occasional gaps

in the segmented PAGB network can be closed for further

quantitative grain size analysis, using the described watershed

segmentation algorithm.

Reason for the fact that some regions of the PAGBs are not

segmented correctly can be found in the visual appearance of

martensitic and bainitic microstructures. Through their lath-like

shape, some packet boundaries potentially could be interpreted

as PAGBs, as it is the case in the red marked regions in Figure 4.

Without much context to the surrounding grains, it is reasonable

FIGURE 4
Representative patches of LOMmicrographs (upper: martensitic, lower: bainitic) from unseen validation dataset (A), the corresponding ground
truth label (B) and the prediction of the final model before post-processing (C). Due to the softmax function, applied to the output, the segmentation
result is a greyscale image, representing the predicted probability of the respective class.
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that the model mistakenly segments packet borders as PAGBs,

since it is even human experts cannot undeniably distinguish one

from another. To resolve the problem of the misleading

segmentation artefacts, the area opening post-processing step

will be included to the entire segmentation pipeline.

Figure 5 displays the different post-processing steps. As

mentioned before, the segmentation results were binarized

using a grey-level threshold, followed by the area opening step

to remove segmentation artefacts. Subsequently the watershed

algorithm allows filling the different gaps in the PAGB network

in order to yield closed grains to be able to fulfill quantitative

grain analysis.

The entire PAGB reconstruction process including

segmentation and post-processing took less than 1 min per

input image (4096 × 4096 px2, corresponding to an area of

400 × 400 µm2). At first glance, the reconstruction shows a good

agreement with the annotation. Although, the watershed

segmentation leads to unnaturally straight boundaries in

regions, where larger gaps must be filled. After the area

opening step, some of the misleading artefacts that are

connected to the rest of the segmented PAGBs are still

present and not connected to any other boundaries, though,

based on the dynamics settings in the watershed algorithm, they

do not negatively influence the final filling step, as can be seen in

Figure 5 (right), and thus, the grain size measurement.

Depending on the segmentation result based on the respective

input image, the settings of the post-processing procedure, such

as the area opening pixel threshold value, and the dynamic

parameter of the watershed flooding can be adjusted in order

to optimize the reconstruction result. In a potential

implementation, a semi-automated pipeline demanding the

post-processing parameters, such as area opening threshold

and the dynamic parameter of the watershed algorithm, this

problem can be addressed in order to achieve a better

adjustability to the respective segmentation result.

For the quantitative analysis, three, mainly martensitic

samples A, B and C with the cooling rates 3,600°C/s, 2,400°C/

s and 1800°C/s, respectively, have been chosen. Excerpts of final

segmentation results of the selected samples, including the

segmented PAGBs after the area opening step and the grain

color labels based on the watershed segmentation, are shown in

Figure 6.

It is noticeable that there are PAGs, that are not correctly

reconstructed. Reasons for that, such as insufficient contrasting,

as well as packet boundaries that are wrongly segmented as

PAGB, have been described above. In the following paragraph,

the actual influence of those deviations on the measured grain

size distribution and mean grain sizes is presented.

Overall, the grain size parameters of the reconstruction nicely

match those of the ground truth for the most part (Figure 7). It is

noticeable that the area fraction mean grain size parameters of

the reconstruction, as well as the standard deviation, consistently

underestimate the actual grain sizes to a small degree. Despite

most of the artefacts of the segmentation can be cleaned through

the area opening step, some of the remaining ones lead to

undesired fillings during watershed, systematically leading to

smaller overall grains. Figure 5 and the area fractions of the

smaller-sized grains (Figure 7) in the grain size distribution

FIGURE 5
(A): LOMof sample B (cooling rate of 2,400°C/s) with overlayed segmentation result (blue) (B): LOMwith segmentation result after area opening
step (green). (C): LOM micrograph with reconstructed PAGB (black) and colored PAG labels after watershed segmentation.
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support this assumption. Although this problem could not be

tackled completely in scope of this work, an optimized post-

processing pipeline, eventually even with manual corrections, in

cases where high accuracies are desired, can help to improve the

reconstruction result. Additionally, due to the systematic nature

of this error, it can be possible to calculate the real grain size from

the segmented grain size by accounting for the average deviation.

Furthermore, it needs to be mentioned that the analyzed region is

relatively small, which leads to a higher influence of statistical

errors. Increasing the size of the region that should be measured

might lead to better results due to the lower impact of the

segmentation errors. Nevertheless, the presented results are

promising and show the high potential of the presented

workflow. This approach has many advantages to any other

state-of-the-art approach for determining the PAG grain size,

additionally delivering a segmentation of the PAGB network for

further analysis, such as grain extraction or morphological

analysis. It should also be mentioned that the current practice

to quantify PAG after metallographic etching is mostly still a

comparison with grain size standard diagrams from international

standards. Thus, in cases where the DL segmentation results are

not sufficient for watershed post-processing and determination

of a reasonable grain size distribution, the segmentation results

will always be good enough to at least determine an average grain

size using standard diagrams. Here, the importance of the use of

the domain knowledge should be pointed out. Despite it could be

put more emphasis on the optimization process of the model, the

focus was held on a holistic approach and the embedding of the

DL approach within a efficient and reproducible workflow.

Thereby the domain-based weaknesses, especially the

contrasting method could be tackled successfully. Since it is

feasible in the field of metallography to always assume

perfectly contrasted micrographs, a robust post-processing

routine, combining the traditionally use of morphological

image processing steps and the implementation of the well-

tried watershed segmentation. Furthermore, the entire pipeline

is more flexible to higher variances in the segmentation results

due to inhomogeneities in the contrasted micrographs. It is well-

known, that a better generalizability comes along with a loss of

total accuracy, but this postprocessing routine is able to tackle

this negative side effect and makes the detection process of the

PAGB more robust.

In the following paragraph the focus is held on the

segmentation result of bainitic samples. Due to the

transformation character, the boundaries of the bainite

packets cannot always be equated to the boundaries of the

prior austenite grains. Figure 8 visualizes the hierarchical

character and differences of boundaries in bainitic

microstructures.

This is a known problem in PAG reconstruction using

metallographic etching as well as EBSD. This means that for

bainitic microstructures our DL model will segment both PAG

and bainite packet boundaries. The currently available data of

Nital-etched LOM and SEM as well as correlative ESBD

reconstruction does not yet enable a further distinction of

PAG and bainite packet. Still, a segmentation of bainite

packets is an important quantification as they contain

undeniably important information about the material’s

microstructure and allow correlations to mechanical properties

as well. Furthermore, it is conceivable to infer the PAG size from

the segmented packet size. Figure 8 illustrates the performance of

the final model, metrics shown in Figure 3, detecting the

boundaries of PAG and bainite packets. Most of the parts of

the segmented boundaries match those of the ground truth. The

same post-processing as described for the martensitic samples

can be applied.

In Figure 9 the direct comparison of the grain reconstruction

of a martensitic and a bainitic sample is shown. In both cases an

evaluable result could be achieved to get further information

about the morphology of the microstructural constituents.

Due to the variances that can arise in metallography

during everyday work, e.g., variances in sample

FIGURE 6
Segmentation result after area opening (black) including watershed segmentation color labels for validation samples (A), (B), and (C).
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preparation, sample contrasting or image acquisition, it is

important to evaluate the robustness of the DL model. To

determine the variance that the model can handle, non-

optimal micrographs are being analyzed. On one side, a

micrograph showing slight etching artefacts is being

segmented and post-processed and on the other side,

inference on an artificially blurred image, simulating image

acquisition without proper focusing, is executed.

Even though etching artefacts cover the areas of important

visual features, all boundaries can be segmented (Figure 10). The

quality of the result is remarkable, considered the condition of

the input image. Apparently, the model is robust enough to

reliably fulfill the trained task, as long as significant visual

features are present. A human expert probably would have

considerable problems to annotate micrographs, showing such

intensities of etching artefacts. In cases where all visual features

FIGURE 7
Comparison of the segmentation results to corresponding ground truths of the three validation samples. (A): grain size distribution, (B):
characteristic grain size parameters. The deviation between the grain sizes between reconstruction and groundtruth is only small. Sample C
containing a higher amount of bainitic microconstituents shows the least difference. The area fraction mean grain size of the martensitic sample A
contains the highest error, underestimating the grain sizes. With decreasing cooling rates that error becomes less noticeable.
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are removed due to bad contrasting, watershed post-processing

potentially could still yield a decent result. For possible series

application, the robustness of the model could even be improved

by specifically using training datasets that also include lower

grade micrographs, showing worse contrasts and artefacts, in

order to cover the variance in a practical application.

Figure 11 shows that the model is able to detect the majority

of the boundaries, even in blurred images. This also supports the

conclusion of a robust model. Though, some regions, especially

where an already low contrasted region gets degraded by the blur

filter, the model is not able to segment most of the boundary

parts. Since semantic segmentation is based on the presence of

visual features, it is always desired to only use input images,

captured under good conditions, comparable to conditions of

generating the training data set. Loss of important features leads

to a loss in quality of the segmentation result. There is a

possibility to use unsharp training images as well, although

this might be accompanied with a model that has a higher

generalizability, but a lower overall quality. Hence, it is always

desired to only use high-quality input images, if possible. More

experiments could be executed in order to investigate the quality

of the segmentation results based on further common artefacts

originated in the sample preparation, such as scratches. Since

scratches show similar visual features to some PAGB, it could be

interesting to characterize the influence of this possible problem.

The amount of the used data in the training dataset sounds

undersized, compared to common DL datasets. Though, natural

images, such as in ImageNet, cannot directly be compared to

FIGURE 8
Excerpt of an LOM of a bainitic sample with a cooling rate of 15°C/s (left), showing the segmented boundaries after area opening (blue) and the
watershed segmentation result (right) with the overlap (black) between groundtruth (green) and post-postprocessed segmentation result (red).

FIGURE 9
Excerpts of a LOM micrograph with post-processed segmentation result (red), ground truth annotation (green) and overlap between both
(yellow) for a martensitic (A) and a bainitic sample (B).
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FIGURE 10
LOM micrograph of an unseen sample with etching artefacts (A) and the segmentation result after postprocessing (B) showing the color-
labeled grains from the reconstruction.

FIGURE 11
Testing model on blurred micrograph (A) (mean filter—three px: left upper shows sharp micrograph-left lower shows blurred micrograph).
Overlay of the segmentation results, without any post-processing [(B)—green: original image, red: blurred image, black: overlap between the
segmentations].
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microscopic images. Durmaz et al. Durmaz et al. (2021) could

achieve very good results using before mentioned CV approaches

using very little data. Reason for this being the high feature

density and comparatively lower variance of microscopic images

of microstructures: Moreover, the number of objects of interests

is usually orders of magnitudes higher for microstructural

images, than for natural images (here: several grains

respectively boundaries per image, compared to e.g., one cat).

There is almost no meaningless background, which has to be

identified as such, and ignored. Also, images are always acquired

with the same perspective in the microscope, in contrast to

natural images. Furthermore, the spatial relationship and

length scales, e.g., magnifications, are physically based and

rather discrete than continuous (Thomas et al., 2020).

The basis for the successful implementation of this

processing pipeline is the quality of the used data. Thanks to

correlative microscopy, information from LOM, SEM and

crystallographic EBSD information could be combined. Using

only one of those information sources to tackle this problem of

segmentation would lead to considerably worse results. Using

only EBSD reconstructions without manual corrections would

distort the training progress of the model, since many boundaries

in the reconstruction, especially in more bainitic samples where

the OR are not unambiguous anymore, were no actual PAGB.

Thus, the model would try to learn visual features in the LOM,

which are not present, since the boundaries in the LOM image do

not align with the respective ground truth. Using only LOM

images for manual annotations is really time consuming, since all

the boundary masks must be done by hand and additionally,

often the course of the PAGBs in martensitic samples is not clear.

Using SEM images as complementary information is highly

recommended, since doubtful regions from the LOM can be

verified through the high resolution of the SEM. Overall, a good

compromise between objectivity and acquisition time can be

achieved by LOM, SEM and EBSD to create the training dataset,

as done in the presented work. Using all three experimental

methods, which is time consuming and not feasible for a practical

application, is only necessary one time for creating the training

dataset. It could be shown that, once an objective dataset has been

created, a final model used for inference in actual practical

applications, can be reduced on the easiest method, as long as

it contains sufficient visual features for the respective task.

In summary, it could be shown that this approach has

potential for practical applications. Although best image

conditions are desired, the here presented model can handle

even worse conditions, such as etching artefacts and slight

blurring, without any considerable loss in performance.

Together with the high efficiency of the segmentation

pipeline, which can be fully automated or semi-automated in

cases, where human expertise can improve the segmentation

result by altering the post-processing parameters, makes the

approach interesting to integrate in different processes in both

research and quality control. This fast, efficient, objective, and

reproducible segmentation pipeline can be used for an improved

PAG quantification and thereby form the basis for improving

TMCP or a further microstructure-centered materials

optimization.

Outlook

For series application, the reliability and robustness of the

model is the most important. In order to obtain a model that can

handle a wider range of variance in the images, more training

data should be used for training. Here, the training dataset should

be extended by a range of steels with different chemical

compositions and processing histories. Thereby the model

would also most likely be trained in a higher variance of the

different contrasts after Nital-etching. As described before, a

higher generalizability would probably be accompanied by a

slight loss of accuracy assuming the presented architecture.

Thus, depending on the respective application, a compromise

must be found, especially since the creation of a training dataset is

the most time-consuming part of the implementation.

Furthermore, the model could be optimized by pre-training

the encoder part of the UNet specifically on optical

microstructural images (Stuckner et al., 2022). In this way the

weights of the encoder can be optimized for extracting only the

most relevant features from microscopic images, instead of using

the ImageNet weights, as in this showcase. Another approach

without using an external dataset would be using the encoder of

an autoencoder that is trained to reconstruct the optical

micrographs of the final dataset. Hereby, the convolution

filters can be optimized and sensibilized on the

microstructural features by using the final dataset and slight

improvements can be expected.

For future microstructure quantification, the PAG

segmentation enables an object-wise classification of these

steel types. Instead of classifying the whole micrograph or

tiling it into squared sub-images, each PAG can represent an

object which is a more metallurgically sound object definition

and allows a more sophisticated microstructure classification and

quantification. In general, the presented approach is not

necessarily limited to steel microstructures but could be

transferred to other materials that exhibit displacive phase

transformations and orientation relationships between parent

and child phase, like titanium.

Prospectively, within the consortium, the combination of

synthetic data with real-world data will be a focus. In this context,

phase-field simulations of the martensitic quenching process can

provide high-fidelity data which can be supplemented during

learning. This data can either be utilized during pre-training of

the network or by applying domain adaptation (Goetz et al.,

2022). Domain adaptation has been successfully applied for

transferring between readily-annotated synthetic urban images

(Synthia, GTA5 data sets) to corresponding real-world datasets
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(Cityscapes data set) despite using none tominimal annotation in

the real-world domain. Similarly, the wealth of microstructural

simulation tools in the materials domain can be utilized to fuel

data-driven learning efforts. Aside from this, future work will

address whether the task should be better treated as a pixel-wise

classification problem (semantic segmentation) or as an instance

segmentation problem Additionally, it will be answered which

model philosophy works best, i.e., could separate models for

specific steel types or microstructure types outperform one

general model for all kinds of steels and microstructures. In

this context, the influence of different etching types shall also be

studied.

Conclusion

Determination of prior austenite grains (PAG) in steels is

a very important and demanded topic. Different approaches

exist, but usually have specific drawbacks. Metallographic

etching can be tedious, hard to reproduce and mostly, only

mean grain sizes by comparison with standard diagrams can

be determined. Reconstructions based on electron

backscatter diffraction (EBSD) are usually time-consuming,

which limits the size of measured regions, and can exhibit

artefacts.

In this work, a PAG segmentation from plain, Nital-etched

light optical micrographs using deep learning (DL) was

introduced. The foundation for successful implementation was

the correlative microscopy approach, combining light optical

microscope (LOM), scanning electron microscope (SEM) and

EBSD. Only with the correlative EBSD and SEM data, the

objective and reliable annotations of the PAG needed for

training a DL model on plain LOM images were possible,

although an uncertainty in the ground truth remains that is

inherent to the task of determining PAG. This uncertainty is also

reflected in the performance metrics of the model. Still, the DL

model shows very good and robust segmentation results which

can be further improved by post-processing steps. While the

metric intersection over union (ca. 70%) does not match the

visual perception of the model quality, the determination of

mean grain sizes and grain size distributions with an average

error (over three samples) of 9% for the number fraction mean

grain size and 6.1% for the area fraction mean grain size clearly

shows the high quality of the DL model. Advantages of this

approach are the simple application and reproducibility of the

Nital-etching, the fast analysis of large, representative sample

areas in LOM as well as the automated, reproducible, and

objective image analysis based on DL. This makes it very

interesting for applications in research as well as quality

control where it can immediately provide benefits compared

to existing methods.
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