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Integrating metal and semiconductor components to form metal-

semiconductor heterostructures is an attractive strategy to develop

nanomaterials for optoelectronic applications, and the rational regulation of

their heterointerfaces could effectively influence their charge transfer

properties and further determine their performance. Considering the natural

large latticemismatch betweenmetal and semiconductor components, defects

and low crystalline heterointerfaces could be easily generated especially for

heterostructures with large contacting areas such as core-shell and over

quantum-sized nanostructures. The defective interfaces of heterostructures

could lead to the undesirable recombination of photo-induced electrons and

holes, which would decrease their performances. Based on these issues, the

perspective focusing on the most recent progress in the aqueous synthesis of

metal-semiconductor heterostructures with emphasis on heterointerface

regulation is proposed, especially in the aspect of non-epitaxial growth

strategies initiated by cation exchange reaction (CER). The enhanced

optoelectronic performance enabled by precise interfacial regulations is also

illustrated. We hope this perspective could provide meaningful insights for

researchers on nano synthesis and optoelectronic applications.
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Introduction

Colloidal nanocrystals (NCs) have been widely investigated both in basic research and

applications in the past few decades (Tan et al., 2017; Clark et al., 2019; Huang et al., 2020;

Acharya et al., 2021; Goldzak et al., 2021; Guntern et al., 2021; Ondry et al., 2021; Liu Z.

et al., 2022; Coropceanu et al., 2022; Li and Wang, 2022; Wang and Dou, 2022; Zhang

et al., 2022; Zhu et al., 2022), in which metal-semiconductor heteronanocrystals (HNCs)
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are attracting more attention due to their functional coupling

between different substances (Wang et al., 2014; Strobbia et al.,

2015; Kamarudheen et al., 2020; Kumar et al., 2020; Wang et al.,

2021; Yin et al., 2022). In particular, the core-shell structure, in

which the metal core is completely encapsulated by the

semiconductor shell, achieves the greatest degree of

heterogeneous contact interface, and thus hopefully achieves

the greatest degree of functional coupling (Naya et al., 2018;

Das et al., 2020). Besides, the core-shell structure has various

morphologies, including nanoparticles, nanopolyhedron,

nanorods, etc. The controllable morphologies are conducive to

controlling its physical and chemical properties. To date, metal-

semiconductor HNCs have exhibited high performance in many

fields, such as photocatalysis (Kumar et al., 2020), sensors

(Strobbia et al., 2015), biomedical treatment (Wang et al.,

2021), etc. However, the properties of metal-semiconductor

HNCs are affected by various factors such as morphology,

size, and composition among which the heterointerface should

also be considered (Liu and Zhang, 2020; Zhang et al., 2021). The

high crystallinity and the well-defined heterointerface of the

metal-semiconductor heterostructure could facilitate carrier

migration, thereby enhancing the optoelectronic properties of

the material. Therefore, the interface regulation of metal-

semiconductor HNCs has been widely concerned by

researchers (Liu and Zhang, 2020; Song et al., 2020; Zhang

et al., 2021). As shown in Figure 1, an issue in interface

regulation is the large lattice mismatch when forming

heterointerfaces due to the inherent difference in lattice

constants between different materials, especially when

constructing metal-semiconductor core-shell structures. In this

perspective, we summarize the effect of lattice mismatch on the

synthesis of metal-semiconductor HNCs and the progress have

been made in the construction of well-interfaced metal-

semiconductor HNCs, especially the non-epitaxial growth

strategies induced by cation exchange reaction (CER). And

then, the influence of interface regulation on performance is

introduced. Finally, some existing problems and challenges in

heterogeneous interface regulation engineering are concluded.

Lattice mismatch at metal-
semiconductor heterointerfaces

Due to the different lattice constants of the different

materials, stress will be generated near the growth interface,

and then a crystal defect-misfit dislocation will be generated

when another material is selectively grown on a certain

crystalline substrate, called lattice mismatch (Gabrys et al.,

2018; Chen et al., 2020). The lattice mismatch between metal-

metal heterostructures and semiconductor-semiconductor

heterostructures is usually less than 20% due to the two

similar crystal structures of materials involved. However, for

metal-semiconductor heterostructures, due to the obviously

differentiated crystal structure, the lattice mismatch is often

more than 20% (Liu and Zhang, 2020). The large lattice

mismatches could lead to defects at the heterointerfaces and

thus affect charge transport and utilization. Therefore, the

construction of well-defined heterointerfaces is crucial for the

overall application of heterostructures (Weng et al., 2014; Jang

et al., 2017; Zhou et al., 2022). In the past decade, researchers

have made great efforts to modulate the heterointerfaces and

some low defect interfaces were fabricated by epitaxial growth

with various morphologies (Bian et al., 2015; Fan et al., 2015; Jing

et al., 2016; Xiong et al., 2017; Ding et al., 2022). However, Royer

et al. proposed the premise of epitaxial growth is that the lattice

mismatch between the two different components is less than 15%

(Tan et al., 2018), and the core-shell heterostructure is more

demanding, which should be less than 5% (Fan et al., 2008). Thus

the epitaxial growth method is limited in the synthesis of core-

shell heterostructures with fully contacted heterointerface and

atomic-designed interfaces under large lattice mismatch, such as

metal-semiconductor core-shell NCs. For example, in 2008,

Chen et al. (2008) proposed the epitaxial growth of CdS

semiconductors on Au cores. However, due to the natural

large lattice mismatch between metals and semiconductors,

the heterointerface of the synthesized Au@CdS core-shell NCs

was not clear and had many defects. To overcome this challenge,

CER facilitated non-epitaxial growth was developed in recent

years, which enabled the synthesis of metal-semiconductor core-

FIGURE 1
Schematic diagram of synthetic methods for interface
regulation of different materials. (A) Adapted from Hunt et al.
(2016). (B,C) Adapted from Naskar et al. (2015). (D) Adapted from
Liu et al. (2018a). (E) Adapted from Li et al. (2019). (F) Adapted
from Wan et al. (2022).
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shell NCs with a single crystalline semiconductor shell and

atomically clean heterointerface. In the next section, the

metal-semiconductor heterostructures with considered

interface enabled by epitaxial growth strategy will be first

discussed. Then, a non-epitaxial growth strategy for the

synthesis of metal-semiconductor core-shell nanostructures

with an engineered interface will be emphasized.

Deposition and epitaxial growth of
heterostructures

In recent years, tremendous progress has been made in the

synthetic control of NCs, including size, morphology,

composition, and so on (Costi et al., 2010; Hunt et al., 2016;

Jansons and Hutchison, 2016; Ma et al., 2016; Nasilowski et al.,

2016; Liu et al., 2021; Adenle et al., 2022; Liu et al., 2022a; Zheng

et al., 2022). As an important component of NCs,

heterostructures have also been extensively studied, and the

main synthesis methods include epitaxial growth, deposition,

etc (Mokari et al., 2004; Sun et al., 2009; Carbone and Cozzoli,

2010; Yang and Ying, 2011; Chen et al., 2012; Ji et al., 2022; Yang

et al., 2022). The epitaxial growth method refers to the reaction of

growing a crystalline material on another crystalline substrate

with a well-defined surface, which follows the similar crystal

orientation or lattice spacings (Tan et al., 2018). For example,

Mokari et al. (2004) reported the controlled growth of Au on

CdSe nanorod tips to obtain the Au-tipped-CdSe nanorods with

well-defined heterointerface, making a breakthrough in metal-

semiconductor heterostructure synthesis. They utilized a simple

one-pot method to achieve the controllable growth of Au tips and

the size of Au was controlled by the concentration of reactants.

Yang and Ying (2011) further investigated the preparation of

metal-semiconductor heterostructures in aqueous solvents. They

first derived aqueous-dispersible Ag2S NCs by a room-

temperature method and used them as the seed to realize the

epitaxial growth of noble metals by reducing metal precursors in

solution. In addition to epitaxial growth, heterostructures can

also be synthesized by deposition. Chen et al. (2012) proposed

non-selective electrochemical deposition of Au on ZnO

nanorods. The deposited Au particles had good crystallinity

and a clear boundary with ZnO nanorods. The formation of

heterointerfaces facilitates the functional coupling of materials,

enhancing their application performance. However, such

heterostructure with a smaller heterointerface mentioned

above could be limited in performance improvement. Metal-

semiconductor core-shell NCs in which the inner metal core is

uniformly coated with one or more semiconductor shell layers,

thus the various components have a large contact area (Carbone

and Cozzoli, 2010). Sun et al. (2009) proposed a hydrothermal

method to fabricate gold@sulfide semiconductor core-shell

structures. However, due to the large lattice mismatch

between metals and semiconductors, the core-shell structures

synthesized by epitaxial growth have relatively poor crystallinity

and severe heterointerface defects. General metal-semiconductor

heterostructures can make use of epitaxial growth, deposition,

and other methods to obtain ideal products (Mokari et al., 2004;

Meyns et al., 2010; Chen et al., 2012; Liu et al., 2013; Schlicke

et al., 2013; Naskar et al., 2015; Zeng et al., 2019), but for core-

shell, yolk-shell, and other materials with large hetero contact

areas, it is still necessary to develop new synthesis methods that

can obtain heterogeneous interface with high crystallinity and

low defect (Figuerola et al., 2010; Meyns et al., 2010; Liu et al.,

2018b).

Non-epitaxial growth induced by
cation exchange

To realize the precise control and synthesis of metal-

semiconductor core-shell heterostructure interfaces,

researchers have made great efforts. As an important method

for the synthesis and post-processing of colloidal NCs in recent

years, CER can achieve topological conversion in most cases, and

the anion framework remains intact to maintain the overall

morphology of the structure (De Trizio and Manna, 2016; Li

et al., 2020). In 2010, Zhang et al. proposed the synthesis of

metal-semiconductor core-shell NCs with single crystalline shell

under large lattice mismatch by CER facilitated non-epitaxial

growth strategy (Zhang et al., 2010a). The non-epitaxial growth

strategy was enabled by the transformation of shell components

by guest ions and ligands-induced CER, achieving the indirect

growth of single crystal semiconductor shell on themetal core. As

shown in Figure 2A, first, an Ag shell with a small lattice

mismatch was epitaxially grown on the metal core, and then

the core-shell NCs suffered a controlled sulfidation to transform

the Ag shell into an amorphous Ag2S shell. Finally, the

amorphous Ag2S shell was converted into a single-crystalline

semiconductor shell by utilizing the CER induced by the

phosphine ligand. According to the theory of hard and soft

acids and bases, tributylphosphine was a soft base that had

different coordination abilities with metal ions. In this typical

reaction, the tributylphosphine would coordinate with soft acid

Ag+ in the amorphous Ag2S shell preferentially, which induced

the CER between the Cd2+ in solution and Ag+ in the shell

forming single-crystalline CdS shell with low defect

heterointerfaces. The as-prepared core-shell nanoparticles at

quantum scale with low defect heterointerfaces and single-

crystal semiconductor shells. In recent years, researchers

further developed the interface-controlled synthesis of a

variety of metal-semiconductor heterostructures through the

non-epitaxial growth strategy initiated by CER (Li et al., 2011;

Gui et al., 2015; Liu et al., 2018a; Lim et al., 2018; Li et al., 2019; Su

et al., 2021; Wan et al., 2022). In 2015, Gui et al. (2015) used

different phosphines to regulate the thermodynamic and kinetic

parameters of the CER, which could precisely regulate of
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FIGURE 2
(A) Schematic of Nonepitaxial growth process. Adapted from Zhang et al. (2010a). (B,C)HAADF-STEM and HRTEM images of prepared spherical
Au@CdS NCs. (D,E) HRTEM images of prepared rod-like Au@CdS NCs. Scale bar 10 nm. (C,E) are magnified images corresponding to the areas
enclosed by the yellow squares in (B,D), respectively. Adapted from Liu et al. (2018a). (F) Scheme of aqueous cation-exchange reactions to realize
multi-step Au@telluride NR transformations. (G,H) HRTEM images of Au@Ag2Te and Au@Ag3AuTe2 NRs. The Fourier transform from the shell
(inset in H) shows the expected crystal structure of Ag3AuTe2. (I) HRTEM image of Au@CdTe NRs. Fourier transform in the inset demonstrates the

(Continued )
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crystallinity and composition of metal/semiconductor core-shell

and doped NCs. They systematically studied the roles and basic

reaction mechanisms of different phosphine ligands, providing a

theoretical basis for the regulated synthesis of multicomponent

heterostructures. And then, In 2018, Liu et al. extended the non-

epitaxial growth strategy initiated by CER to the aqueous phase,

and successfully synthesized anisotropic metal@semiconductor

core-shell nanorods (Figures 2B–E) (Liu et al., 2018a). The

characterizations such as spherical aberration electron

microscopy and transient absorption confirm the formation of

low-defect hetero-interface and the high efficiency of hot electron

injection, which have obvious advantages compared with the

samples prepared by epitaxy. Subsequently, Li et al. (2019)

further extended the aqueous non-epitaxial growth method to

the synthesis of metal@telluride heterostructure and regulated

the heterointerface by utilizing localized ion diffusion. They

achieved the change from binary shell to multi-component

shell, and the high crystallinity of the shell layer is maintained

(Figures 2F–J). In 2022, Wan et al. (2022) successfully

synthesized ternary heterostructures, taking the research of

aqueous non-epitaxial growth one step forward. The n-metal-

p Janus plasmonic HNCs were synthesized (Figures 2K–R),

elucidating the mechanism of hot electrons and hot holes in

the p-n junction. With the deepening of research, the diversity of

materials that can be synthesized by non-epitaxial growth

methods induced by CER is becoming more and more abundant.

Precise interface control facilitates
application

Precise interface regulation of heterostructure offers a

rational strategy for arising materials with improved

performance of photoelectric catalytic, conversion, biological

detection, photothermal therapy, etc. For metal-semiconductor

heterostructures, the heterointerface is an important factor

affecting various aspects of the performance (Liu and Zhang,

2020; Zhang et al., 2021). Interface defects accelerate carrier

recombination and inhibit optoelectronic properties of

heterostructures, thus severely degrading application

performance (Khon et al., 2011). The non-epitaxial growth

strategy initiated by CER can tune the heterointerface to form

a well-defined heterointerface between two substances with high

crystallinity, which provides a theoretical basis for the

construction of materials with excellent performance (Zhang

et al., 2010b; Khon et al., 2011; Yu et al., 2015). Liu et al.

utilized the non-epitaxial growth method and seeded growth

method to fabricate Au@CdS heterostructures with similar

composition and morphology, which has an atomically clean

interface and an interface with many defects, respectively (Liu

et al., 2018a). The photocatalytic hydrogen evolution

performance of Au@CdS was tested under visible light (λ >
420 nm). The as-prepared metal-semiconductor NCs exhibited

two to three orders of magnitude higher photocatalytic H2

evolution activity than those fabricated by conventional

methods. Moreover, the quantum yield of hot electron

injection was estimated at ~ 48% measured by Mid-IR

femtosecond transient absorption spectroscopy. The results

showed that Au@CdS synthesized by non-epitaxial growth

exhibits higher hot electron injection efficiency and better

photocatalytic hydrogen evolution performance. Li et al.

(2019) proposed a continuous CER in the aqueous phase to

realize the transformation of the shell from amorphous to

crystalline and from binary to ternary phase, finally the

synthesized Au@HgxCd1-xTe with high crystallinity. The

synthesized heterostructures have well-controlled shell

composition and thickness, enabling tunable surface plasmon

resonance properties in the NIR region. They fabricated a hybrid

photodetector structure by loading hetero nanorods on

graphene, and the photocurrent response under different

wavelengths of light was studied. The assembled device

showed high photoresponsivity of visible to NIR broadband

detection from 103–107 A/W. In addition, the precise

regulation of heterointerfaces also has an important impact on

biomedicine, solar energy utilization, etc (Wang et al., 2011;

Zhang et al., 2012; Strobbia et al., 2015; Ji et al., 2016; Wang et al.,

2021), which can guide performance improvement.

Discussion

Heterointerface regulation of metal-semiconductor

heterostructures remains a challenging research task. The

traditional epitaxial growth strategy depends on the lattice

matching between different crystals, and can only build a

good heterointerface under the condition of small lattice

mismatch or small heterostructure contact area. While the

non-epitaxial growth strategy initiated by CER is based on the

topological transformation of the shell, which realizes the

synthesis of metal-semiconductor core-shell heterostructures

FIGURE 2 (Continued)
high crystallinity of the shell. (J) HRTEM image of Au@HgxCd1-xTe NRs. Adapted from Li et al. (2019). (K) Schematic illustration of the synthetic
process for Au@ (PbS-CdS) based on partial cation exchange. (L,M)HAADF-STEM imageswith corresponding EDSmapping. (N)HAADF-STEM image
of the interfaces in Au@ (PbS-CdS). (O)Magnified image of the area denoted by the yellow square in panel (N) with (Q) corresponding FFT patterns.
(P) Magnified image of the area denoted by the red square in panel (C) with (R) corresponding FFT patterns. Adapted from Wan et al. (2022).
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with clear heterointerface under large lattice mismatch. In this

Perspective, we first briefly introduced the effect of lattice

mismatch on the regulation of heterointerfaces and then

illustrated the progress in the controllable synthesis of

heterostructures with well-defined heterointerface, especially

the synthesis of metal-semiconductor core-shell

heterostructures by a non-epitaxial growth strategy initiated

by a CER. Metal-semiconductor heterodimers, metal-tip

semiconductor structures, and so on, which without

continuous interfaces between different components were

synthesized by metal deposition, epitaxial growth, etc.

However, methods such as epitaxial growth and metal

deposition have some limitations when constructing metal-

semiconductor core-shell heterostructures because of the

lattice mismatch. The non-epitaxial growth strategy could

effectively avoid the defective structure caused by large lattice

mismatch and expands the range of achievable compositions.

Metal-semiconductor core-shell heterostructures were

synthesized via a cation-exchange-initiated non-epitaxial

growth strategy, forming a continuously extended low-defect

heterointerface between the metal-semiconductor and

facilitating carrier migration. Finally, we summarized the

effects of heterogeneous interface regulation on application

performance, such as photocatalysis, sensors, solar cells,

biomedical treatment, etc. Clear heterointerface and high

crystallinity components are conducive to carrier transport

and utilization, which can greatly improve their optoelectronic

performance.

Although great progress has been made in the interfacial

regulation of heterostructures in recent years, there are still many

issues that require further research. Firstly, in addition to

interface regulation, surface regulation is also an important

factor affecting the optoelectronic and catalytic properties of

colloidal NCs. Low-defect heterointerfaces facilitate carrier

migration, while for surface regulation, amorphous surfaces

have stronger electron transfer and substrate adsorption

effects than highly crystalline surfaces. Hence, the surface-

interface synergistic regulation of metal-semiconductor

heterostructures is a very promising direction to enhance their

application performance. Second, the regulated synthesis of

multilevel interfaces still needs further investigation. To date,

the research on core-shell structures has mainly focused on

binary heterointerfaces, multiple-coated heterostructures are

rarely reported. Functional coupling of materials brought

about by multi-level heterointerfaces is expected to achieve

breakthroughs in application performance. Finally, for a wider

range of applications, the preparation of macroscopic and large-

scale devices has also attracted much attention. Achieving

functional applications will bring a big step forward in the

field of metal-semiconductor heterostructures.
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