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The development of transition metal oxides (TMOs) as electrocatalysts for

oxygen evolution reaction (OER) has the potential to surpass the

performance of noble-metal-based catalysts. In this work, a quenching

rapidly strategy was used to synthesize Mo-modified Co3O4 nanosheet

arrays as advanced catalysts. The resulting Mo-Co3O4 electrodes showed

superior activity and reaction kinetics, with an overpotential of only 341 mV

to drive a current density of 100mA cm−2 and a Tafel slope of 69.0 mV dec−1.

This improved performance is thought to be due to the formation of high-

valence Co sites, which creates a synergistic effect. The ability to regulate the

synthesis without causing obvious agglomeration and nucleation growth during

annealing makes this method a promising approach for the design of other

advanced functional materials.
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1 Introduction

As more and more new energy productions come into play now, most people see the

use of traditional energy as damaging to the environment (Jeffrey, et al., 2003; Zhang,

2017; Zhi, et al., 2017; Hu, et al., 2021). From the perspective of new energy acquisition, it

is a great selection to use the electrochemical method to realize energy conversion

technology with high efficiency and stability (Wang et al., 2015). Hydrogen production

from the electrolysis of water, for example, consists of two half-cell reactions, the

hydrogen evolution reaction (HER) at the cathode and the oxygen precipitation

reaction (OER) at the anode, where the OER plays a crucial role (Sayed, 2018; Wu,

2018; He, 2019). The development of high activity/high stability/low-cost OER catalysts

for large-scale production is an important issue for academia and the industry today (Suen

2017). Although RuO2 and IrO2 noble metal oxides are considered the most efficient OER

electrocatalysts, their high costs, apparent scarcity, and low stability have greatly impeded

their large-scale application as OER electrocatalysts (Tang et al., 2014; Mao et al., 2015;

Yu, 2015; Zhao, 2017; Fang, 2018; Zang et al., 2018; Zhang, 2018; Liu Z. et al, 2019). Owing
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to the scarcity and high costs of these noble metals, there has been

an increasingly growing interest among researchers regarding the

use of Earth-abundant elements for the development of efficient

electrocatalysts for OER (Liu et al., 2020; Wang L. et al, 2018;

Wang B. et al, 2018; Gong et al., 2018; Xu et al., 2018; Yu et al.,

2019; Liu G. et al, 2019; Cai et al., 2019; Laguna-Bercero et al.,

2019). Transition metal oxides, which contain variable valence

metal oxidized redox couples, have recently been considered one

promising alternative to noble-metal-based catalysts for efficient

OER in alkaline media (Nai et al., 2017; Zheng et al., 2018; Li et al,

2018a; Li et al., 2018b). Numerous studies have confirmed that

transition metals and their compounds can be used for

electrocatalytic processes through phase transitions, defect

generation and migration, and electronic valence changes (Xu

H. et al, 2020; Bai et al., 2022). In electrocatalytic processes,

transition metal catalysts have the advantage of quickly creating

and stabilizing the active center, which can be helpful to reduce

the overall energy consumption in the electrocatalytic process

and improve the overall reaction stability (Xu Q. et al, 2020).

Nevertheless, the OER electrocatalytic behavior is greatly

restricted by intrinsic activity and adsorption ability for active

*O and *OOH species (Tan et al., 2019; Chen et al., 2020; Wang

Z. et al, 2022). Experiments and theoretical calculations have

revealed that adjusting the energy band structure and exposing

novel active sites can be applied to regulate the adsorption ability

for promoting electrocatalytic performance (Shen et al., 2022;

Wang et al., 2019). Thereby, various strategies such as forming

composites, doping, interface engineering, etc. are developed to

improve these shortcomings (Lei et al., 2014; Wang Z. et al, 2018;

Lu et al., 2019). Among these, surface modification can effectively

improve the intrinsic activity of the active site by rapidly

reconstructing low-potential barrier surfaces (Bai et al., 2022).

In some cases, just a slight ions modification of an electrode

results in a synergistic catalytic effect enhancing the rate of OER

by orders of magnitude (Sadiek et al., 2012), which can introduce

oxygen vacancies and mesoporous structures to adjust energy

band structure and enhance the charge transfer capacity of the

catalyst (Yang et al., 2021; Zhang et al., 2021).

To accomplish modification for improving electrocatalytic

performance, some feasible methods were raised such as

solvothermal, precipitation, molten salt, and magnetron

sputtering (Zhu et al., 2019; Xu H. et al, 2020; Zhang et al., 2020;

Fan et al., 2022), which either lead to inevitable agglomeration and

nucleation growth or cost too much for mass production (Yang

et al., 2021). It is pivotal to develop a succinct and low-cost strategy

tomaintain the uniformity ofmicrostructure. Herein, we used a one-

step quenching strategy that can precisely tailor the surface

chemistry by rapid cooling to modify Mo cations on the cobalt

oxide self-supporting electrodes (Ye et al., 2021; Liu et al., 2022). The

Co3O4 modified by Mo cations (Mo-Co3O4) has no nucleation

growth and remains highly uniform. Moreover, the Mo- Co3O4

electrode shows the best OER stability and catalytic activity among

all samples, with a low over-potential of 341 mV to reach the current

density of 100 mA cm−2 and a small Tafel slope of 69.0 mV dec−1. It

is believed that this process is suitable for industrial mass production

with minimal pollution.

2 Experimental section

2.1 Materials

Cobalt nitrate hexahydrate (Co(NO3)2·6H2O, Sigma-Aldrich),

Sodium nitrate (NaNO3, Sigma-Aldrich), Molybdenum

acetylacetonate ([CH3COCH = C(O-)CH3]2MoO2, Macklin),

Sodium molybdate (Na2MoO4, Macklin), Sodium tungstate

(Na2WO4, Macklin), Ammonium metavanadate (NH4VO3,

Macklin), ethanol (C2H6O, Aladdin), deionized water and an

ultrathin carbon film on holey carbon (400 mesh, Cu, Ted Pella

Inc.) were used as received without any further purification.

2.2 Materials synthesis

2.2.1 Co(OH)2 precursors synthesis
Co(OH)2 precursors were obtained by loading Co onto the

substrate using electrodeposition: the 1*2 cm2 nickel foam

substrate was all immersed in an electrolyte consisting of

0.1 M cobalt nitrate and 0.01 M sodium nitrate, which was

electrostatically anodized at 2 mA cm−2 to achieve 1,200 s of

cobalt hydroxide deposition on the nickel foam substrate evenly.

2.2.2 Molybdenum cation modification
The Co(OH)2 loaded on nickel foam (10 mm*20 mm*1.1 mm)

was taken directly into a muffle furnace (stable at 250°C) and held

for 5 min to obtain Co3O4. Next, the high-temperature Co3O4 was

rapidly placed in a molybdenum solution (Molybdenum cation) of

acetylacetonate at a concentration of 0.2 mgml−1 at low

temperatures (−40°C, −20°C, 0°C, and 20°C). Then, we kept it in

a molybdenum solution of acetylacetonate under low temperatures

for 10 min to obtain molybdenum-modified Co3O4 (Mo-Co3O4) by

quenching. Finally, we used deionized water and ethanolic to rinse

all samples and then dried them at room temperature.

2.3 Characterization

An X-ray diffractometer (XRD, D/max 2500 V) was used to

investigate the crystal structure of the samples. We used a

scanning electron microscope (SEM, Zeiss Ultra Plus), and

transmission electron microscopy (TEM, JEM-2100F, Japan)

to analyze the microstructure of samples. The distribution of

elements in Mo-Co3O4 was obtained by the energy dispersive

spectrometer (EDS). X-ray photoelectron spectroscopy (XPS,

Escalab 250 Xi) was used to study the surface chemistry of

these samples.
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2.4 Electrochemical measurements

All electro-catalytic tests were conducted in a conventional

three-electrode electrochemical system containing 1 M KOH

solution electrolyte at room temperature, using an Autolab

PGSTAT-204 potentiostat equipped with the Nova 2.13 software.

The counter electrode and reference electrodes are graphite rod and

Hg/HgO (filling with 1M KOH) respectively. The potential of the

Hg/HgO reference electrode was regularly calibrated in potassium

hydroxide solution before the experiments. All potentials applied

herein were calibrated to the RHE using the following equation:

ERHE = EHg/HgO+0.098 + 0.059 × pH. The loading of the

commercial catalyst IrO2 is 48 μg cm−2. Before LSV

measurements, the catalyst had been activated with the scan rate

of 50 mV s−1 for at least 50 cycles until stable cyclic voltammetry

(CV) curves were obtained in the test range while Tafel slopes were

derived from the LSV curves. Stability evaluation was performed by

its chronoamperometric response, which was implemented at a

current density of about 50 mA cm−2. The accelerated durability test

(ADT)was carried out at the voltage range of 1.10–1.60 V (vs. RHE)

for 5,000 cyclic voltammetry cycles with a scan rate of 100 mV s−1.

Nyquist plots were obtained from EIS measurements at 1.6 V (vs.

RHE) in N2-saturated electrolytes. Chrono analysis (CA) test was

further carried out at a constant voltage of 1.5 V vs. RHE in 1MN2-

saturated KOH for 24h.

3 Results and discussion

3.1 Material structure

The preparation flow of the synthetic Mo ion-modified cobalt

hydroxide electrode is shown in Figure 1. The growth of cobalt

hydroxide nanoarrays on a nickel foam substrate skeleton is first

completed at the anode by conventional electrodeposition. The

Co(OH)2 loaded on nickel foam was taken directly into a muffle

furnace to obtain Co3O4. Next, the high-temperature Co3O4 was

rapidly placed in a molybdenum solution (Molybdenum cation)

of acetylacetonate at low temperatures. Then, we kept it in the

molybdenum solution of acetylacetonate under low temperatures

to obtain molybdenum-modified Co3O4 (Mo-Co3O4) by

quenching. For comparison, we also involved anions

containing high-valence metals modification by just changing

the quenching precursor solution corresponding to Tungsten or

Vanadium cation of acetylacetonate and sodium molybdate

solution. And we labeled the corresponding samples modified

by different ions as W-Co3O4, V-Co3O4, and A-Mo-Co3O4.

Two main factors affect the quenching strategy: heating

temperature and cooling temperature. Scanning electron

microscopy (SEM) was used to further observe the surface

morphology of the electrode material. A series of experimental

investigations about heating temperature has been done

(Supplementary Figure S1), which shows that 250°C heating

maintains the original spatial structure of the catalyst stably

and regularly. We designed a series of cooling temperature

gradients to investigate the effects of low temperatures,

therefore. Under 250°C heating temperature, the nanosheets of

the sample microstructure grow into disorder and the uniformity

of the array decreases (Figure 2) slightly as the temperature of the

precursor solution increases. When the precursor solution

temperature is at room temperature (−20°C) conditions, the

microscopic structure of the material appears significantly

irregular. Besides, the EDS elemental mapping pictures

(Supplementary Figure S2) of Mo-Co3O4 confirm that Co,

Mo, and O elements are uniformly distributed throughout the

nanosheets.

High-angle annular dark field (HAADF) and TEM images

(Figures 3A,B) show the micro-morphology of Mo-Co3O4

(heated at 250°C, cooled at −40°C). Clear lattice fringes with

interplanar spacings of 0.147 nm and 0.245 nm are observed

from high-resolution TEM (HR-TEM) images (Figure 3C),

respectively. Besides, the selected area electron diffraction

(SAED) pattern shows marked diffraction rings corresponding to

(220), (311), and (400) planes of the Co3O4 phase (Figure 3D). The

result confirms that the Mo-Co3O4 still well maintains the Co3O4

structure, and suchmicrostructure possesses nanoscale grains with a

high density of grain boundaries, which could contribute to many

active sites for catalytic reactions (Yu et al., 2015). The crystalline

phase of the sample (Mo-Co3O4) is characterized by X-ray powder

diffraction (XRD) to monitor the possible structure and

morphology changes induced by ions modification (Figure 4A).

To eliminate the strong background ofNi foam substrate, we further

amplify the XRD pattern as shown in Figure 4B, which shows the

XRD diffraction peaks of samples all can be well indexed to pure

Co3O4 (JCPDS card No. 43–1,003). There are no additional peaks

ascribed to molybdenum phases or compounds after modification,

suggesting this method did not convert the structure of the Co3O4.

X-ray photoelectron spectroscopy (XPS) further examines the

surface chemical composition of samples. Four typical peaks

corresponding to the binding energies of Mo 3 days, O 1 s, Co

2p, and Ni 2p can be observed in Figure 4C. Regarding the Co 2p

FIGURE 1
Schematic illustration of the preparation process of samples.
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region in samples, the existence of two fitting peaks belongs to Co

2p3/2 andCo 2p1/2 (Figure 4D) with binding energies at 781.5 and

797.4 eV (Huang et al., 2020). It is noteworthy that the binding

energy of Co species increased after Mo modification. And the

induced high valence Co is deemed to increase intrinsic activity

(Guan et al., 2018; Kou et al., 2020). As shown in Figure 4E, the

XPS spectrum of O 1s can be deconvoluted into three pairs of

529.8, 531.3, and 533.3 eV, which can be attributed to the lattice

oxygen (O1), coordinative oxygen vacancy or hydroxyl group (O2)

and adsorbed H2O (O3), respectively (Gao et al., 2019; Bao et al.,

2015; Zhuang et al., 2017). For Mo-Co3O4, the O2’s relative

enhancement suggested Mo cation surface modification will

FIGURE 2
SEM images of Mo-Co3O4 for different cooling temperatures in the quenching strategy (scale bar: 1: 100 nm; 2: 1 μm; (A) 40°C; (B) 20°C;
(C) 0°C; (D) 20°C).

FIGURE 3
(A) TEM and (B) SEM images of Mo-Co3O4 (heated at 250°C, cooled at −40°C). (C) HRTEM and (D) the corresponding Fourier transform (FFT)
patterns of Mo-Co3O4 (heated at 250°C, quenched at −40°C).
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produce a large concentration of oxygen vacancies and boost the

adsorption/desorption of the OH group (Yang et al., 2017; Ran

et al., 2020). This would be beneficial to regulating the ΔG of

OH* adsorption/desorption, thus accelerating the kinetic process

and finally enhancing the OER activity (Greeley et al., 2006). For

Mo 3 days spectrum (Figure 4F), the Mo 3 days peaks of Mo-

Co3O4 correspond to Mo 3d3/2 (232.3 eV) and Mo 3d5/2

(235.2 eV), demonstrating that Mo was successfully adsorbed

into nanosheets. Compared with the binding energies of the

Mo precursor (Supplementary Figure S3), the binding energy of

Mo species decreased after modification (Wang T. et al, 2022),

confirming the electron interaction between Co and Mo species.

3.2 Electrorheological property

The polarization curves after iR-compensation were obtained by

linear sweep voltammetry (LSV) at a scan rate of 5 mV s−1 for all

samples. The modifying reaction temperature plays an important

role in the OER activity of the catalyst. Taking Mo-Co3O4 as an

example, we first confirmed that the sample obtained at a heating

temperature of 250°C had the best electrochemical performance

(Supplementary Figure S4). Under the fixed healing temperature of

250°C, as the temperature of the precursor solution increases

(−40°C, −20°C, 0°C, 20°C), the samples reach the current density

of 100 mA cm−2 at overpotentials of 341, 356, 373, and 390 mV. In

addition, the Tafel slopes of the corresponding electrodes were

69.0 mV dec−1, 91.1 mV dec−1, 114.6 mV dec−1, 146.2 mV dec−1

(Figure 5B), indicating that Mo-Co3O4 quenched at -40°C had

better electro-catalytic property and OER-kinetics than other as-

synthesized materials catalysts. To further explore the role of

molybdenum ions in different valence states, our design uses

sodium molybdate solution as a precursor to synthesize. As

shown in Figures 5D,E, under the same modifying condition

(heated under 250°C and quenched under −40°C), Mo-Co3O4

exhibited a remarkably electro-catalytic property, which is better

than Co3O4 modified by molybdenum acid ions (named A-Mo-

Co3O4) and bare Co3O4 sample. Besides, the Mo-Co3O4 electrode

(heated under 250°C, quenched under −40°C) exhibits the smallest

semicircle associated with charge transfer resistance, which indicates

optimal electrochemical kinetics (Figures 3C,F, Supplementary

Figure S5 and Supplementary Table S1). The electrochemical

double layer capacitance (Cdl) is to evaluate the electrochemically

active surface areas (ECSA) by measuring the cyclic voltammetry

curve of the samples prepared in the range at different scan rates (10,

20, 30, 40, 50 mV s−1). The corresponding CV curves are shown in

Supplementary Figure S9, meanwhile, the calculation of Cdl

(Supplementary Figures S7, S8) shows the Mo-Co3O4 (heated

under 250°C, quenched under −40°C) sample reaches the largest

value of 44.85 mF cm−2. The ECSA calculated fromCdl-EIS follows a

similar trend as the OER catalytic activity, and Mo-Co3O4 (heated

under 250°C, quenched under −40°C) owns the largest ECSA value,

which means the Mo-Co3O4 (heated under 250°C, quenched

under −40°C) sample can expose the most active sites to the

FIGURE 4
(A,B) XRD patterns of Mo-Co3O4 at different cooling temperatures (heated at 250°C), (C) XPS spectra of survey for Co3O4 and Mo-Co3O4

(heated at 250°C, quenched at -40°C), XPS spectra of (D) Co 2p, (E) O 1s, and (F) Mo 3 days for Mo-Co3O4 (heated at 250°C, quenched at −40°C).
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electrolyte during OER among all samples. Furthermore, we tested

the modification function of different high valence metal ions

(modified through different quenching precursor solutions we

called Mo-Co3O4, W-Co3O4, V-Co3O4, A-Mo-Co3O4, and

commercial IrO2) as a contrast (Supplementary Figures S6, S10),

and Co3O4 catalyst modified by Mo cation had a better

performance. Mo-Co3O4 (heated under 250°C, quenched

under −40°C) has competitive advantages in catalytic activity and

Tafel kinetics over related literature (Supplementary Table S2).

The improvement observed in the OER electrocatalytic

properties of the Mo-Co3O4 electrode is attributed to the

synergistic effects of the binary metal ions, including Co and

Mo (Yang et al., 2018b; Yang L. J. et al, 2018; Bezerra et al., 2020;

Guirguis et al., 2020), which acted as active sites. Furthermore,

the metal/ions−support interactions (geometric effects, charge

transfer) and the interaction between the different oxides resulted

in better OER catalysis (Gerber et al., 2019; Bezerra et al., 2020)

for the Mo-Co3O4 catalyst. It is worth noting that the

microstructure of the sample after modification (heated under

250°C and quenched under −40°C) does not appear to noticeable

change, which provides stable reaction space and thus provides

excellent stability. Figure 5G shows the stability of the electrode

investigated by the ADT test, with negligible degradation after

5000 CV cycles. The OER activity of the sample decreased by less

than 5% after 24 h of the constant current test (Figure 5H).

Obtained under suitable reaction temperatures, the Mo-Co3O4

catalysts have a more uniform and regular microstructure which

leads to better stability.

FIGURE 5
(A) LSV curves, (B) Tafel plots and (C) Nyquist plots obtained from EIS measurements at 1.6 V (vs. RHE) of Mo-Co3O4 electrodes with different
cooling temperatures (−40°C, -20°C, 0°C and 20°C), all were heated under 250°C. (D) LSV curves, (E) Tafel plots and (F) Nyquist plots were obtained
from EISmeasurements at 1.6 V (vs. RHE) of Mo-Co3O4 electrodes with different annealing temperatures (Mo-Co3O4, A-Mo-Co3O4 and Co3O4 heat
treatment only). (G) Stability tests by ADT method for Mo-Co3O4 (heated under 250°C and quenched under -40°C), where polarization curves
are recorded before and after 5000 CV cycles. (H)Chronoamperometry curves of Mo-Co3O4 (heated under 250°C and quenched under −40°C) and
commercial IrO2.
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4 Conclusion

In the present work, we promoted Co3O4 by a surface

modification to obtain a cheap and industrially productive

electrode for OER. On the one hand, the incorporation of high

valence Mo cations brought a synergistic effect with Co and

modified electron interaction. On the other hand, the quenching

method sustained surface microstructure without heating

agglomeration and nucleation growth, which is also advantageous

to electrochemical properties. The best sample was obtained at a

heating temperature of 250°C and a cooling temperature of −40°C

with Mo cation modified, compared to samples modified in other

synthetic temperature conditions. Our self-supported Mo-Co3O4

electrode avoids the use of expensive polymer binders to fix active

material to the substrate. This work provides a valuable strategy to

modify the electronic structure and OER catalytic performance of

TMO, which obtains better OER activation (Wang et al., 2019; Li

et al., 2018b; Yang J. et al., 2018; Zheng et al., 2018; Yu et al., 2019;

Liu et al., 2020; Fan et al., 2022).
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