AUTHOR=Zhang Tao , Zhang Yuxin , Zhang Hexin TITLE=A three-stage criterion method for extracting local vibration modes of tensioned cables in beam string structures JOURNAL=Frontiers in Materials VOLUME=Volume 9 - 2022 YEAR=2022 URL=https://www.frontiersin.org/journals/materials/articles/10.3389/fmats.2022.1055635 DOI=10.3389/fmats.2022.1055635 ISSN=2296-8016 ABSTRACT=As a light and efficient large-span space structure, beam string structures have been widely used since the 1980s. Among them, cables are the main force-bearing components, their level of tension determines the overall stiffness, performance and structural safety of the beam string structures. Real-time monitoring of the cable force during the construction and service periods is an important and effective measure to ensure the safety of the cable structure. At present, vibration method is widely used in nearly all common engineering practice for cable force identification/monitoring because of its simplicity and efficiency. However, the vibration of the cable segment will be affected by the whole structure, so the cable force-frequency relationship based on the simple single cable model cannot meet the accuracy requirement of cable force identification of the beam string structure. Therefore, in this paper, through finite element simulation and theoretical analysis, a three-stage criterion is proposed to develop the method for obtaining the local modal information of the tensioned cable segment with the influence of the overall structure considered. The new method's performance was compared with the result extracted by the vibration method according to the single-cable model assumption, and the design values of the cable forces. The magnitude of the error in the identification of the tension force of the beam string structure according to the single-cable model was studied to provide a method of corrections, so that the single-cable model assumption can be used to improve the measuring efficiency and ensure the solution accuracy. The numerical results show the effectiveness of the proposed method. The work of this paper provides a new approach for improving the identification accuracy of the vibration method of the complex cable system such as the beam string structure, and is a useful discussion on the vibration method of the complex cable system.