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This study deals with numerical solution ofmomentum and heat transfer of fractional
ordered Maxwell fluids within a coaxial cylinder. It is well known that the complex
dynamics of flow regime can be well-described by the fractional approach. In this
paper, a fractional differentiation operator Dα

t of Caputo was applied for fractional
modeling of magneto-hydro-dynamic (MHD) fluid. A set of appropriate
transformations was applied to make the governing equations dimensionless. The
finite differences were calculated by the discretization of momentum profile u(r, t)
and heat profile T(r, t). The results obtained for u(r, t) and T(r, t)were plotted against
different physical parameters, such as Prandtl number Pr, the square of Hartmann
number Ha, thermal Grashof number Gr, thermal radiation parameter Nr, and heat
source/sink parameter Q0. The results were verified by comparing data from the
proposed method with MAPLE built-in command results. Subjecting the system to a
strong magnetic field led to increasing T(r, t) and decreasing u(r, t). It was found that
increasing Gr andPr increased the velocity and temperature profiles. Addition of Cu
nanoparticles to a base fluid of H2O enhanced its heat transfer capability. Also,
increasing the angular frequency of inner cylinder velocity resulted in a high velocity
profile of fractional Maxell nano-fluids within a coaxial region (cylinder).
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Introduction

The viscoelastic flow of Maxwell fluids within a circular cylinder requires more attention in
many areas, such as the chemical, food, and petroleum industries. Nguyen et al. (1983), Nieckele
and Patankar (1985), Hayase et al. (1992), Haldar (1998), and Chung (1999) have studied
viscoelastic flow between two concentric cylinders. Dependent flow of second-grade fluid in
cylindrical geometry has been investigated by Ting (1963). In a similar trend, Maxwell fluids
have been examined in a cylindrical coordinate system (Srivastava, 1966). Also, Waters and
King (1971) studied Oldroyd-B fluid focused in a cylindrical domain. All results were
analytically driven. Considerable work has been carried out by Fetecau et al. in
investigating one-dimensional viscoelastic flow between circular regions under different
conditions, such as a rotating axis. In Fetecau et al. (2008), an exact solution of Oldroyd-B
fluid was examined. A solution was offered as the sum of steady-state and transient-state
solution. M Jamil et al., studied helical flow Maxwell fluids by using the analytical approach of
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Hankel transformation (Jamil and Fetecau, 2010). Wood investigated
an exact solution of Oldroyd-B fluids in a straight pipe of circular cross
sections (Wood, 2001). However, the study of coaxial cylindrical
geometry of an oscillating inner cylinder has been infrequent. An
important geometry and motion problem is that of cylindrical
geometry. Finite or infinite lengths of annular geometry play vital
roles in fluid dynamics. Cylindrical flow has various applications in
different fields of the food industry, medicine, chemistry, bio-
engineering, and oil exploitation (Hartnett and Kostic, 1989).

In research already discussed, a classical approach of constitutive
relations for Maxwell fluids had been applied for mathematical
modeling. Recently, the fractional approach of constitutive
equations of viscoelastic fluid has been the focus of researchers as
the fractional approach can provide a better interpretation of
viscoelastic fluids than the classical integer-order derivative
approach (Bagley and Torvik, 1983; Friedrich, 1991; Haitao and
Mingyu, 2009; Magin, 2010; Ming et al., 2016; Sun et al., 2018).

Fractional calculus has been a hot topic among researchers in the
recent era of basic science as it provides a new direction in describing
dynamics such as time relaxation, time retardation, viscoelastic
behavior, and flow regime. Fractional-order (non-integer) partial
differential equations (PDEs) are well-suited to address the physical
phenomena related to transportation of heat and mass as well. The
fractional mathematical model was initially one of classical integer
order, which has been modified by replacing integer-order with non-
integer order (Sheikh et al., 2017; Saqib et al., 2018; Saqib et al., 2020).
For the purpose fractional differentiation, some operators that have
been used include Riemann, Riemann–Liouville, Caputo,
Caputo–Fabrizio, and Anatangna Beleanu fractional operators
(Shah et al., 2018a; Shah et al., 2018b). Using Laplace and Hankel
transformation, the analytical solution of a generalizedMaxwell model
was solved by Mahmood et al. (2009). Subsequently, exact solutions of
fractional Maxwell fluids were investigated using Laplace and Hankel
transformation (Fetecau et al., 2010; Fetecau et al., 2011).

For the last few decades, nanotechnology has been a research focus
due to its broad range of applications, including those in solar energy,
weapons, vehicles, and electronics, stemming from strong thermal
properties. Nano-fluids are prepared by mixing up nano-sized
(1 nm–100 nm) particles in base fluids (water, blood, engine oil,
kerosene oil, etc.). The idea of nano-fluids was first developed by
Choi and Eastman (1995), and considerable work has since been by
carried out by Tiwari and Das on the effectiveness of different shapes
and sizes of nanoparticles in a flow regime (Tiwari and Das, 2007).
Using Laplace Transform, a study of a nano-fluid model has been
done, while considering the flow passing through an accelerating
infinite vertical plate situated in porous medium. Activation energy
of Maxwell nano-fluids and binary chemical reaction of carbon
nanotubes (CNTs) have been investigated using Runge–Kutta on
MAPLE (Subbarayudu et al., 2019). Non-Newtonian nano-fluids
have been examined numerically by Rashad et al. (2013) using
finite difference methods (FDMs). In Rashad and Nabwey (2019),
FDM was applied to investigate the gyrotactic mixed bioconvection
flow of a nano-fluid passing through a circular region.

Considering the literature discussed previously, research gaps
exist. These include the following:

• Lack of study of the problems involving non-linearity and
cylindrical geometry.

• Assumptions made to simplify systems governing equations to
obtain analytical solutions.

• Application of analytical techniques to calculate results.

In order to address these gaps, we focused on unsteady flow
fractional Maxwell nano-fluids between coaxial cylinders. Flow
through an annular region was assumed due to oscillation of the
inner cylinder under the effects of thermal radiation and strong
magnetic field. Due to its flexibility and efficiency in addressing
problems with initial and boundary conditions, the Caputo time
fractional operator was used as the mathematical model.
Cylindrical geometry is complex to solve numerically, therefore, the
numerical approach of the finite difference method was applied to
obtain the results. We compared the results obtained using the built-in
command in MAPLE with those obtained using our model.

Mathematical formulation

Suppose that an incompressible, unsteady, and one-dimensional
flow of viscoelastic nano-fluid is at rest at time t � 0 within the annular
region of two infinite coaxial cylinders having radiiR1 andR2 such that
R1 <R2. The inner cylinder oscillates with angular velocity ω along
z − direction, whereas the outer cylinder remains stationary. These
cylinders are subjected to the strong magnetic field B0 and thermal
radiation. With the passage of time, the fractional Maxwell nano-fluid
moves with velocity V(r, θ, z, t) � u(r, t). The flow diagram of the
physical problem is given in Figure 1, as referenced in Fetecau et al.
(2011).

The following assumptions were made for the aforementioned
problem.

• The flow is one-dimensional, unsteady, and incompressible.
• Body forces are considered.
• Viscous dissipation and pressure gradients are neglected.
• Fluid is magnetic-hydro-dynamic (MHD), but induced
magnetic field is ignored.

• Thermal radiation is applied.

FIGURE 1
Problem geometry and coordinate system.
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Then, the equation of continuity in cylindrical form (Zhang et al.,
2019) is as follows:

1
r

z ru r, t( )[ ]
zr

� 0. (1)

The stress tensor for fractional Maxwell nano-fluid (Anwar et al.,
2020) is as follows:

T � −pI + S (2)
and

S + λ
δS
δt

� μA1, (3)

in which −pI is the intermediate spherical stress tensor of order
3 × 3. S is the extra stress tensor, which is defined by Eq. 3, and δS

δt is
further expressed as (Salah, 2013)

δS
δt

� DS
Dt

− LS − SLt. (4)

Also, A1 is first Rivline Ericksen tensor (Salah, 2013):

A1 � L + Lt. (5)
In the expression, L � ∇V is the velocity gradient and superscript t

is transpose notation.
Accounting for significant body forces and the strong magnetic

field (neglecting induced magnetic field) to which the cylinders are
subjected, then the Navier Stokes equation in cylindrical form (Zhao
et al., 2022) is as follows:

ρnf
zu r, t( )

zt
� −zp

zz
+ S r, t( )

r
+ zS r, t( )

zr
+ g ρβT( )nf T − T0( )

+ J × B( )r. (6)

With rotational symmetry zp
zθ � 0 and ignoring pressure gradient,

then zp
zz � 0 (Awan et al., 2020) is as follows:

ρnf
zu r, t( )

zt
� S r, t( )

r
+ zS r, t( )

zr
+ g ρβT( )nf T − T0( ) + J × B( )r. (7)

In the aforementioned expression, S(r, t) is the extra stress tensor and
its non-zero component based on the aforementioned assumptions is
Srz(r, t). The balance of the aforementioned equation in the absence of
the both pressure gradient and viscous dissipation in the flow direction
leads to Srr � Sθθ � Szz � Srθ � Sθz � 0, and the constitutive equation for
fractional Maxwell nano-fluid is then defined as follows (Jamil and
Fetecau, 2010):

1 + λα1D
α
t( )Srz r, t( ) � μnf

u r, t( )
zr

. (8)

Also,

J × B( )r � − σnfB
2
0u r, t( ), 0, 0( ). (9)

Taking into the account that B � B0 + b0, where B0 is applied and
b0 is the induced magnetic field, respectively, Eq. 7 then takes the form

ρnf
zu r, t( )

zt
� S r, t( )

r
+ zS r, t( )

zr
+ g ρβT( )nf T − T0( ) + J × B( )r. (10)

Multiplying both sides of the aforementioned equation by (1 +
λα1D

α
t ) and using Eqs 8, 9 in Eq. 10:

ρnf 1 + λα1D
α
t( ) zu r, t( )

zt
� 1 + λα1D

α
t( ) Srz r, t( )

r
+ 1 + λα1D

α
t( ) zSrz r, t( )

zr

+ g ρβT( )nf 1 + λα1D
α
t( ) T − T0( )

− σnfB
2
0 1 + λα1D

α
t( )u r, t( ).

(11)
In this expression, λα1 is the time relaxation and Dα

t is the Caputo
fractional derivative as defined by (Asjad et al., 2017):

Dα
t u r, t( ) � 1

Γ 1 − α( )∫
t

0
t − τ( )−αzu r, τ( )

zτ
dτ. (12)

In Askey and Roy (2010), Γ (.) is the gamma function and may be
expressed as follows:

Γ x( ) � ∫ηx−1e−ηdη, xϵC, Re x( )> 0, (13)

ρnf 1 + λα1D
α
t( ) zu r, t( )

zt
� μnf

1
r

u r, t( )
zr

+ μnf
z2u r, t( )

zr2
.

+ g ρβT( )nf 1 + λα1D
α
t( ) T − T0( )

− σnfB
2
0 1 + λα1D

α
t( )u r, t( ). (14)

By following a similar trend for heat transfer analysis, the
governing equation for temperature profile is expressed as (Khan
and Mustafa, 2018)

ρCp( )
nf

zT

zt
� Knf

1
r

zT

zr
+ z2T

zr2
( ) − ∇. qr + Q T − T0( ). (15)

In the aforementioned expression, ρ is viscosity, Cp is the specific
heat, T is temperature, T0 is ambient temperature at time t � 0, Knf is
the thermal conductivity, Q is the heat absorption/source, and qr is
radiative heat flux of the fractional Maxwell nano-fluid, where qr is
defined by (Rosseland, 2013)

qr � − 4
3k*

( )∇.eb, (16)

where k* is the mean absorption coefficient and eb denotes the black
body emissive power of the mathematical form eb � σ*T4, with σ* �
5.7 × 10−8 W/m2 K4 as the Stefan–Boltzmann constant (Khan and
Mustafa, 2018). Then, Eq. 16 can be written as follows:

qr � − 4
3k*

( ) zT4

zr
. (17)

Using Taylor series expansion, approximation of T4 has been
made near T0; therefore, with T4 � 4T3

0T − 3T4
0 and neglecting higher

power (Taitel and Hartnett, 1968),

qr � −16σ*T
3
0

3k*
zT

zr
. (18)

Eq. 17 takes the following form;
Then, multiplying both sides of Eq. 15 by (1 + λβ2D

β
t ),

ρCp( )
nf

1 + λβ2D
β
t( ) zT

zt
� Knf 1 + λβ2D

β
t( ) 1

r

zT

zr
+ z2T

zr2
( ) − ∇. qr

+ Q 1 + λβ2D
β
t( ) T − T0( ). (19)

Using Eq. 18, the resulting expression is as follows:
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ρCp( )
nf

1 + λβ2D
β
t( ) zT

zt
� Knf

1
r

1 + λβ2D
β
t( ) zT

zr
+ Knf 1 + 16σ*T3

0

3k*Knf
[ ]

× 1 + λβ2D
β
t( ) z2T

zr2
+ Q 1 + λβ2D

β
t( ) T − T0( ).

(20)
The proposed initial and boundary conditions for momentum and

heat of this physical phenomenon are given as follows:

u r, 0( ) � zu r, 0( )
zt

� 0, R1 ≤ r≤R2, (21)
u R1, t( ) � E 1 − cosωt( ), u R2, t( ) � 0, t> 0. (22)

For temperature,

T r, 0( ) � T0,
zT r, 0( )

zt
� 0, R1 ≤ r≤R2, (23)

T R1, t( ) � T0,
zT R2, t( )

zr
� 0, for t> 0. (24)

Under the aforementioned initial and boundary conditions, ω is the
frequency of inner cylinder velocity andR1, R2 are radii of the inner and
outer cylinders such that R2 >R1, and E is the maximum velocity term.

Introducing the transformation for proposed geometry in Eqs
14, 20,

x* � x

R2
, r* � r

R2
, u* � u

R2

vf
, t* � t

]f
R2
2

, λ1
* � λ1

]f
R2
2

, λ2
* � λ2

]f
R2
2

,

T* � T − T0

T0
, ω* � ω

R2
2

]f
,

and with the usage of thermo-physical properties of nanoparticles,

ρnf
ρf

� a1 � 1 − ϕ( ) + ϕ
ρs
ρf

⎡⎣ ⎤⎦, ρβθ( )nf
ρβθ( )f � a2 � 1 − ϕ( ) + ϕ

ρβT( )s
ρβT( )f⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦,

μnf
μf

� a3 � 1

1 − ϕ( )2.5 ,
ρCp( )

nf

ρCp( )
f

� a4 � 1 − ϕ( ) + ϕ
ρCp( )

s

ρCp( )
f

⎛⎜⎝ ⎞⎟⎠⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,

knf
kf

� a5 �
ks + 2kf − 2ϕ kf − ks( )
ks + 2kf + ϕ kf − ks( ) ,

σ( )nf
σ( )f � a6 � 1 +

3
σs
σf

− 1( )ϕ
σs

σf
− 2( ) − σs

σf
− 1( )ϕ.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(25)

The non-dimensional form of velocity profile along a circular
cylinder is as follows:

1 + λα1D
α
t( ) zu*

zt*
� b1

z2u*
zr*2

+ 1
r*

zu*
zr*

[ ] − b2H
2
a 1 + λα1D

α
t( )u*

+ b3Gr 1 + λα1D
α
t( )T*. (26)

The heat equation takes the following dimensionless form:

1 + λβ2D
β
t( ) zT*

zt*
� b1
r*Pr

1 + λβ2D
β
t( ) zT*

zr*

+ b1
Pr

1 +Nr[ ] 1 + λβ2D
β
t( ) z2T0

zr*2
+ Q0

a4
1 + λβ2D

β
t( )T*.
(27)

The dimensionless initial and boundary conditions are as follows:

u* r, 0( ) � 0,
zu* r, 0( )

zr
� 0, R1 ≤ r≤R2, (28)

u* r, t( ) � E* 1 − cosω*t*[ ], u* R2, t( ) � 0, t> 0. (29)
For temperature profile,

T* r, 0( ) � 0,
zT* r, 0( )

zt*
� 0, R1 ≤ r≤R2, (30)

T* R2, t( ) � 0, t> 0. (31)
The dimensionless velocity and temperature profiles of the

problem are given, and after eliminating (*) representation, for the
sake of simplicity, is as follows:

1 + λα1D
α
t( ) zu

zt
� b1

z2u r, t( )
zr2

+ 1
r

zu r, t( )
zr

[ ] − b2H
2
a 1 + λα1D

α
t( )u r, t( )

+ b3Gr 1 + λα1D
α
t( )T r, t( )

(32)
and

1 + λβ2D
β
t( ) zT

zt
� b4
r.Pr

1 + λβ2D
β
t( ) zT

zr
+ b4

1 +Nr

Pr
1 + λβ2D

β
t( ) z2T

zr2

+ Q0

a4
1 + λβ2D

β
t( )T.

(33)
Also, initial and boundary conditions are as follows:

u r, 0( ) � 0,
zu r, 0( )

zr
� 0, R1 ≤ r≤R2, (34)

u r, t( ) � E 1 − cosωt[ ], u R2, t( ) � 0, t> 0. (35)
For temperature profile,

T r, 0( ) � 0,
zT r, 0( )

zt
� 0, R1 ≤ r≤R2, (36)

T R2, t( ) � 0, t> 0, (37)
where

b1 � a3
a1
, b2 � a6

a1
, b3 � a2

a1
, b4 � a5

a4
, H2

a �
σfB2

0R
2
2

μf
,

Gr � g βT( )fT0R
3
2

]2f
, Pr �

μf Cp( )
f

Kf
,Nr � 16σ*T3

0

3a5k*Kf
, Q0 � QR2

2

μf Cp( )
f

.

The dimensionless governing equations for velocity and
temperature profiles in Eqs 32, 33 and non-dimensional initial and
boundary conditions in Eqs 34–37 express the physical phenomenon
of flow of fractional Maxwell nano-fluid within a coaxial cylinder
under the influence of magnetic field and heat source/sink, in which
b1, b2, b3, and b4 are constants and ratios of thermo-physical
properties of nanoparticle and base fluid, and where
H2

a, Gr, Pr , Nr, andQ0 are the square of Hartmann number, and
the Grashof number, Prandtl number, thermal radiation parameter,
and constant of heat source/sink, respectively. Table 1 contains the
numerical values of nanoparticles and different base fluids at room
temperature (25 C0) (Usman et al., 2018).

Skin friction and Nusselt number

The significant physical quantities of skin friction and local
Nusselt number for prescribed geometry are described as follows
(Khan and Mustafa, 2018):

Cf � μnf
ρu2

0

zu

zr
( )

r�R2

. (38)
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The instantaneous Nusselt number near the wall for a cylindrical
region is given as follows (Zhao et al., 2022):

Nu � −knf 1 + 16σ*T3
0

3k*Knf
( ) zT

zy
( )

r�R2

. (39)

After applying the fractional Maxwell operator to both sides of Eqs
38, 39, we have

Cf 1 + λα1D
α
t( ) � μnf

ρu2
0

zu

zr
( )

r�R2

(40)

and

Nu 1 + λβ2D
β
t( ) � −knf 1 + 16σ*T3

0

3k*Knf
( ) zT

zy
( )

r�R2

. (41)

Using transformations and the thermo-physical properties of
nano-fluids expressed in Eq. 25,

Cf + λα1
zαCf

ztα
( ) � a3

Re2
zu*
zr*

( )
r�R2

. (42)

The dimensionless expression for the Nusselt number is obtained
(after ignoring the star notation) as follows:

Nu + λα1
zαNu

ztα
( ) � −a5kf 1 +Nr( ) zT

zy
( )

r�R2

(43)

in which a3, a5 are constants, and Nr, Re are the thermal
radiation parameter and the Reynold number, respectively, and
defined as follows:

Nr � 16σ*T3
0

3k*Kf
, Re � u2

0R
2
2

]2f
.

Numerical procedure

The numerical technique of the finite difference method is a
strong and accurate tool used for solving the partial difference
equation, even of non-linear order. The proposed model is a non-
linear coupled model of PDEs that express the momentum and
temperature equations. The discretization of governing equations
are expressed as. It is well-known that the discretization of
C
0D

α
t u,

C
0D

1+α
t u for 0< α≤ 1, ut and urr is defined as follows (Liu

et al., 2004):

C
0D

α

tj+1u ri, tj+1( ) � Δt−α

Γ 2 − α( ) uj+1
i − uj

i[ ] + Δt−α

Γ 2 − α( )∑j
l�1

uj−l+1
i − uj−l

i( )bαl ,
(44)

C
0D

1+α
tj+1u ri, tj+1( ) � Δt− 1+α( )

Γ 2 − α( ) uj+1
i − 2uj

i + uj−1
i[ ]

+ Δt− 1+α( )

Γ 2 − α( ) × ∑j
l�1

uj−l+1
i − 2uj−l

i + uj−l−1
i( )bαl , (45)

z

zt
u ri, tj+1( )∣∣∣∣∣∣∣t�tj+1 �

1
Δt

uj+1
i − uj

i[ ], (46)

z2

zr2
u ri+1, tj( )∣∣∣∣∣∣∣∣r�ri+1 �

1
Δr2

uj+1
i+1 − 2uj+1

i + uj+1
i−1[ ]. (47)

In Eq. 44, bαl � (l + 1)1−α − l1−α, l � 1, 2, 3, . . . , j. Rectilinear grids
are pondered for the numerical solution, with grid spacing
Δt> 0, Δr> 0, where Δr � (R2 − R1)/M,Δt � T/N with Δr, Δt
from Z+. Points (ri, tj) in Ω � [0, T] × [0, L] are defined as ri �
iΔr and tj � jΔt. Considering the aforementioned assumptions, the
discussed model of Eqs 32, 33 at (i, j) is defined as follows:

1
Δt uj+1

i − uj
i( )

+ λα1Δrt−1−α
Γ 2 − α( ) uj+1

i − 2uj
i + uj−1

i + ∑j
l�1

uj−l+1
i − 2uj−l

i + uj−l−1
i( )bαl⎛⎝ ⎞⎠

� b1
uj+1
i+1 − 2uj+1

i + uj+1
i−1

Δr2 + 1
2iΔr2 uj+1

i+1 − uj+1
i−1( )( )

+ b2Gr Tj+1
i + λα1Δrt−α

Γ 2 − α( )( Tj+1
i − Tj

i( × +∑j
l�1

Tj−l+1
i − Tj−l

i( )bαl ⎞⎠
−b3Ha2 uj+1

i + λα1Δrt−α
Γ 2 − α( ) uj+1

i − uj
i + ∑j

l�1
uj−l+1
i − uj−l

i( )bαl⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

1
Δrt Tj+1

i − Tj
i( )

+ λβ2Δrt−1−α
Γ 2 − α( ) Tj+1

i − 2Tj
i + Tj−1

i + ∑j
l�1

Tj−l+1
i − 2Tj−l

i + Tj−l−1
i( )bαl⎛⎝ ⎞⎠

� b4
2Pr iΔr2 Tj+1

i+1 −Tj+1
i−1 + λβ2Δrt−α

Γ 2−α( ) Tj+1
i+1 −Tj

i+1 +∑j
l�1

Tj−l+1
i+1 −Tj−l

i+1( )bαl⎛⎝⎛⎝
−Tj+1

i−1 +Tj
i−1

−∑j
l�1

Tj−l+1
i−1 − Tj−l

i−1( )bαl ⎞⎠⎞⎠
+ b4 1 +Nr( )

Δr2Pr Tj+1
i+1 − 2Tj+1

i + Tj+1
i−1 + λβ2Δt−α

Γ 2 − α( )(
× Tj+1

i+1 − Tj
i+1 + ∑j

l�1
Tj−l+1
i+1 − Tj−l

i+1( )bαl − 2Tj+1
i

⎛⎝
+2Tj

i − 2∑j
l�1

Tj−l+1
i − Tj−l

i( )bαl + Tj+1
i−1 − Tj

i−1

+∑j
l�1

Tj−l+1
i−1 − Tj−l

i−1( )bαl ⎞⎠⎞⎠

TABLE 1 Contains the numerical values of nanoparticles and different base fluids at room temperature 25° presented in (Usman et al., 2018).

Material ρ(kgm−3) Cp(JKg−1k−1) k(Wm−1k−1) β × 10−5(k−1) σ(Ωm)−1

Water 997 4197 0.613 21 .05

Copper 8933 385 400 1.67 5.96 × 107

Alumina 3970 765 40 0.85 2.6 × 106

Frontiers in Materials frontiersin.org05

Asjad et al. 10.3389/fmats.2022.1050767

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2022.1050767


+Q0

a4
Tj+1
i + λβ2Δt−α

Γ 2 − α( ) Tj+1
i − Tj

i + ∑j
l�1

Tj−l+1
i − Tj−l

i( )bαl⎛⎝ ⎞⎠⎛⎝ ⎞⎠
+Q0

a4
Tj+1
i + λβ2t

−α

Γ 2 − α( ) Tj+1
i − Tj

i + ∑j
l�1

Tj−l+1
i − Tj−l

i( )bαl⎛⎝ ⎞⎠⎛⎝ ⎞⎠.

− b1
Δr2 +

b1
2iΔr2( )uj+1

i−1

+ 1
Δt + λα1

Δt−1−α
Γ 2 − α( ) +

2b1
Δr2 + b3Ha2 + b3Ha2λα1

t−α

Γ 2 − α( )( )uj+1
i

+ − b1
Δr2 −

b1
2iΔr2( )uj+1

i+1 + −b2Gr − b2Grλ
α
1

t−α

Γ 2 − α( )( )Tj+1
i

� λα1
t−1−α

Γ 2 − α( )u
j−1
i

+ 1
Δt + 2λα1

Δt−1−α
Γ 2 − α( ) − b3Ha2λα1

t−α

Γ 2 − α( )( )uj
i − b2Grλ

α
1

Δt−α
Γ 2 − α( )T

j
i

+ f1
i,j + f2

i,j + f3
i,j.

b4
2Pr iΔr2 +

b4
2Pr iΔr2

λβ2Δt−α
Γ 2 − α( ) −

b4 1 +Nr( )
Δr2Pr − b4 1 +Nr( )

Δr2Pr
λβ2Δt−α
Γ 2 − α( )( )Tj+1

i−1

+ 1
Δt+λ

β
2

Δt−1−α
Γ 2−α( )+2

b4 1+Nr( )
Δr2Pr +2b4 1+Nr( )

Δr2Pr
λβ2Δt−α
Γ 2−α( )−

Q0

a4
−Q0

a4

λβ2Δt−α
Γ 2−α( )( )Tj+1

i

+ − b4
2PriΔr2−

b4
2PriΔr2

λβ2Δt−α
Γ 2−α( )−

b4 1+Nr( )
Δr2Pr −b4 1+Nr( )

Δr2Pr
λβ2Δt−α
Γ 2−α( )( )Tj+1

i+1

� −λ
β
2Δt−1−α

Γ 2 − α( ) +
b4

2Pr iΔr2
λβ2Δt−α
Γ 2 − α( ) −

b4 1 +Nr( )
Δr2Pr

λβ2Δt−α
Γ 2 − α( )( )Tj

i−1

+ 1
Δt + 2

λβ2Δt−1−α
Γ 2 − α( ) + 2

b4 1 +Nr( )
Δr2Pr

λβ2Δt−α
Γ 2 − α( ) −

Q0

a4

λβ2Δt−α
Γ 2 − α( )( )Tj

i

+ − b4
2Pr iΔr2

λβ2Δt−α
Γ 2 − α( ) −

b4 1 +Nr( )
Δr2Pr

λβ2Δt−α
Γ 2 − α( )( )Tj

i+1 + g1
i,j + g2

i,j + g3
i,j

+ g4
i,j + g5

i,j + g6
i,j + g7

i,j.

f1
i,j � −λα1

Δt−1−α
Γ 2 − α( )∑j

l�1
uj−l+1
i − 2uj−l

i + uj−l−1
i( )bαl , f2

i,j

� b2Gr
λα1Δt−α
Γ 2 − α( )∑j

l�1
Tj−l+1
i − Tj−l

i( )bαl ,
f3
i,j � −b3Ha2λα1

Δt−α
Γ 2 − α( )∑j

l�1
uj−l+1
i − uj−l

i( )bαl ,
g1
i,j �

λβ2Δt−1−α
Γ 2 − α( )∑j

l�1
Tj−l+1
i − 2Tj−l

i + Tj−l−1
i( )bαl , g2

i,j

� b4
2Pr iΔr2

λβ2Δt−α
Γ 2 − α( )∑j

l�1
Tj−l+1
i+1 − Tj−l

i+1( )bαl ,
g3
i,j �

b4
2Pr iΔr2

λβ2Δt−α
Γ 2 − α( )∑j

l�1
Tj−l+1
i−1 − Tj−l

i−1( )bαl , g4
i,j

� b4 1 +Nr( )
Δr2Pr

λβ2Δt−α
Γ 2 − α( )

×∑j
l�1

Tj−l+1
i+1 −Tj−l

i+1( )bαl , g5
i,j

�−2b4 1+Nr( )
Δr2Pr

λβ2Δt−α
Γ 2−α( )∑

j

l�1
Tj−l+1
i −Tj−l

i( )bαl ,

g6
i,j �

b4 1 +Nr( )
Δr2Pr

λβ2Δt−α
Γ 2 − α( )∑j

l�1
Tj−l+1
i−1 − Tj−l

i−1( )bαl , g7
i,j

� Q0

a4

λβ2Δt−α
Γ 2 − α( )∑j

l�1
Tj−l+1
i − Tj−l

i( )bαl .
For j � 1, 2, 3, . . . , N − 1, i � 1, 2, 3, . . . , N − 1, with the following

initial and boundary conditions,

u0
i � 0, u1

i � u−1
i , T0

i � 0, T1
i � T−1

i , for i � 0, 1, 2, 3, . . . ,M,

uj
0 � EM 1 − coswΔt( ), uj

M � 0, Tj
0 � 1, Tj

M � 0, for j

� 1, 2, 3, . . . , N − 1.

Results and discussion

We have developed a fractional model of Maxwell nano-fluids
under the effects of magnetic field, thermal radiation, and heat source/
sink. The physical properties of nano-fluids were utilized to model the
physical phenomenon. The focus of the problem was the cylindrical
coordinate system in which coaxial geometry was assumed to
formulate the problem. Using the Caputo fractional order operator
in the model, the finite difference scheme was applied to obtain
numerical results using mathematical software MAPLE. In this
section, we report our results and discuss the plots and
comparison, of important physical properties such as
Ha, Pr , Nr, Gr, ϕ, α, β, Re, andQ0, demonstrating the square of
the Hartmann number (magnetic field parameter), non-
dimensional Prandlt number, thermal radiation parameter, non-
dimensional Grashof number, volumetric fraction of nanoparticle,
non-integral-order parameters, non-dimensional Reynolds number,
and heat source/sink parameter. The trends of the aforementioned
parameters were observed for momentum and temperature profiles of
the system in the annular region. The results were obtained by
developing MAPLE code and then used to produce graphical plots.

The results were obtained through discretization of the governing
equations (Eqs 32, 33), with initial and boundary conditions expressed

FIGURE 2
Impact of λ1 on u(r, t).
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FIGURE 3
Impact of Ha on u(r, t).

FIGURE 4
Impact of Gr on u(r, t).

FIGURE 5
Impact of ϕ on u(r, t).

FIGURE 6
Impact of E on u(r, t)

FIGURE 8
Impact of λβ2 on T(r, t).

FIGURE 7
Impact of ω on u(r, t).

Frontiers in Materials frontiersin.org07

Asjad et al. 10.3389/fmats.2022.1050767

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2022.1050767


in Eqs 34–37. The graphical results for the velocity profile u(r, t) and
temperature profile T(r, t) were plotted against Ha, Pr , Nr, Gr, ϕ,

α, β, Re, andQ0. For validation, results obtained using our model
were compared with those from the built-in model using MAPLE .

Figure 2 shows the results obtained for velocity profile u(r, t) with
respect to the time relaxation parameter λ1 for a range of values
(λ1 � 0.01, 0.1, 0.5), with varying fractional-order parameters
(α � 0.4, 0.7, 1.0). The data demonstrate that an increase in the
time relaxation parameter led to a direct increase in the velocity
profile. Time relaxation is a material’s characteristic capacity to be
relaxed for a certain period of time.With the passage of time, fluid flow
becomes laminar and internal resistance decreases, which increases
the velocity profile of the fractional Maxwell nano-fluid within an
annular region of a coaxial cylinder.

In Figure 3, the results for velocity profile u(r, t) are plotted
against the magnetic field parameter Ha (the square of the Hartmann
number) for a range of values (Ha � 0, 1, 2), with a range of
fractional-order parametric values (α � 0.4, 0.7, 1.0). The plots

demonstrate that by increasing the value of the magnetic field
parameter, the velocity profile u(r, t) is reduced. The increased
value of Ha gives rise to Lorentz force that increases the
intermolecular force and the internal resistance between fluid
particles. Consequently, a reducing trend in the velocity profile
u(r, t) is apparent; the value is high near the boundary of the
inner cylinder, and the velocity profile u(r, t) gains its maximum
at the mid-point between the inner and outer cylinder.

The plot for velocity u(r, t) against the Grashof number Gr is
presented in Figure 4 for a range of values (Gr � 5, 10, 15). Since the
Grashof number is the ratio of two different forces related to the fluid
properties of buoyancy and viscosity, an increase in Gr is observed
when viscous forces decrease. Therefore, the value of Gr increases
only when there is a reduction in viscous force and, consequently, the
velocity profile u(r, t) within the cylindrical region increases and
gains its maximum value at the middle of the two radii due to
decreasing viscous behavior of the MHD fractional Maxwell nano-
fluid.

FIGURE 9
Impact of Pr on T(r, t).

FIGURE 10
Impact of Nr on T(r, t).

FIGURE 11
Impact of Q0 on T(r, t).

FIGURE 12
Impact of ϕ on T(r, t).
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TABLE 2 Variation in the skin friction coefficient with respect to varying physical parameters and α.

λα1 Ha Gr E ω ϕ Fractional-order parameter α

α = 0.4 α = 0.7 α = 1

0.01 2 5 0.5 2π
5

0.1 0.8405 0.8549 0.8601

0.1 0.7195 0.7787 0.7985

0.5 0.3636 0.5046 0.7305

0.6 0 5 0.5 2π
5

0.1 1.9487 2.3667 3.1888

1 1.3938 1.7032 2.2985

2 0.2851 0.4390 0.7026

0.6 2 5 0.5 2π
5

0.1 0.2851 0.4390 0.7026

10 2.2954 2.6536 3.2204

15 4.3056 4.8682 5.7381

0.6 2 5 0 2π
5

0.1 2.0102 2.2146 2.5177

0.5 0.2851 0.4390 0.7026

1 -1.4400 -1.3365 1.1124

0.6 2 5 0.5 0 0.1 2.0102 2.2146 2.5177

π

4
1.2650 1.4424 1.7212

π

2
-0.4406 -0.2910 -0.0203

0.6 2 5 0.5 2π
5

0 0.9085 1.0617 1.2837

0.1 0.2851 0.4390 0.7026

0.2 -0.4288 -0.2938 -0.0387

TABLE 3 Variation in the local Nusselt number with respect to varying physical parameters and α.

λ β
2 Pr Nr Q0 Fractional-order parameter

β = 0.4 β = 0.7 β = 1

0.01 6.2 3.5 0.5 0.6694 0.6733 0.6777

0.1 0.6041 0.6319 0.6581

0.5 0.4392 0.4706 0.4883

0.5 3.94 3.5 0.5 0.2904 0.3163 0.3351

6.2 0.4392 0.4706 0.4883

15 0.8221 0.8597 0.8666

0.5 6.2 0 0.5 0.5322 0.6899 0.9403

2 0.3525 0.5085 0.7693

5 0.2416 0.3932 0.6572

0.5 6.2 3.5 0.1 0.1192 0.2563 0.5016

0.5 0.2851 0.4390 0.7026

1 0.5495 0.7263 1.0104
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Figure 5 depicts the results for the most important physical
parameter: the volumetric fraction ϕ of nanoparticles in base fluid.
The addition of nanoparticles to base fluid reduces the velocity profile
u(r, t) within the coaxial cylinder. Therefore, the results were plotted
for a range of values (ϕ � 0, 0.1, 0.2), considering different values of
the fractional-order parameter α. Addition of nanoparticles to base
fluid increases intermolecular forces and collision of molecules
increase, thereby decreasing the velocity profile u(r, t).

Figure 6 is a graphical representation of the maximum velocity
term E, indicating that velocity reaches its maximum value of E near
the boundary of the inner cylinder; on the other hand, it is at its lowest
degree at the boundary of the outer cylinder. This graph indicates that,
for the lowest value of r and maximum of value of E, u(r, t) increases
in value.

The term ω is the frequency of inner cylinder velocity, and Figure 7
depicts the graphical results for a range of values, such as
(ω � 0, π /

4, π /

2). For the interval [0, π /

4], due to the cosine function,

increasing the value of ω results in an increased velocity profile u(r, t).
The reverse trend occurred for the closed interval [π /

4, π /

2].
The impact of the time relaxation parameter λβ2 on temperature

profile T(r, t) is plotted in Figure 8 The range of values for λβ2
(λβ2 � 0.01, 0.1, 0.5) was assessed for impact on T(r, t). It was
noted that increasing the value of λβ2 reduced the temperature. This
effect is based on the characteristics of the material and the time in
which the system relaxes under specific conditions. Therefore, as
collision between particles in a fluid decreases, the heat transfer
process of system is reduced. The graph shows that the
temperature profile attained its high value near the wall of the
outer cylinder for different fractional parametric values of β.

The impact of the Prandlt number (Pr) on heat transfer capability
of a coupled non-linear fractional model is illustrated in Figure 9 for a
range of values (Pr � 3.94, 6.2, 15). Pr is the basic fluid property used
to calculate heat transfer capability. It is the ratio of kinematic viscosity
to thermal diffusivity. Pr is inversely related to thermal diffusivity,

FIGURE 13
Comparison between theMAPLE built-in command results and results obtained from themodel for (A) velocity and (B) temperature profiles in respect to
the variation in Nr.

FIGURE 14
Comparison between theMAPLE built-in command results and results obtained from themodel for (A) velocity and (B) temperature profiles in respect to
the variation in Pr.

Frontiers in Materials frontiersin.org10

Asjad et al. 10.3389/fmats.2022.1050767

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2022.1050767


which is directly related to heat capability. Increasing heat capacity
increases the thermal diffusivity of a material. Therefore, increasing Pr
increases the temperature profile T(r, t) of the system.

In Figure 10, the temperature profile T(r, t) of the fractional
Maxwell nano-fluid is quantified for a range of thermal radiation
parameters (Nr � 0, 2, 5). It has been observed that an increase in the
thermal radiation parameter Nr increases the heat transfer capability
of a system for a specific range of fractional-order parameters
(α � 0.4, 0.7, 1.0), thereby reducing the temperature profile of the
system, which is very low near the inner cylinder surface.

Figure 11 describes the conduct of the heat profile T(r, t) for the
flow of fractional Maxwell nano-fluid within a coaxial cylinder under
the effects of the heat source/sink parameter Q0. Subjecting the system
to a heat source directly affected the heat capability, with the
temperature profile T(r, t) increasing with increasing heat source/
sink values (Q0 � 0.1, 0.5, 1.0) and achieving its maximum value at
the outer boundary of the cylinders. Within the cylindrical region, the
temperature profile attained its minimum value near the boundary of
the inner cylinder and gained its maximum value near the boundary of
outer cylinder.

The addition of nanoparticles to base fluids enhances entropy
generation, and there is reduced loss of useful energy. This expected
result was obtained over a range of values of volumetric fraction of
nanoparticles (ϕ � 0, 0.1, 0.2) and is depicted in Figure 12. Heat
transfer was reduced by the addition of nanoparticles to base fluids.

The important physical quantities of skin friction(Cf) and local
Nusselt number (Nu) have been quantified against different physical
parameters mentioned in the previous sections. The results are
arranged in Table 2 and Table 3 respectively.

Table 2 shows an ascending trend in Cf for increasing values of
fractional-order parameter α � 0.4, 0.7, 1.0 and varying
λα1 , Ha, Gr, E, ω, and ϕ.

Similar behavior ofNu was observed, as shown in Table 3, in that
increasing values of fractional-order parameter β � 0.4, 0.7, 1.0
resulted in increased Nu for different values of λ β

2 , Pr , Nr, and Q0.

Validation of scheme

This section of the study focused on validation of the proposed
scheme. The graphical results were obtained by using mathematical
software MAPLE. Figures 13A, B depict the effectiveness and accuracy
of the proposed scheme for the velocity profile u(r, t) and temperature
profile T(r, t) against an important physical parameter, the thermal
radiation parameterNr. MAPLE built-in command results and results
obtained via our model were compared.

Figures 14A, B illustrate the comparison between results obtained
using the built-in command in MAPLE and results obtained using the
proposed scheme. The investigation assessed the velocity profile
u(r, t) and temperature profile T(r, t) with respect to the non-
dimensional Prandlt number Pr .

Conclusion

In this study, we numerically investigated the MHD flow of
fractional Maxwell nano-fluid and heat transfer. The flow was
measured within a cylindrical coordinate system in which coaxial
geometry was considered. Thermal radiation was applied across

the circular region. Water (H2O) was adopted as the base fluid,
whereas Cu was considered in preparation of the nano-fluid. The
problem was modeled fractionally using the Caputo time fractional
differentiation operator. For discretization, the finite difference
method was applied to the governing equations for the velocity and
temperature profiles. The results were organized graphically using
MAPLE mathematical software. For validation, the results
obtained via the proposed scheme versus the built-in analysis
via MAPLE were compared. Some of our key findings are as
follows:

• By increasing the angular frequency of inner cylinder velocity, the
velocity profile of fractional Maxwell nano-fluids is increased.

• The addition of Cu nanoparticles to a base fluid of water
enhances its heat transfer capability.

• Subjecting the system to a strong magnetic field increases heat
transfer and lowers the velocity profile of the system.

• The thermal radiation parameter Nr has a direct impact on
the temperature profile T(r, t) of fractional Maxwell nano-
fluids.

• The non-dimensional parameters Pr , Gr are directly related to
the temperature and velocity profiles, respectively.

• The finite difference scheme is a strong technique that can be
used to solve fractional-order mathematical models.

• The result validation section shows that the scheme applied is
strong and effective for the proposed problem in cylindrical
geometry.

• These findings lead further toward the numerical investigation
of fractional Maxwell bio-nano fluids within blood arteries.
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Nomenclature

velocity u(r, t) (m/s)
temperature T(r, t) (K)
density of nano-fluid ρnf (kg/m3)
dynamic viscosity of nano-fluid μnf(kg/ms)
thermal conductivity of nano-fluid Knf (W/mK)
volumetric thermal expansion coefficient βθ (K−1)

gravitational acceleration g (m/s2)
heat capacity of nanoparticles (Cp)nf
electrical conductivity of nanoparticles σnf ( S/m)
kinematic viscosity of nanoparticles ]nf (m2/s)
volume fraction of nanoparticles ϕ

radius of the inner cylinder R1

radius of the outer cylinder R2
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