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Aluminum electron energy loss
spectra. A comparison between
Monte Carlo and experimental
data
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Oneof themost interesting applications of theMonteCarlomethod consists in

the simulation of the energy loss spectrum of backscattered electrons when

a solid target is bombarded with an electron beam of given kinetic energy.

Knowing the elastic and inelastic scattering cross-sections of the electrons

in their interaction with the atoms of the target, it is possible to calculate

the probabilities of angular diffusion and the loss of kinetic energy for each

collision between the electrons of the incident beam and the atoms of the

target. In this way, it is possible to model the history of each electron following

its trajectory and calculating its energy losses, its final energy, and the exit

point from the target surface whether and where it exists. By averaging over

a large number of trajectories, it is possible to obtain a spectrum representing

the energy distribution of the backscattered electrons from any given solid

target. This paper compares experimental and Monte Carlo data concerning

reflection electron energy loss spectra. In particular, the paper is aimed at

understanding the interplay between surface and bulk features for incident

electrons in Al.

KEYWORDS

electrons, aluminium, Monte-Carlo method, dielectric function, energy loss functions (ELF),

inelastic mean free path (IMFP), elastic scattering cross section, electron spectra

1 Introduction

TheMonte Carlo strategy is the best approach in the investigation of radiation effects
on matter. It requires an accurate calculation of its main ingredients, i.e., the inelastic
and the elastic scattering probabilities (Shimizu and Ding, 1992; Joy, 1995; Dapor, 2003;
Dapor, 2017; Dapor, 2020).

Inelastic collisions are adequately taken into account by the evaluation of
the differential inverse inelastic mean free path, which enables the accurate
description of the statistical fluctuations of the energy losses (the so-called energy
straggling). In dielectric theory, this quantity can be computed once the energy
loss function is known (Ritchie, 1957; Mermin, 1970; Ritchie and Howie, 1977;
Penn, 1987; Tanuma et al., 1988; Ashley, 1990; Abril et al., 1998; Tanuma et al., 2004;
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Denton et al., 2008; Bourke and Chantler, 2012; Dapor, 2015;
de Vera and Garcia-Molina, 2019).

Elastic collisions, on the other hand, can be described
by the numerical solution of the quantum-relativistic
equations governing the electron interactions with a screened
central potential (relativistic partial wave expansion method)
(Mott, 1929; Riley et al., 1975; Kessler, 1985; Jablonski, 1991;
Salvat andMayol, 1993; Burke and Joachain, 1995; Dapor, 1995a;
Dapor, 1995b; Dapor, 1996;Mayol and Salvat, 1997; Salvat, 2003;
Jablonski et al., 2004; Salvat et al., 2005; Dapor, 2022a;
Dapor, 2022b).

After explaining how to calculate these two important
quantities, we describe their inclusion in aMonte Carlo program
that takes into account both bulk and surface features.

The aim of this work is to perform Monte Carlo simulations
of REEL spectra in the primary electron energy range from
1,000 eV to 10,000 eV in order to investigate the interaction
between surface and bulk characteristics when electrons impinge
on solid targets. Al is used as a case study.

Monte Carlo simulations are compared to experimental
REEL spectra excited by 1,000 eV and 2,000 eV electrons in Al.

The REEL spectra concern energy losses of incident beam
electrons as a result of inelastic interactions with the target’s
atoms.

In the field of electron microscopy, secondary electrons are
also very important. The secondary electrons, not dealt with in
this work, are the result of the cascade of electrons produced by
the ionizations of the target atoms.

The Monte Carlo method allows simulation of the entire
secondary electron cascade and calculation of the secondary
and total emission yield, very important quantities for aiding
the analysis of secondary electron images. The present Monte
Carlo code was indeed also used for simulating both the energy
distribution of the secondary electrons and the secondary and
total electron yields, by following the whole cascade of secondary
electrons (see, for example, Refs. (Dapor, 2017; Dapor, 2020)).
The study of secondary electrons also involves electron-phonon
interaction, i.e., temperature effects (Dapor, 2020).

However, secondary electrons are not relevant for the present
study, as here we are interested in electrons emerging from
the target with energies higher than 900 eV, while secondary
electrons emerge with typical energies smaller than 50 eV.

2 Theory

2.1 Inelastic processes

2.1.1 The original Drude–Lorentz theory
Let us consider an elastically bound electron, with elastic

constant mω2
0, natural frequency ω0, and subject to a frictional

damping effect described by the damping constant γ0 (which
is the reciprocal of the relaxation time τ0). The electron

displacement r satisfies the equation

d2r
dt2
+ γ0

dr
dt
+ω2

0r =
e
m
E, (1)

where

E = E0 exp (iωt) , (2)

is the electric field, e is the electron charge, m is the electron
mass, and ω is the oscillation frequency. We look for stationary
solutions having the form

r = r0 exp (iωt) . (3)

If n is the number of outer-shell electrons per unit volume in the
solid, then the dielectric polarization density P of the material is
given by

P = enr. (4)

On the other hand,

P = χE, (5)

where χ is the electric susceptibility

χ = ε− 1
4π
. (6)

Here ɛ = ɛ(ω) is the dielectric function, so that the electric
displacementD is given by

D = E+ 4πP = (1+ 4πχ)E = εE. (7)

Since

E = P
χ
= 4πen

ε− 1
r = 4πen

ε− 1
r0 exp (iωt) , (8)

we obtain

−ω2 − iωγ0 +ω
2
0 =

4πe2n/m
ε− 1
. (9)

As a consequence

ε (ω) = 1− 4πe
2n

m
1

ω2 −ω2
0 − iωγ0

. (10)

In the case of a superimposition of bound oscillators, the
dielectric function can be written as:

ε (ω) = 1−
4πe2NZV

m
∑
j

fj
ω2 −ω2

j − iωγj
. (11)

where N is the number of atoms per unit volume in the target,
ZV the number of outer-shell electrons (n = NZV), γj are positive
frictional damping coefficients, and fj = Zj/ZV are the fractions
of the electrons involved in the excitation and bound with
energies ωj, so that

∑
j
fj = 1. (12)
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In the general case of the presence of free and bound electrons,
if f0 is the fraction of free electrons so that ω0 = 0, we have

ε (ω) = 1−
4πe2NZV

m
f0

ω2 − iωγ0

−
4πe2NZV

m
∑
j

fj
ω2 −ω2

j − iωγj
. (13)

Up to now, we were interested only in the optical response due
to the outer-shell electrons, so the total number of electrons
involved in the excitation was the number of outer-shell
electrons. The last term in the last equation then represents,
according to Yubero and Tougaard (1992), the contribution of
the interband transitions with energy ℏωj, oscillator strength fj,
and lifetime γ−1j .

Neglecting interband transitions due to the bond electrons,
so that f0 = 1 and fj = 0∀j ≠ 0, the above equation becomes

ε (ω) = 1−
ω2
p

ω2 − iωγ0
(14)

where

ωp = √
4πe2NZV

m
= √4πe

2n
m

(15)

is the plasma frequency of the outer-shell electrons.The real part
ɛ1(ω) and the imaginary part ɛ2(ω) of ɛ(ω) are given, in this case,
respectively by

ε1 (ω) = 1−
ω2
p

ω2 + γ20
, (16)

ε2 (ω) = −
γ0
ω

ω2
p

ω2 + γ20
. (17)

Please note that ɛ1(ω) is equal to 0 when the frequency satisfies
the equation:

ω2 = ω2
p − γ20. (18)

So, if we can neglect the frictional damping, i.e., if ω2
p ≫ γ20, the

real part of the dielectric function is zero when the frequency is
approximately equal to the plasma frequency.

2.1.2 Outer-shell and core electrons in Al
In the original Drude–Lorentz theory, we were interested

in the optical response due to the outer-shell electrons only.
On the other hand, when the frequency becomes high enough,
core electrons become involved in the excitation as well, so
the total number of electrons involved in the excitation is the
atomic number Z. For Al, neglecting interband transitions and
indicating with ZL the number of electrons in the L− shell and
with ZK the number of electrons in the K− shell, we can write

ε (ω) = 1−Ω2
pZ[

ZV/Z
ω2 − iωγV

+
ZL/Z

ω2 −ω2
L − iωγL

+
ZK/Z

ω2 −ω2
K − iωγK

] (19)

where

ℏΩp = √
4πNℏ2e2

m
= √4πNe4a0 = 9.13eV. (20)

Please note that, for Al, N = 6.04× 1022 atoms per cm3, Z = 13,
ZV = 3, ZL = 8, ZK = 2, ℏωL = 130.62 eV, ℏωK = 1,569.56 eV,
ℏγV = 1.5 eV, ℏγL = 99.6 eV, and ℏγK = 1,116 eV. Please also note
that the plasma energy due to the outer-shell electrons only, ℏωp,
is given by

ℏωp = ℏΩp√ZV = 15.8eV, (21)

so that a bulk plasmon is expected to be found at 15.8 eV from
the elastic peak in the reflection electron energy loss spectrum.

2.1.3 Energy loss function and sum rules
The energy loss function (ELF) is defined as the reciprocal

of the imaginary part of the dielectric function (Ritchie, 1957).
Since

ε (ω) = ε1 (ω) + iε2 (ω) , (22)

in the optical limit (no momentum transfer) the ELF is thus
defined as 1

1 Please note that if, in the Drude-Lorenz theory, the field is described by
the equation

E = E0 exp (−iωt) (23)

instead of Eq. 2, the following equation

r = r0 exp (−iωt) , (24)

has to be used instead of Eq. 3. Then, for the case of free oscillators, for
example, the dielectric function assumes the following form

ε (ω) = 1−
ω2
p

ω2 + iωγ0
, (25)

Using Eq. 14, ɛ2(ω) is negative [see Eq. 17], while, using Eq. 25, ɛ2(ω) is
given by

ε2 (ω) =
γ0
ω

ω2
p

ω2 + γ20
, (26)

and is positive. To make the ELF positive using Eq. 25, the energy loss
function is defined as the imaginary part of the opposite of the dielectric
function:

f (ω) = Im[− 1
ε (ω)
] =

ϵ2 (ω)
ϵ21 (ω) + ϵ

2
2 (ω)
. (27)

So it is clear that the sign is just a matter of the choice of the function
describing the time dependence of the electron displacement. In this
paper, we will use Eq. 3 and the definition given by Eq. 28, so the ELF is
defined as the imaginary part of the reciprocal of the dielectric function,
since ɛ2(ω) is negative.
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FIGURE 1
Long wavelength limit (k→0) of the ELF of Al (solid line)
compared to experimental optical data from Ref.
(Henke et al., 1993) (symbols). The dielectric function was
calculated using Eqs 19, 20, 28 with N =6.04×1022 atoms per
cm3, Z =13, ZV =3, ZL =8, ZK =2, h̄ωL =130.62 eV, h̄ωK =1,569.56
eV, h̄γV = 1.5 eV, h̄γL = 99.6 eV, and h̄γK = 1,116 eV.

FIGURE 2
Plot of Peff of Al as a function of Wmax = h̄ωmax. See Eq. 29. When
Wmax→∞, Peff→1

f (ω) = Im[ 1
ε (ω)
] = −

ϵ2 (ω)
ϵ21 (ω) + ϵ

2
2 (ω)

(28)

From Eq. 28 it is clear that a maximum of the ELF is obtained
when the real part ϵ1(ω) of the dielectric function is equal to 0.
This resonance (assuming that the frictional damping effect can
be neglected) occurs when the frequency is equal to the plasma
frequency. In Figure 1 we have represented the calculated ELF
of Al compared to the Henke et al. experimental optical data
(Henke et al., 1993).

FIGURE 3
Plot of the effective atomic number Zeff of Al as a function of
Wmax = h̄ωmax. See Eq. 31. When Wmax→∞, Zeff→ Z.
Contributions of valence, L-shell, and K-shell electrons are
pointed out.

The ELFmust satisfy the ps-sum rule (perfect screening sum
rule). If

− 2
π
∫
ωmax

0

1
ω
Im[ 1

ε (ω)
] = Peff (ωmax) , (29)

then

lim
ωmax→∞

Peff (ωmax) = 1. (30)

Peff was represented as a function of ℏωmax in Figure 2.
The f-sum rule must also be satisfied. If

− 2
πΩ2

p
∫
ωmax

0
ωIm[ 1

ε (ω)
] = Zeff (ωmax) , (31)

then

lim
ωmax→∞

Zeff (ωmax) = Z. (32)

Zeff was represented as a function of ℏωmax in Figure 3,
where contributions of valence, L-shell, and K-shell electrons
were highlighted.

2.1.4 Beyond the optical limit
Up to now, we have dealt with the approximation of

the dielectric function without k dependence (optical limit).
According to Yubero and Tougaard (1992), the k dependence
of the dielectric function can be described by the use of the
following approximation:

ε (k,ω) = 1−Ω2
p[

ZV

ω2 −ω2
k − iγVω

+
ZL

ω2 −ω2
k −ω

2
L − iγLω

+
ZK

ω2 −ω2
k −ω

2
K − iγKω

], (33)
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where

ℏωk =
ℏ2k2

2m
, (34)

so that the energy loss function itself is a function of both the
energy loss ℏω and the momentum transfer ℏk according to the
equation:

f (k,ω) = Im[ 1
ε (k,ω)
] . (35)

The dispersion law represented by Eq. 34 satisfies the so-
called Bethe ridge which establishes that, when k→ ∞, ℏωk
should approach ℏ

2k2

2m
. Actually, Eq. 34 is valid for high

momentum transfer. According to (Ritchie, 1957) and (Ritchie
and Howie, 1977), the following dispersion law should be used

ℏ2ω2
k =

12EF
5
ℏ2k2

2m
+(ℏ

2k2

2m
)
2
, (36)

where EF is the Fermi energy (EF = 11.7 eV for Al (Ashcroft and
Mermin, 1976)). This is the most general equation satisfying the
constraint represented by the Bethe ridge that can be obtained
within the so-called Random Phase Approximation (RPS) for a
3D electron gas. For intermediate values of k, the term 12EF

5
ℏ2k2

2m
in

the dispersion law,Eq. 36, cannot be ignored. Please note that the
Mermin dielectric function (Mermin, 1970) includes naturally
the k dependence of ɛ without the necessity to introduce a
dispersion law (Abril et al., 1998). As discussed in (Dapor, 2015),
due to the quite large uncertainty in the experimental data,
it is not always clear which theory provides results in better
agreement with the experiment. Actually, both Mermin and
Drude–Lorentz approaches seem to be compatible with the
available experimental data about the inelastic mean free path.
Even if theMermin theory is more complete, the Drude–Lorentz
theory is often used, for practical purposes, due to its great
simplicity.

2.1.5 Differential inverse inelastic mean free
path

Equation 35 allows calculating, according to Ritchie’s theory
(Ritchie, 1957), the double differential inverse inelasticmean free
path

d2λ−1inel
dℏωdℏk

= 1
πa0E

1
ℏk

f (k,ω) , (37)

where E is the kinetic energy of the incident electron and a0 is the
Bohr radius. Fromconservation laws it follows that theminimum
value ℏkmin and the maximum value ℏkmax of the momentum
transfer ℏk are given, respectively, by

ℏkmin = √2mE−√2m (E− ℏω), (38)

ℏkmax = √2mE+√2m (E− ℏω), (39)

so that we can easily calculate the differential inverse inelastic
mean free path as

dλ−1inel
dℏω
= 1
πa0E
∫
kmax

kmin

dk
k

f (k,ω) . (40)

2.1.6 Inelastic mean free path
Once the differential inverse inelastic mean free path is

known, the inverse inelastic mean free path for a metal can be
calculated by integrating from zero to the maximum energy loss
ℏωmax:

λ−1inel = ∫
ℏωmax

0

dλ−1inel
dℏω

dℏω. (41)

Please note that, on the one hand, according to
(Denton et al., 2008) the maximum energy loss should be given
by

ℏωmax =min(E
2
,E−EF), (42)

where the integration limit of E/2 is attributed to the
indistinguishability of the incident and the secondary electrons.

On the other hand, according to Bourke andChantler (2012),
when the dominant cause of inelastic losses is represented by
plasmon excitations, this integration limit should be instead

ℏωmax = E−EF, (43)

as a plasmon is a distinct entity, so it is distinguishable from an
electron. Please note that de Vera and Garcia-Molina discussed
in detail the issue of the integration limits in energy (de Vera and
Garcia-Molina, 2019).

Since we are interested in describing plasmon losses,
Eq. 43 will be used. The inelastic mean free path calculated
using Eqs 41, 43 is compared, in Figure 4, to the calculations
by Ashley (1990) and by Tanuma et al. (1988), Tanuma et al. 
(2004).

2.1.7 Inelastic cumulative probability
The cumulative probability of inelastic scattering Pinel(W) is

a central quantity in Monte Carlo simulations. It is given by

Pinel (W) = λinel∫
W

0

dλ−1inel
dℏω

dℏω. (44)

Frontiers in Materials 05 frontiersin.org

https://doi.org/10.3389/fmats.2022.1068196
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles


Dapor 10.3389/fmats.2022.1068196

2.1.8 Surface
Several theories have been developed that allow estimating

the surface excitation probability.The so-called surface excitation
parameter (SEP) represents the average number of surface
excitations an electron experiences crossing the surface once.
Knowledge of the SEP allows evaluating the probability
Ps of a given number of surface excitations in a surface
crossing (Werner et al., 2001). Based on the theoretical work of
Tung et al. (1994), Werner et al. (2001) proposed the following
formula for the calculation of Ps for an electron crossing the
surface with an angle θ with respect to the surface normal:

Ps (θ,E) =
1

a√Ecos θ+ 1
, (45)

where a is a parameter depending on the material (a ≈ 0.12 for
Al). A Monte Carlo simulation using Eq. 45 to deal with surface
plasmons was described in Ref. (Dapor et al., 2011).

Dapor et al. (2012) calculated the energy loss spectra of Al
and Si under the assumption that experimental spectra arise from
electrons undergoing a single large-angle elastic scattering event
(so-called V-type trajectories (Jablonski and Powell, 2004)) and
describing inelastic scattering by the Chen and Kwei differential
inverse inelastic mean free path, dependent on the distance from
the surface (in the solid and in the vacuum) and on the angle of
surface crossing (Chen and Kwei, 1996). Reasonable agreement
was found between these calculations and available experimental
data for bulk and surface plasmon peaks in the energy range from
500 eV to 2,000 eV (Dapor et al., 2012).

The surface is an interface between the bulk of the material
and the vacuum. Since the dielectric function depends on
the material, we expect the mean energy of the plasmons
characterizing the surface (surface plasmons) to be different from
the mean energy of the bulk plasmons.

Due to the continuity of the electric field at the interface
between any two materials a and b, we have (Egerton, 2011)

εa (ω) + εb (ω) = 0, (46)

where ɛa(ω) and ɛb(ω) are the dielectric functions on either side
of the interface, so that, neglecting frictional damping effects, the
surface plasmons at the boundary between a metal and vacuum
are expected to be observed when the frequency ω = ωs satisfies
the equation

(1−
ω2
p

ω2
s
)+ 1 = 0. (47)

Therefore

ω2
s =

ω2
p

2
. (48)

As a consequence, indicating with Ep = ℏωp = 15.8 eV the
mean bulk plasmon energy of Al, the mean energy of the surface
plasmon peaks in the Al REEL spectra should be found at energy
Es = Ep/√2 ≈ 11.2 eV.

Please note the existence of the begrenzungs effect, i.e., a
reduction of the intensity of the bulk plasmon due to the
boundary, which was discussed by Ritchie (1957). In the limit
of large target thickness, Ritchie demonstrated that the total
transition probability is given by two terms. The first one is just
the target thickness times the transition probability per unit path
length in an infinite target. The second one is proportional to

Im[−
(1− ε)2

ε (1+ ε)
] = Im( 4

ε+ 1
− 1− 1

ε
). (49)

The begrenzungs effect is represented by Im [− 1–1/ɛ]
(Egerton, 2011).

Chiarello et al. (1984), observed that the REEL spectrum can
be described by the combination of two terms, arising from
surface and bulk inelastic scattering. According to the approach
of these authors, the bulk and surface excitations can be described
by the combined effect of the bulk energy loss function given by
Eq. 35 and the surface energy loss function which, according to
(Chiarello et al., 1984), (Ohno, 1989), and (Yubero et al., 1990)
can be described as

fs (k,ω) = Im[
1

ε (k,ω) + 1
] (50)

Attempts to include in Monte Carlo simulations the
combination of surface and bulk energy loss functions,
proposed by Chiarello et al. (1984), can be found in Refs.
(Calliari et al., 2007; Dapor et al., 2008). With this paper, we
are also presenting results obtained using the Chiarello et al.
approach. We will show that, compared to the previously quoted
investigations (Refs. (Calliari et al., 2007; Dapor et al., 2008)),
a better agreement is found for the absolute values of the
plasmon peaks. We attribute this observed better agreement
to the inclusion of the contribution of the inner shell electrons
in the calculation of the dielectric function and thus to a better
description of the inelastic mean free path and of the inelastic
cumulative probability for energies higher than 1,000 eV. 2

2 Please note that a further improvement of the description of the REEL
spectra could be obtained taking into account that also the dispersion law
is affected by surface effects. Due to a quasi-2D slab on the top of bulk,
a more general dispersion law was proposed by Kyriakou et al. (2011), i.e.,

ℏ2ω2
k = ℏωp
√6EF

5
ℏ2k2

2m
+
12EF
5
ℏ2k2

2m
+( ℏ

2k2

2m
)
2

. (51)

For the calculations presented in this paper, we did not use this
dispersion law. Its inclusion in the calculations will be the subject of
future investigations.
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FIGURE 4
Inelastic mean free path of Al (solid line) as a function of the
incident electron beam kinetic energy compared to
(Ashley, 1990) and (Tanuma et al., 1988; Tanuma et al., 2004)
(symbols).

2.2 Elastic processes

2.2.1 Dirac equation in a central field
An electron in a central field is described by the two following

equations (Bunyan and Schonfelder, 1965)

[W−V (r) + 1]F±l +
dG±l
dr
+ 1+ k

±

r
G±l = 0, (52)

−[W−V (r) − 1]G±l +
dF±l
dr
+ 1− k

±

r
F±l = 0, (53)

where W and V(r) are the particle energy and the atomic
potential energy, respectively, both expressed in units of mc2,
r is the distance from the atom expressed in ℏ/mc units, m is
the electron mass, c is the speed of light, ℏ = h/2π, and h is
the Planck’s constant. Here l = 0,1,2,… ,∞ and “±” signs refer
to the spin: “+” applies to spin up, i.e., j = l+ 1/2 while “−”
corresponds to spin down, i.e., j = l− 1/2. k+ = −(l+ 1) while
k− = l. Equations 52, 53 represent the Dirac description of an
electron in a central potential.

2.2.2 Lin, Sherman, and Percus transformation
With the transformations

G±l = A
±
l

cos ϕ±l (r)
r

(54)

F±l = A
±
l

sin ϕ±l (r)
r

(55)

the first-order differential equation

dϕ±l (r)
dr
= k
±

r
sin[2ϕ±l (r)] − cos[2ϕ

±
l (r)] +W−V (r) , (56)

follows from Eqs 52, 53 (Lin et al., 1963).

2.2.3 Electrostatic atomic potential energy
The electrostatic atomic potential energy V(r) can be

calculated as the product of the Coulomb potential energy
multiplied by a screening function ξ(r) expressed as a
superposition of Yukawa functions, given by (Cox and
Bonham, 1967; Salvat et al., 1987)

ξ (r) =
p

∑
i=1

γi exp(−λir) . (57)

Exchange effects should be included in the calculation of
the atomic potential energy. They can be described by using
the Furness and McCarthy local approximation (Furness and
McCarthy, 1973).

2.2.4 Phase shifts
Equation 56 has to be solved in order to evaluate

ϕ̃±l = limr→∞
ϕ±l . (58)

Once ϕ̃±l is known, the phase shifts η
±
l of the scattered waves in an

elastic scattering experimentmay be calculated by (Kessler, 1985;
Jablonski, 1991; Salvat and Mayol, 1993; Dapor, 1995a;
Dapor, 1995b; Burke and Joachain, 1995; Dapor, 1996; Mayol
and Salvat, 1997; Salvat, 2003; Salvat et al., 2005; Dapor, 2022a;
Dapor, 2022b)

tanη±l =
Kjl+1 (Kr) − jl (Kr)[(W+ 1) tan ϕ̃

±
l + (1+ l+ k

±)/r]

Knl+1 (Kr) − nl (Kr)[(W+ 1) tan ϕ̃
±
l + (1+ l+ k

±)/r]
(59)

where

K2 =W2 − 1, (60)

jl are the regular spherical Bessel functions, and nl are
the irregular spherical Bessel functions (spherical Neumann
functions).

2.2.5 Differential elastic scattering
cross-section

If we indicate with Pl(x) the Legendre polynomials and

P1l (x) = √1− x
2 dPl (x)

dx
, (61)

once the phase shifts are known, the direct scattering amplitude
f(ϑ) and the spin-flip scattering amplitude g(ϑ) are given by

f (ϑ) = 1
2iK

∞

∑
l=0
{(l+ 1)[exp(2iη+l ) − 1]

+ l[exp(2iη−l ) − 1]}Pl (cosϑ) , (62)

g (ϑ) = 1
2iK

∞

∑
l=1
[−exp(2iη+l ) + exp (2i η

−
l ]P

1
l (cosϑ) , (63)
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FIGURE 5
Differential elastic scattering cross-section of Al (solid line) as a
function of the scattering angle (electron beam kinetic energy:
1 keV, 4 keV, 16 keV) compared to the Riley et al. calculations
(Riley et al., 1975) (symbols).

where ϑ represents the scattering angle.
The differential elastic scattering cross-section dσ/dΩ, for an

unpolarized electron beam, is simply given by

dσel
dΩ
(ϑ) = (| f (ϑ) |2 + |g (ϑ) |2) , (64)

where dΩ is the differential of the solid angle,

dΩ = sin ϑdϑdφ, (65)

ϑ is the polar scattering angle ad φ the azimuthal angle.
The differential elastic scattering cross-sections for 1, 4, and

16 keV electron beams impinging on Al were calculated, as
a function of the scattering angle, using the POLARe code,
described in Ref. (Dapor, 2022b), and are presented in Figure 5
in comparison to the calculations by Riley et al. (1975).

2.2.6 Total elastic scattering cross-section and
elastic mean free path

The total elastic scattering cross-section is given by

σel = ∫
dσel
dΩ

dΩ

= ∫
2π

0
dφ∫

π

0
dϑ sin ϑ

dσel
dΩ

= 2π∫
π

0

dσel
dΩ

sin ϑdϑ. (66)

Indicating with N the number of atoms per unit volume, the
elastic mean free path is obtained by

λel =
1

Nσel
. (67)

2.2.7 Elastic cumulative probability
The cumulative probability Pel for elastic scattering collisions

is another very important ingredient of the transport Monte
Carlo method. It is given by

Pel (θ) =
∫
θ

0

dσel
dΩ

sinϑdϑ

∫
π

0

dσel
dΩ

sinϑdϑ
= 2π
σel
∫
θ

0

dσel
dΩ

sinϑdϑ. (68)

2.3 Monte Carlo simulation

Monte Carlo modeling is very well known and we refer, in
particular, to the code described in Ref. (Dapor, 2020). Details
about the way in which we deal with the surface effects are
described below. As usual, the step length Δs was calculated as

Δs = −λ lnμ, (69)

where μ is a random number uniformly distributed in the range
[0,1] and λ = λ(E) is the electron mean free path, given by

λ = [λ−1el + λ
−1
inel]
−1. (70)

In this equation λ−1inel is calculated using the bulk ELF, given
by Eq. 35, if the electron is in the bulk. If, on the other hand, the
electron is in the surface layer, λ−1inel is calculated using the surface
ELF, given by Eq. 50.

Ding et al. (2002) clarified that the surface scattering zone
ts extends into the solid and in the vacuum. Werner (2006)
observed that the decay length of the surface excitations is of the
order of ts = v/ωs, where v is the electron velocity. According to
(Vicanek, 1999), we assume here that the thickness where surface
plasmons are excited is given by v/2ωs into the solid and v/2ωs
in the vacuum. Please note that, in the vacuum, λ−1el = 0, so that
if − v/2ωs ≤ z ≤ 0 (z axis oriented from the surface toward the
bulk), we have

λ = λinel, (71)

where λinel is calculated using the surface ELF, given by
Eq. 50. A similar approach is adopted for the calculation of
the cumulative probabilities. If − v/2ωs ≤ z ≤ v/2ωs, then the
inelastic cumulative probability is calculated using the surface
ELF, given by Eq. 50. If z ≥ v/2ωs, then the inelastic cumulative
probability is calculated using the bulk ELF, given by Eq. 35.
The cumulative probability of elastic scattering is calculated only
when electrons are in the bulk.

The probability pinel that the next collision be inelastic
(surface or bulk, depending on z) is given by

pinel = λλ
−1
inel. (72)
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Please note that, as a consequence, if − v/2ωs ≤ z ≤ 0 then
pinel = 1.

Before each collision, if z ≥ 0, a random number uniformly
distributed in the range [0,1] is generated and compared
with the probability of inelastic scattering pinel (surface
or bulk, depending on z). If the random number is less
than or equal to the probability of inelastic scattering,
then the collision will be inelastic; otherwise, it will be
elastic. On the other hand, if − v/2ωs ≤ z ≤ 0, only surface
plasmon excitations occur (no elastic collisions in this
case).

In the case of inelastic collision, once the inelastic cumulative
probability has been selected (surface or bulk), a random
number uniformly distributed in the range [0,1] is generated and
compared to the inelastic cumulative probability (as a function of
the energy loss) in order to establish the energy loss. In the case of
elastic collision, a random number uniformly distributed in the
range [0,1] is generated and compared to the elastic cumulative
probability (as a function of the scattering angle) in order to
establish the scattering angle.

The azimuthal angle is calculated as a random number
uniformly distributed in the range [0,2π].

The particles are followed in their trajectories until they leave
the solid target or until their energy becomes lower than E0-
100 eV, where E0 is the kinetic energy of the incident electron
beam.

The present Monte Carlo program, written for simulating
electron spectra and yields, is a user-friendly code freely
obtainable on request to the author.

3 Results and discussion

Simulated spectra obtained according to our Monte Carlo
model are presented in Figure 6 for electron initial kinetic
energies 1,000, 2,000, 3,000, 5,000, and 10,000 eV. The number
of simulated Monte Carlo trajectories for each spectrum was
108. Monte Carlo simulation used the following conditions: 1)
the angle between the sample surface normal and the incident
electron beam’s direction was 0° (normal incidence), 2) the
entrance aperture of the analyzer was from 0° to 90°, 3) the
number of atoms per unit volume was N = 6.04× 1022 atoms
per cm3 (so the energy of the bulk plasmon peak derived from
Eqs 20, 21 was 15.8 eV). All spectra were obtained by assuming
a thickness ts = v/ωs for the region where surface plasmons
are excited (−v/2ωs ≤ z ≤ v/2ωs). Over an energy loss region
ranging from 0 to 100 eV, plasmon peaks up to the fifth order
of scattering are clearly seen, while the sixth order of scattering
plasmon peak is hardly observed. The mean energies of the
higher-order peaks are multiple of the mean energy of the
first-order plasmon peak for both bulk and surface inelastic
scattering.

FIGURE 6
Simulated REEL spectra for 1,000–10,000 eV primary electrons.
The number of simulated Monte Carlo trajectories was 108.
Monte Carlo simulation used the following conditions: (i) the
angle between the sample surface normal and the incident
electron beam’s direction was 0° (normal incidence), (ii) the
entrance aperture of the analyzer was from 0° to 90°, (iii) the
number of atoms per unit volume was N =6.04×1022 atoms per
cm3 (so the energy of the bulk plasmon peak was 15.8 eV).

FIGURE 7
Experimental (blue line) and simulated (red line) REEL spectra for
1,000 eV primary electrons. The number of simulated Monte
Carlo trajectories was 109. Monte Carlo simulation used the
experimental conditions: (i) the angle between the sample
surface normal and the incident electron beam’s direction was
30°, (ii) the entrance aperture of the analyzer was from 36° to
48°, (iii) the number of atoms per unit volume was N =5.47×1022

atoms per cm3. Experimental data: Courtesy of Lucia Calliari and
Massimiliano Filippi. The spectra were normalized to a common
area of the zero-loss peak.
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FIGURE 8
Experimental (blue line) and simulated (red line) REEL spectra for
2,000 eV primary electrons. The number of simulated Monte
Carlo trajectories was 109. Monte Carlo simulation used the
experimental conditions: (i) the angle between the sample
surface normal and the incident electron beam’s direction was
30°, (ii) the entrance aperture of the analyzer was from 36° to
48°, (iii) the number of atoms per unit volume was N =5.47×1022

atoms per cm3. Experimental data: Courtesy of Lucia Calliari and
Massimiliano Filippi. The spectra were normalized to a common
area of the zero-loss peak.

FIGURE 9
Experimental (blue line) and simulated (red line) REEL spectra for
1,000 eV primary electrons. The number of simulated Monte
Carlo trajectories was 109. Monte Carlo simulation used the
experimental conditions: (i) the angle between the sample
surface normal and the incident electron beam’s direction was
30°, (ii) the entrance aperture of the analyzer was from 36° to
48°, (iii) the number of atoms per unit volume was N =5.47×1022

atoms per cm3. Experimental data: Courtesy of Lucia Calliari and
Massimiliano Filippi. The spectra were normalized to a common
area of the zero-loss peak.

FIGURE 10
Experimental (blue line) and simulated (red line) REEL spectra for
2,000 eV primary electrons. The number of simulated Monte
Carlo trajectories was 109. Monte Carlo simulation used the
experimental conditions: (i) the angle between the sample
surface normal and the incident electron beam’s direction was
30°, (ii) the entrance aperture of the analyzer was from 36° to
48°, (iii) the number of atoms per unit volume was N =5.47×1022

atoms per cm3. Experimental data: Courtesy of Lucia Calliari and
Massimiliano Filippi. The spectra were normalized to a common
area of the zero-loss peak.

As for the first-order scattering, as expected the mean energy
of the bulk plasmon peak is 15.8 eV. The surface plasmon peak
is well resolved and its mean energy turns out to be ≈11.2 eV
(in agreement with the theoretical prediction ≈15.8/√2 eV
= 11.2 eV). The ratio between the intensities of the surface
and the bulk plasmon peaks decreases as the primary energy
increases.

Please note that the simulated spectra were obtained
assuming that the bulk plasmons’ relaxation time was twice the
surface plasmons’ relaxation time. In this way, a reasonably good
agreement was found between simulated and experimental data
(see below).

The comparison betweenMonteCarlo and experimental data
is shown in Figure 7 for the case of 1,000 eV initial kinetic energy
and in Figure 8 for the case of 2,000 eV initial kinetic energy.
The number of simulated Monte Carlo trajectories for these two
simulations was 109. For these two comparisons, Monte Carlo
simulations used the experimental conditions, i.e., 1) the angle
between the sample surface normal and the incident electron
beam’s direction was 30°, 2) the entrance aperture of the analyzer
was from 36° to 48°, 3) the number of atoms per unit volume
was N = 5.47× 1022 atoms per cm3. Please note that this lower
density of the sample used for the measurement (as compared
to the bulk and crystalline Al which is N = 6.04× 1022 atoms
per cm3) was experimentally determined. The lower density was
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ascribed to sputter-induced amorphization in the surface region.
The energy of the bulk plasmon peak was, as a consequence,
15.0 eV instead of 15.8 eV. The lower density affects not only
the mean energy of the plasmons but also the Fermi energy, the
inelastic mean free path, and the elastic mean free path, which
were, as a consequence, calculated according to this density
before performing the Monte Carlo simulations presented in
Figures 7, 8. Please note that, despite the proposed method’s
simplicity, we found quite a good agreement between simulation
and experiment, in particular for the first order of scattering
plasmon peaks, presented in Figures 9, 10 for 1,000 eV and
2,000 eV electrons, respectively.The comparisons presented here
show a better agreement with respect to similar approaches
applied in the past (see, for example, Refs. (Calliari et al., 2007;
Dapor et al., 2008; Dapor et al., 2011; Dapor et al., 2012)). It was
obtained by the inclusion of the contribution of the inner shell
electrons in the calculation of the dielectric function and to the
consequent better description of the inelastic mean free path and
of the inelastic cumulative probability for energies higher than
1,000 eV.

4 Conclusion

We simulated the reflection electron energy loss spectra
for electron initial kinetic energies 1,000, 2,000, 3,000, 5,000,
and 10,000 eV over an energy loss region ranging from 0 to
100 eV in order to investigate surface and bulk plasmon losses
for incident electrons in Al. We observed plasmon peaks up
to the fifth order of scattering and noted that, as expected,
the ratio between the intensities of the surface and the bulk
plasmon peaks decreases as the primary energy increases. We
also compared experimental data to Monte Carlo simulations
concerning reflection electron energy loss spectra. We found
reasonable agreement between experimental and simulated data
for 1,000 eV and 2000 eV assuming that the relaxation time of the
bulk plasmons was two times the relaxation time of the surface
plasmons.
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