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A progressive advance in the construction sector is attained by employing ultra-

high performance concrete (UHPC) technology. Rigorous efforts have been

made in this research domain to have remarkable quality levels with 150 MPa or

more strength and significant durability, which was impossible previously. Steel

fiber incorporation in UHPC is vital in improving its mechanical characteristics.

This review on the incorporation of steel fibers in UHPC evaluates, identifies,

and synthesizes research outcomes for creating a summary of current evidence

that can contribute to evidence-based practice. This study summarized a

review of the literature on steel fibers’ effect on UHPC, intending to explore

its essential aspects. The aim is to summarize the literature in this research

domain and provide guidance for future research. Moreover, the basic

requirements and materials, mixing and casting, mechanical properties,

modern applications, advantages and disadvantages, and future perspectives

associated with steel fibers reinforced UHPC in the construction sector are

discussed. It is revealed from the conducted analysis that the most widely

applied keyword is “steel fibers.” Due to the graphical illustration of the

contributing studies, the current work may benefit academic scholars in

sharing novel techniques and ideas and establishing collaborative efforts.

Furthermore, the present work reveals that steel fibers have the potential to

enhance the mechanical properties of UHPC; however, the large-scale

production and applications of steel fiber-reinforced UHPC are controlled

by parameters like fiber content and geometry.
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Introduction

Concrete is among the most frequently and widely utilized

building construction materials globally. However, due to the

natural properties of concrete, it bears a few shortcomings like

less tensile resistance, more brittleness, lower strain capacity, and

less resistance toward crack initiation and propagation (Huang

et al., 2022). To cater such issues, the addition of fibers like

synthetic fibers (Qin et al., 2019; Ahmed and Lim, 2021b; Rezaie

et al., 2021; Meng et al., 2022), metallic/steel fibers (Zhang et al.,

2020), natural fibers (Khan et al., 2018b; Farooqi and Ali, 2019;

AhmadW. et al., 2020; Farooqi and Ali, 2022), and mineral fibers

(Khan et al., 2018a; Ahmed and Lim, 2021a; Akbar and Liew,

2021; Khan et al., 2021; Khan et al., 2022a), in concrete is usually

made (Cao et al., 2020; Li et al., 2020; Ye et al., 2021) to improve

its toughness (Khan et al.). The fiber incorporation into concrete

started back in the early 1960s. The fiber-reinforced concrete

(FRC) concept with a theory of fiber spacing was first proposed

by Batson (Zollo, 1997). With the growing demand for durable

and high-strength concrete, ultra-high performance concrete

(UHPC), introduced in the 1990s, has excellent mechanical

characteristics and a highly dense microstructure (Shi et al.,

2015). The significant resistance against crack generation and

further propagation are offered by adding fibers in concrete

(Ahmad J. et al., 2020; Shi et al., 2022). Figure 1 depicts the

different shapes of steel fibers considered dispersed

reinforcement in UHPC by various researchers, as presented

by Sidodikromo et al. (2019).

UHPC is a cementitious material with higher strength and

durability. It is a potentially practical solution to enhance the

performance and sustainability of building elements and

infrastructure components (Bahari et al., 2018; Bahari et al.,

2021; Dabbaghi et al., 2021; Bahari et al., 2022). In the last

2 decades, UHPC has gained attention in several countries with

its possible applications in bridges, building components, repair

and rehabilitation, architectural features, cladding, and vertical

elements like windmill and utility towers, offshore structures, the

oil and gas industry, overlay materials, and hydraulic structures

(Tayeh et al., 2013a; Voo et al., 2017; Zhang et al., 2021). In all

these mentioned applications, bridge and road construction

using UHPC is more frequent in practice. UHPC is utilized in

various countries like the United States (US), China, Austria,

Canada, the Czech Republic, Australia, Germany, France, Italy,

Malaysia, Japan, New Zealand, the Netherlands, South Korea,

and Switzerland (Voo et al., 2017; Aisheh et al., 2022; Aslam et al.,

2022). The available design codes for typical concrete

manufacturing are not meant for UHPC. Different countries,

including Australia (Gowripalan and Gilbert, 2000), Germany

(Brühwiler, 2016), Spain (López et al., 2017), Canada (Perry and

Habel, 2017), Japan (JSCE, 2004), and Switzerland (Brühwiler,

2016), are developing UHPC design guidelines. The non-

availability of design codes, insufficient information on raw

materials and manufacturing methods, and higher overall

costs seem to restrict the practical implementation of this

exceptional material in addition to already developed projects

(Vande Voort et al., 2008; Lei et al., 2012; Nematollahi et al., 2012;

Voo et al., 2017). The public and private sectors are paying

significant attention to extensive efforts to utilize this promising

material (Alwesabi et al., 2020; Abadel et al., 2022; Alwesabi et al.,

2022).

The current study’s review is conducted to explore the steel

fibers’ effect on the UHPC key characteristics. The steel fiber

characteristics that influence the UHPC matrix to fiber bonding

mechanism include the orientation of fibers and their

distribution, resistance to pullout, and the bonding zone

microstructure are elaborated in addition to the impact of

shapes, length, and hybridization of steel fibers on mechanical

properties, failure mode, durability, and autogenous shrinkage of

UHPC. As research on steel fibers reinforced UHPC enhances an

urge to achieve high-strength concrete, researchers face

limitations on the information that restricts novel research

and collaborations. Therefore, it is critical to establish and

execute a scheme that aids researchers in acquiring important

and necessary information from highly authentic sources. The

current study focuses on the review of bibliographic published

data on steel fiber-reinforced UHPC. The present study’s findings

would help young researchers exchange state-of-the-art ideas

and procedures and establish joint ventures. In light of the

conducted literature review, the current research discusses and

emphasizes the steel fiber-reinforced UHPC basic requirements

and materials, mixing and casting, mechanical properties,

modern applications, advantages and disadvantages, and its

future perspectives.

Review strategy

In this study, a detailed review methodology is carried out to

retrieve data from the available relevant literature for keyword

FIGURE 1
Steel fiber shapes considered for incorporation in UHPC
(Sidodikromo et al., 2019).
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analysis. Numerous publications relevant to the steel fiber-

reinforced UHPC domain are available, and difficulty is

usually faced in the selection of a reliable search engine.

Scopus and Web of Science are the two most reliable and

dependent search engines (Zhang et al., 2022). The highly

recommended search engine, that is, Scopus (Amin et al.,

2022), is used in this research to retrieve the bibliographic

data on steel fiber-reinforced UHPC. The needless documents

are excluded by using several screening filters. An inclusive

methodical flowchart representing all the performed steps is

shown in Figure 2. It is interesting to see the progressive

concentration of academic research on using steel fibers in

UHPC. Furthermore, in pursuance of a review study

regarding most related articles and critical review analysis, the

primary elements of steel fiber-reinforced UHPC research are

highlighted and illustrated in the succeeding sections. Keywords

are vital in research as they distinguish and emphasize the

primary theme of a particular research study (Song et al.,

2021). The keyword minimum repetition criteria are set at 30.

A total of 20 keywords are shortlisted this way, as provided in

Table 1. Steel fibers, ultra-high performance concrete, and

compressive strength are the three frequently used keywords

in the steel fiber-reinforced UHPC research field. It is extracted

from keyword analysis that steel fibers in UHPC have been

studied to achieve enhanced compressive strength.

Figure 3 shows a map for occurrence frequency based on

connections and density. Here again, the dimensions of the frame

for a specific keyword (Figure 3A) depict the frequency of the

keyword, and the frame position shows its co-occurrence in

papers. Furthermore, the frame size is comparatively larger for

leading keywords than others, as shown in the graph, indicating

their importance for the exploration of research on steel fiber-

reinforced UHPC. The representation of keyword co-

occurrences in different publications is made by clustering.

Multiple colors are allocated to every individual cluster to

signify the keywords’ co-occurrences in published articles. The

different color shades are used to illustrate four distinct groups

(Figure 3A). Similarly, different unique colors represent keyword

density concentrations (Figure 3B). The color shades are

organized according to density, with red being employed for

maximum density followed by yellow, green, and blue shades

depicting subsequently lesser densities. Steel fibers, ultra-high

performance concrete, UHPC, and other noteworthy keywords

are shown in red or yellow shades, indicating their higher density

of occurrences. This conclusion will aid young scientists in opting

for keywords that can minimize the efforts required for exploring

this specific research area-related publication.

Basic requirements of UHPC

Figure 4 shows the basic requirements of UHPC, as reported

by Mishra and Singh (2019). Shi et al. (2015) reported the main

factors for preparing UHPC: porosity reduction, enhanced fresh

FIGURE 2
Sequence of the review method.

TABLE 1 Leading 20 frequently used keywords in the relevant research
domain.

S/N Keyword Occurrence

1 Steel fiber 645

2 Ultra-high performance concrete 302

3 Compressive strength 248

4 Ultra-high performance concrete (UHPC) 218

5 UHPC 179

6 Concretes 108

7 Steel fiber 83

8 Mechanical properties 78

9 Bending strength 72

10 Silica fume 53

11 Durability 52

12 Fiber-reinforced concrete 48

13 Mixtures 48

14 Cements 47

15 Aggregates 46

16 Ultra-high performance fiber-reinforced concrete 43

17 Microstructure 39

18 Bond strength 39

19 Scanning electron microscopy 36

20 Flexural behavior 30
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paste homogeneity, and improved microstructure. The

parameters are closely linked with the raw materials and mix

design for UHPC. The impact of additives, like silica fume

(Yazıcı, 2007), rice husk ash (Van Tuan et al., 2011b), nano-

particle (Rong et al., 2015; Wu et al., 2017a), limestone powder

(Yu et al., 2015a), and fly ash (Chen et al., 2019; Li G. et al., 2022),

in addition to raw materials, on UHPC has been extensively

investigated in various studies. For UHPC mix design, several

FIGURE 3
Keyword analysis: (A) scientific visualization and (B) density visualization.
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techniques are suggested, such as the compressive packing model

(CPM) (De Larrard and Sedran, 2002), the linearly packing

density model (LPDM) (Stovall et al., 1986), and the Aim and

Goff model (Sohail et al., 2018). In recent years, the most famous

UHPC mix design model is the Andreasen and Andersen model

(AAM) (Yu et al., 2014b; Yu et al., 2015a; Dingqiang et al., 2021;

Du et al., 2021). Figure 5 shows the dense particle packing

mechanism in UHPC, as presented by Abu-Lebdeh et al. (2022).

Furthermore, in terms of materials for UHPC, its compressive

strength is more highly influenced by the variation in cement than

any other ingredient. Cement of higher quality is an important

requirement for consistently manufacturing uniform UHPC

(Ahmad et al., 2021). In addition to cement, silica fume also

possesses pozzolanic characteristics, making it vital for

manufacturing UHPC. It is extracted from ferrocenium alloy

production (Wetzel andMiddendorf, 2019). Silica fume results in

an enhanced interfacial transition zone (ITZ) between aggregates

and cement paste (Rossignolo, 2007). The optimum content of

silica fume is dependent on the water–binder ratio (Máca et al.,

2014), which is reported to be between 20% and 30% by mass of

cement, by Chan and Chu (2004). To improve the rheology of

UHPC, nano-particles such as nano-silica (nano-SiO2), nano-

iron (nano-Fe2O3), nano-titanium oxide (nano-TiO2), and nano-

CaCO3 are used to fill the spaces among paste agglomerates and

physical contact sites (Qian, 2017). High-range polycarboxylate-

based water-reducing agents are also considered for UHPC to

have a lower water–binder ratio (Schröfl et al., 2012). The suitable

range of these polycarboxylate-based superplasticizers is 2.0%–

3.5% by weight of the binder. As far as aggregates are concerned

for UHPC, the mineralogy, surface texture, and shape of

aggregates influence the overall requirement for mixing water.

The coarse aggregates larger than 4.75 mm are usually avoided for

UHPC to sidestep the negative influence of their angularity on

particle packing density and to achieve a stronger interfacial

transition zone (Richard and Cheyrezy, 1995; Alkaysi et al.,

2016; Li et al., 2018). In UHPC, the quartz sand should

preferably be replaced with river sand (Soliman and Tagnit-

Hamou, 2016). However, in river sand, the size range of

particles is 0–4.75 mm, in which the maximum particle size is

5–8 times that of quartz sand, which may lead to reduced particle

packing density. In this scenario, the finer masonry sand with a

size of up to 2 mm extracted by grinding and crushing the coarse

aggregates, was recommended by Meng et al. (2017) for

improving the packing of particles. The higher particle

angularity of river sand may reduce the UHPC’s workability

(Yang et al., 2009). Hence, the packing particles should be

optimized using the aforementioned fine aggregates. The

percentage distribution of aggregates in conventional concrete

and UHPC is shown in Figure 6, as presented by Sidodikromo

et al. (2019).

FIGURE 4
Basic requirements of UHPC.

FIGURE 5
Particle packing mechanism in the UHPC (Abu-Lebdeh et al., 2022).
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The fiber addition in UHPC is important for attaining

improved mechanical characteristics (Li et al., 2021). The

schematic composition of fiber-reinforced UHPC, as devised

by the Korea Institute of Civil Engineering and Building

Technology (KCI-M-12-003, 2012), is shown in Figure 7. Out

of all fibers, the most widely utilized fibers in UHPC are steel

fibers due to their exceptional mechanical characteristics. UHPC

is exceptionally brittle due to its high homogeneity and strength,

so this brittleness may be reduced by incorporating steel fibers

(Wang et al., 2015). Abbas et al. (2015) reported improved

compressive properties, such as tensile behavior and peak

load, of UHPC with more steel fiber content. Wille, Naaman

[47] concluded that UHPC’s 28-day compressive strength was

enhanced up to 292 MPa upon incorporating steel fibers up to 8%

volumetric content. Significant improvements in deflection

under peak flexural loading and corresponding strength were

observed in UHPC upon the incorporation of steel fibers (Niu

et al., 2019). Incorporating steel fibers in UHPC with up to 3%

volumetric content provides uniform fiber dispersion and

acceptable workability. The UHPC flowability was improved

by incorporating quartz and limestone as replacements, as

investigated by Yu et al. (2014b). It was reported in the study

that with the increasing content of steel fibers, the flowability

decreased. Similarly, in a study by Wu et al. [38], a 21.4%

reduction in UHPC flowability was reported upon adding

straight steel fibers upon enhancing the volumetric fiber

content from 1% to 3% having 0.02% content of the

superplasticizer. It might be because more steel fiber content

enhanced the contact surface between fibers andmatrix, resulting

in reduced workability and cohesive force (Yu et al., 2014b; Xu

et al., 2019; Gul et al., 2021). Moreover, the flowability reduction

is more significant when incorporating steel fibers with a higher

aspect ratio (Cao et al., 2019).

In past research, it has been reported that the fiber shapes also

considerably influence the UHPC flowability (Soliman and

Nehdi, 2014; Abbas et al., 2015; Meng and Khayat, 2018).

Table 2 illustrates the four unique steel fiber shapes usually

incorporated in UHPC. The UHPC flowability can be further

decreased by using deformed steel fibers instead of straight ones.

Wu et al. (2016b) reported a 21.1% and 10.9% reduction in

UHPC flowability with 3% volumetric content of corrugated and

hooked-end steel fibers, respectively, compared with straight

steel fibers. It might be due to 1) the friction between

aggregates and hooked-end steel fibers being higher than

other considered fiber shapes, 2) the added mechanical

anchorage in the case of deformed steel fibers within the

matrix-fiber bonding region, and 3) the comparatively easy

bundling of deformed fibers compared to straight fibers

(Wang et al., 2012; Yu et al., 2014b). There is a critical steel

fiber content value, and the UHPC flowability may be

considerably decreased. It might be agglomerating, and balls

forming steel fibers exceed the fiber content from critical value

(Khayat et al., 2019). The UHPC workability is usually improved

by adding a vital superplasticizer, as reported by Shi et al. (2015)

and Wang et al. (2017). However, the direct incorporation of

water and superplasticizer led to the cement particles’ absorption

by the superplasticizer, and subsequently, effective dispersion

cannot be attained while mixing (Shi et al., 2015). Hence, in

Schachinger et al. (2004), Graybeal (2006), Yu et al. (2014a),

Zhao et al. (2014), Abbas et al. (2015), Yu et al. (2015a), MengW.

and Khayat K. (2017), and Huang et al. (2018), the stepwise

process is proposed to add steel fibers that improve the

superplasticizer dispersion in UHPC. The UHPC yield

viscosity enhanced up to 53 Pa s upon increasing the

FIGURE 6
Percentage contents of aggregates in normal strength
concrete (NSC) and UHPC (Sidodikromo et al., 2019).

FIGURE 7
Schematic composition (not to scale) of fiber-reinforced
UHPC (taken from Park et al. (2015)).
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viscosity-modified admixture content to 1% (Meng W. and

Khayat K. H., 2017). In parallel, the workability of steel fibers

reinforced UHPC is also dependent on mixing time. Generally,

additional time and energy for mixing are vital for fiber uniform

distribution in UHPC. Instead, the UHPC temperature is

enhanced because of the extended time for mixing and air

bubble formation, leading to strength reduction (Dils et al.,

2012; ACI 239R-18, 2018). As per the literature, the UHPC

mixing time is usually controlled between 10 and 20 min.

Mixing and casting of steel fiber-
reinforced UHPC

In the past 60 years, there has been continuous improvement

in FRCs. An advanced form of FRC is UHPC, which is composed

of higher cement contents, superplasticizer (SP), fibers, silica

fume, and other supplementary cementitious materials. The

design of UHPC is a way to achieve dense packing of solid

materials by limiting water content (w/c) below 0.2 (Meng et al.,

2020). Such features result in UHPC’s higher compressive

strength, even more than 150 MPa (C/CM-17, 2017; Qin

et al., 2022), which is almost 3–16 times more than

conventional concrete (Yoo and Banthia, 2016; Xu S. et al.,

2021), and excellent energy absorption capability and ductility.

As per standards, multiple criteria are there for describing

UHPC, for example, the American Society for Testing and

Materials (ASTM) C185 (C/CM-17, 2017), the American

Concrete Institute (ACI) committee 239 (ACI 239R-18, 2018),

the Japan Society of Civil Engineers (JSCE) (JSCE, 2004), and the

U.S. Department of Transportation Federal Highway

Administration (FHWA) (Graybeal, 2006). As per the main

definitions, the suggested compressive strength and tensile

ductility for UHPC are 150 MPa and 5 MPa, respectively.

With such excellent mechanical characteristics, the UHPC

structures have 1/2 to 2/3 times less weight than conventional

concrete without compromising the loading requirements

(Schmidt and Fehling, 2005).

UHPC is similar to conventional concrete; therefore, the

traditional procedure of casting remains usable and relevant. The

standard concrete mixer is used for mixing UHPC. Figure 8

shows the steps of UHPC mixing, as presented by Zheng et al.

(2022), similar to conventional concrete. The superplasticizer

and water are added after mixing powdered ingredients for

almost 10 min, and the mixing process is repeated for another

5–10 min. The addition of steel fibers is performed as per the mix

design on the satisfactory flowability of the mortar to have

optimum workability. It should be noted that in the case of

UHPC, more energy is consumed than conventional concrete, so

the mixing process requires more time. Due to the additional

energy input and lesser contents of water and coarse aggregates,

additional care is used to avoid overheating during the mixing

process. Cooling ingredients, utilizing a high-energy mixer, and

replacing water partially or completely with ice may solve this

overheating issue. Such UHPC can then be mixed in a

conventional concrete mixer and in ready-mix trucks

(Graybeal, 2011). Casting steel fibers incorporated in UHPC

requires special attention regarding placement methods. In

this case, the internal vibration is not recommended for

UHPC; a slight external vibration can be applied to exclude

the entrapped air.

Flowability of steel fiber-reinforced
UHPC

The workability of concrete is basically an effort to

manipulate a fresh concrete mix with maximum uniformity

(homogeneity) (ASTM, 2018; Abetua and Kebedeb, 2021;

Aisheh et al., 2022). This manipulation subjects to the placing,

compaction, and concrete finishing (Li Z. et al., 2022). Concrete’s

workability is affected by adding fibers to it to improve the

concrete’s characteristics and performance (Cao et al., 2018a; Cao

et al., 2018b). Usually, the viscosity of UHPC is more than

conventional concrete (Sadrmomtazi et al., 2018). This is due

to the dense packing of the finer ingredients in UHPC and the

significantly lower water-to-binder ratio. Moreover, the UHPC’s

durability and mechanical characteristics are primarily based on

its fresh state (Askar et al., 2013; Tayeh et al., 2013b; Tayeh et al.,

2013d; Soliman and Nehdi, 2014). During the manufacturing of

steel fiber-reinforced UHPC, its flowability is influenced by the

surface area, geometry, shape, and volumetric content (Wang

et al., 2017). The steel fiber incorporation in the UHPC mix

enhances the air content in the fresh mix and decreases the

TABLE 2 Steel fiber types and geometry (Park et al., 2012; Wu et al., 2016a; 2017b; Yoo et al., 2017b; Wu et al., 2019b; Yoo et al., 2019).

Type of the steel
fiber

Straight Twisted Corrugated Hooked-end

Shape of the steel fiber

Length of the steel fiber (mm) 6 12 13 30 13 18 30 13 30 13 20 30

Diameter of the steel fiber (μm) 0.16 0.20 0.16/0.20 0.30 0.20 0.30 0.30/0.50 0.20 0.30 0.20 0.25/0.35 0.38
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relative droop (Akeed et al., 2022a). Biswas et al. (2021) also

reported a decrease in the flowability of fiber-reinforced UHPC

with increasing fiber contents, as also illustrated in Figure 9.

Furthermore, the enhancement in cohesive force among steel

fibers and paste also reduces the flowability of respective UHPC

(Yu et al., 2015b). Kwon et al. (2014) proposed an equation, that

FIGURE 8
Steel fiber-reinforced UHPC mixing process (Zheng et al., 2022).

FIGURE 9
UHPC flowability having (A) 4%, (B) 5%, (C) 6%, and (D) 8% fiber contents (Biswas et al., 2021).
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is, χf = Vf × lf/df, for computing the factor named fiber factor to

estimate the flowability of fiber-reinforced UHPC, where the

fiber factor is shown by χf; Vf is notated for fiber volume, and df
and lf show the diameter and length of the fiber, respectively. It

was revealed from the conducted study that with the increasing

fiber factor, the fiber-reinforced UHPC slump tends to decrease.

Similar types of results were also reported by Naaman and Wille

(2010) and Marković (2006).

Mechanical properties of steel fiber-
reinforced UHPC

The flexural and compressive strengths are the two vital

mechanical factors in UHPC mix design to evaluate ductility and

strength. However, the nature of UHPC is brittle. To cater to this

issue, the incorporation of uniformly dispersed steel fibers with

higher ultimate elongation and tensile strength is reported with

enhanced strength and ductility of UHPC. Such concrete is

considered ultra-high performance steel fiber-reinforced

concrete by Qu et al. (2018). The role of steel fibers in UHPC

is to enhance the cohesive forces among matrix and fibers, alter

the granular skeleton, and enhance the length of anchorage

among fibers and the UHPC matrix (Grünewald, 2004; Zdeb,

2017). Moreover, as frequently reported in the literature, the steel

fibers provide a bridging mechanism in case of cracking and

resist the crack propagation (Lan et al., 2022), ultimately

enhancing the steel fiber-reinforced UHPC strength and

ductility (Yu et al., 2014b). It may also be noted that the steel

fiber content in UHPC is also of significant importance as the

incorporation of steel fibers in bulk quantities can lead to their

interlocking and inter-wrapping with each other, influencing the

workability of the respective composite, which ultimately results

in strength reduction (Qu et al., 2018). So, this review on the

utilization of steel fibers in UHPC may assist in adopting the

appropriate composition and characteristics like length,

diameter, and content, for improving the mechanical

properties of respective composites.

Compressive strength

UHPC compressive strength is a vital characteristic that is

usually determined with respect to conventional concrete

(Russell H. G. et al., 2013). The steel fibers are incorporated

in UHPC to have bridging behavior (Alsalman et al., 2017; Khan

et al., 2019). Compared with conventional concrete, the steel

fiber-reinforced UHPC’s compressive behavior is not

considerably different. The main difference is in stiffness and

compressive strength, which are significantly higher in UHPC.

The ingredients influence the compressive strength of UHPC,

mix design, fiber content, and curing (Russell H. G. et al., 2013).

Researchers have reported different results for the compressive

strength of steel fiber-reinforced UHPC. Bae et al. (2016)

reported a slight effect (i.e., <10%) on the compressive

strength of UHPC upon the incorporation of steel fibers.

Arora et al. (2019) reported that the UHPC compressive

strength is primarily based on aggregates’ packing density and

the amount of hydration products. However, Ibrahim et al.

(2017) reported considerable influence (i.e., >50%
enhancement) in UHPC compressive strength upon the

addition of steel fibers. This might be due to steel fibers

capacity to delay fracture development and propagation

(Ibrahim et al., 2017). The increasing content of fiber tends to

have enhanced compressive strength (Wu et al., 2016b; Ibrahim

et al., 2017). Compared with straight steel fibers, deformed steel

fibers offer enhanced pullout strength, ultimately bridging the

cracks more effectively (Meng and Khayat, 2018). However, this

increased pullout strength does not considerably influence the

UHPC compressive strength. Liu et al. (2016) reported a slight

variation in UHPC compressive strength between macro and

micro hooked-end steel fibers. Yoo et al. (2017a) reported that

straight steel fibers have a comparatively lesser enhancement in

UHPC compressive strength than macro-deformed steel fibers.

The reported compressive strengths of UHPC are shown in

Figure 10, as summarized from the literature (Wang et al.,

2012; Yu et al., 2014a; Wu et al., 2016b; Shafieifar et al., 2017;

Wu et al., 2019a; Hung et al., 2020; Mo et al., 2020; Teng et al.,

2020).

Flexural Strength

The incorporation of steel fibers in UHPC offers the

achievement of structural integrity through load transference

across cracks (Gu et al., 2022) through the crack bridging

phenomenon. Pakravan and Ozbakkaloglu (2019) reported the

enhancement in UHPC flexural strength as a fiber content

function. As reported in the literature, the UHPC flexural

tensile strength is generally increased with increasing fiber

content. Abbas et al. (2015) associated this enhancement in

UHPC flexural strength with more closely spaced fibers in

cases of higher content. In this scenario, each crack is

spanned by more fibers, thus offering more area for bonding

between fibers and matrix [54] and more resistance against crack

propagation (Abbas et al., 2015; Yoo et al., 2017c). Park et al.

(2017) reported three times more peak strength for the UHPC

matrix, having 2% volumetric content of steel fibers than a matrix

with 0.5% volumetric content. It is also reported in the literature

that UHPC flexural strength did not improve continuously with

increasing fiber content (Gesoglu et al., 2016; Meng and Khayat,

2018). Meng and Khayat (2018) reported the agglomeration of

steel fibers in cases of higher contents (i.e., >3%), resulting in an

adverse impact on flexural strength. However, Abbas et al. (2015)

concluded with slightly decreased workability even in the case of

higher fiber contents (i.e., up to 6%) and significant enhancement
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in peak load. The prolonged curing might offer a higher degree of

hydration and more dense microstructure, resulting in improved

bond strength among steel fibers and the surrounding matrix

(Wu et al., 2016c). The incorporation of more content of coarse

aggregates in UHPC may result in microstructure defects, thus

weakening the fiber–matrix bond strength. Furthermore, fiber

dispersionmay also be impaired by using more coarse aggregates,

resulting in lower flexural strength (Liu et al., 2016). Kim et al.

(2011) reported 20%–40% enhanced flexural strength in UHPC

with 1% deformed steel fibers than that of straight steel fibers.

Numerous researchers have reported that the flexural strength of

UHPC can be enhanced by more than 20% by incorporating

longer steel fibers (Yoo et al., 2016; Yoo et al., 2017a; Wu et al.,

2017b; Yoo et al., 2017c; Park et al., 2017; Pourbaba et al., 2018).

The reported flexural strengths of UHPC are shown in Figure 11,

as summarized from the literature (Yu et al., 2014b; Wu et al.,

2016b; Shafieifar et al., 2017; Wu et al., 2019a; Mo et al., 2020;

Teng et al., 2020).

Steel fiber bonding and bridging
effect in UHPC

An essential constituent in UHPC is discontinuous fiber

reinforcement. The fiber incorporation in UHPC is vital for

enhancing the ductility under compressive loading, as needed to

attain structural safety. The addition of fibers can reduce the

brittleness of concrete and enhance numerous material

FIGURE 10
Reported compressive strengths of steel fiber-reinforced UHPC.

FIGURE 11
Reported flexural strengths of steel fiber-reinforced UHPC.
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characteristics, like enhanced energy absorption capability and

provision of significant tensile strength. Different fiber types can

be made based on material, shape, and size. As far as steel fiber

incorporation in UHPC is concerned, its reinforcing effect is

evaluated through adhesion bonding among matrix and fibers.

The bonding characteristics, determined via a pullout test

(single), are associated with the UHPC manufacturing

method, the shape of the steel fiber, the friction coefficient,

fiber content, orientation, and distribution (Gong et al., 2022;

Huang, 2022). The bridging effect in UHPC due to steel fibers can

be enhanced by optimizing the content (≤3%), orientation (<45°),
and distribution of steel fibers to evade the accumulation of fibers

in a way to prevent stress from transferring from thematrix to the

steel fibers (Gong et al., 2022). This bridging phenomenon due to

addition of fibers is illustrated in Figure 12, as presented by He

et al. (2021). The scanning electronic microscopic view of the

interfacial transition zone (ITZ) of steel fiber-reinforced concrete

UHPC is illustrated in Figure 13, as presented by You et al.

(2017). These SEM images show a durable bond between the steel

fiber and the surrounding concrete matrix, depicting its

FIGURE 12
Effective bridging mechanism due to higher fiber contents in UHPC (taken from He et al. (2021)).

FIGURE 13
SEM images for steel fiber-reinforced UHPC (taken from You et al. (2017)).
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capability to decrease stress concentrations and prevent internal

degradation, ultimately leading to enhanced mechanical

properties. The complexity of the UHPC structural design

may be due to the varied content, combination, geometry,

orientation, and distribution of fibers. Steel fibers may also be

the reason behind UHPC’s more carbon footprint and costs.

Accordingly, enhancing the information regarding steel fibers’

effects on UHPC is a crucial step for devising generally accepted

UHPC applications and standard design codes.

Applications of steel fiber-reinforced
UHPC

In the last two decades, researchers/academics and engineers

around the globe have performed wide-ranging research to

industrialize the technology of UHPC as a potential

sustainable construction material in the future (Voo and

Poon, 2009). It is extracted from a detailed literature search

that almost 200 bridges have incorporated UHPC into their

elements (Voo et al., 2017). Some other applications of UHPC

include structural strengthening, building, precast elements, and

retrofitting (Vande Voort et al., 2008). The resources and efforts

of both the private and public sectors are focused on exploiting

UHPC for practical implementation as a sustainable construction

material (Ng et al., 2012; Akeed et al., 2022a; Akeed et al., 2022b;

Akeed et al., 2022c). The superior mechanical characteristics of

UHPC offer the design/manufacturing of aesthetically good,

light, and slim architectural elements. The European and

Mediterranean Civilizations Museum in France is an example

where UHPC was used substantially for the very first time in the

world. UHPC was utilized in creating perimeter footbridge decks

and brackets, roof lattices, and prestressing anchorage points’

protective covers. Various studies have been conducted for

optimum designs of UHPC components, concluding in the

construction of UHPC bridges around the globe. Some of the

other possible applications of UHPC comprise security

infrastructure or basic infrastructure elements. Furthermore,

extensive research has also been conducted on UHPC

mechanical properties subjected to penetration resistance,

blast resistance (Wu et al., 2009), and high strain loading rate

(Habel and Gauvreau, 2008; Millard et al., 2010). Moreover,

UHPC has also been frequently used as a repair overlay for

existing concrete structures because of its excellent properties

that require less maintenance work (Hajar et al., 2013; Moreillon

and Menétrey, 2013). UHPC overlay was reported to be first

applied on a bridge in Switzerland over the La Morge River

(Denarié, 2005). The UHPC utilization was also found in cover

plates throughout the high-speed railroads in China (Gu et al.,

2013) and in retrofitting containment walls for a nuclear reactor

in France (Corvez and Masson, 2013). Further than bridges and

buildings, the UHPC can also be utilized in wind turbine towers,

nuclear power plants, and tunnels. Gamarra (2016) reported that

UHPC could also be utilized in developing more effective tunnel

systems by reducing the thickness of tunnel elements. Hence, it

can be summarized that the improved UHPC composite

incorporating steel fibers may be utilized in pavements, tunnel

and canal linings, bridge decks, airport runways and aprons,

hydraulic structures, pipes, and slope stabilization, as also

illustrated in Figure 14.

Discussion

Compared to conventional cementitious concrete, ultra-high

performance concrete (UHPC) is one of the advanced

cementitious composites that have significantly enhanced

durability and mechanical characteristics (Russell H. et al.,

2013). The interest in commercial applications and research

on UHPC is growing daily. Despite UHPC’s acceptability in

various countries, there are still limitations, such as a lack of

information on its material categorization procedures, structural

capability for extensive usage, and design codes for general

acceptability. The points of attention toward its enhanced

utilization are the designing of slender/lightweight structures

(Yoo and Banthia, 2016; Zhang and Ali, 2021), low maintenance,

decreased environmental footprint, and overall cost. Depending

on the results of the detailed literature review, the following

advantages and disadvantages of steel fiber-reinforced UHPC are

summarized as follows.

Advantages of steel fiber-reinforced UHPC: The

compressive strengths of UHPC are reported in the literature

(Tayeh et al., 2013c; Tayeh et al., 2013d; Qaidi et al., 2022) from

150 to 810 MPa which is almost 3–16 times more than that the

in case of conventional concrete. The energy absorption

capability and ductility of UHPC are conventionally

increased by 300 times upon incorporation of steel fibers.

CO2, sulfates, and chlorides are almost non-permeable

(Abetua and Kebedeb, 2021) to UHPC. Its improved

durability comes with a prolonged service life that requires

low maintenance. Industrial floors and bridge decks benefit

from enhanced resistance against abrasion, whereas spots with

harsh or poor climatic conditions benefit from enhanced

resistance against corrosion (Tam et al., 2012). Un-hydrated

cement’s substantial percentage in the finished product during

the cracking mechanism offers self-healing capability. Due to

their exceptionally higher compressive strengths, buildings

having UHPC weigh only 1/3rd or ½ of their conventional

concrete components under similar loading conditions. This

weight reduction comes out with thinner construction,

additional serviceable floor space in case of multi-storey

buildings, and reduced overall cost. The steel reinforcement

bar exclusion enhances architectural freedom and reduces labor

costs. Moreover, it also offers designers and architects the forms

and shapes of structural members without virtual limits (Tam

et al., 2012; Tayeh et al., 2014).
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Disadvantages of steel fiber-reinforced UHPC: The UHPC

disadvantages comprise its higher contents of cement

(i.e., 950–1,000 kg/m3) and silica fume (i.e., 100–250 kg/m3)

which enhance its manufacturing costs and CO2 emissions,

ultimately contributing toward ozone layer depletion and

global warming (Aı€tcin, 2000; Mostofinejad et al., 2016;

Almeshal et al., 2022; Faraj et al., 2022). Moreover, the

sensitivity in case of quantities for water-to-binder materials,

superplasticizers-to-binder, material chemical characteristics,

and fine particle distribution (requires high-speed mixers) are

UHPC’s additional disadvantages. Furthermore, in the absence of

fibers, the brittleness of UHPC would be significantly higher, as

in the case of high-strength concrete possessing a higher elastic

modulus (i.e., around 45–60 GPa), which is not desirable. These

issues might be resolved effectively by incorporating metakaolin

(Huang et al., 2017; Amin et al., 2020; Mansour and Tayeh, 2020)

and rice husk ash, slag, fly ash, and zeolite, as partial substitution

for cement (Sobuz et al., 2016). Also, the SCMs may also be

utilized in UHPC to reduce the manufacturing cost to encourage

the potential customer for more wide-ranging applications.

Conclusion and recommendations

A literature review-based research is an appropriate practice

to recognize the growing trend in literature volume concentrating

on steel fiber-reinforced UHPC-relevant evaluation, which may

aid young academics. The primary objective of this research is to

conduct a detailed review of steel fiber-reinforced UHPC’s

available literature for exploring the different aspects. The

following conclusions are drawn:

• The evaluation of steel fiber-reinforced UHPC research

shows that steel fibers, ultra-high performance concrete,

and compressive strength are the three most widely

adopted keywords. This assessment also shows that steel

fibers in UHPC have primarily been investigated to achieve

high-strength concrete.

• The reported cement quantity incorporated in different

types of concrete was 16% for HPC, 33% for UHPC, and

20% for SCC. Accordingly, in the steel fiber-reinforced

UHPC, a significant cement quantity (i.e., 800–1,300 kg/

FIGURE 14
Possible applications of UHPC.
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m3) was reported. The partial replacement of cement with

readily available SCMs like slag and fly ash and the

utilization of silica fume come out with certain benefits

in terms of improved mechanical properties like higher

compressive strength (i.e., up to 150–200 MPa), lower

shrinkage, and reduced overall cost. The content of

polycarboxylate-based superplasticizers has a significant

influence on calcium silicate reactivity.

• Steel fiber effectiveness in UHPC, which enhances the

energy absorption capability, toughness, and tensile

strength is evident from the literature. The hooked-end

steel fibers are reported to be more effective than straight

steel fibers. It might be due to (i) the friction between

aggregates and hooked-end steel fibers being more than

other considered fiber shapes, (ii) the added mechanical

anchorage in the case of deformed steel fibers within the

matrix–fiber bonding region, and (iii) the comparatively

easier bundling of deformed fibers than straight fibers. The

reinforcing effect of steel fibers is endorsed through

adhesion bonding between the UHPC matrix and steel

fibers. Steel fiber types such as micro or macro steel fibers,

and straight and deformed (twisted, hooked-end, or

corrugated), have been explored for UHPC.

• The basic concept for the design of steel fiber-reinforced

UHPC is to achieve improved microstructure, reduced

porosity, and enhanced toughness and homogeneity. The

UHPC properties are considerably affected by the raw

ingredients, method of preparation, and curing treatments.

• The overall outcomes for UHPC compressive strength

depict that incorporating deformed steel fibers instead

of straight fibers does not have a considerable impact.

However, in the case of UHPC flexural strength, deformed

fibers positively impact the lower contents of steel fibers.

On the other hand, the higher content of straight steel

fibers results in better performance.

• As revealed from the reported SEM analysis, the durable bond

between the steel fiber and the surrounding concrete matrix

can decrease stress concentrations and prevent internal

degradation of the material, ultimately leading to enhanced

mechanical properties of steel fiber-reinforced UHPC.

• Around the globe, accomplishments in steel fiber-reinforced

UHPC can be seen. At the same time, UHPC is progressing

slowly with limitations that restrict its applications. Higher

initial costs, non-availability of design codes, complex

manufacturing approaches, design challenges, and

inadequate availability of resources obstructed its

development at the commercial level and utilization in

modern structures of buildings in developing countries.

• The applications and significant production of steel fiber-

reinforced UHPC depend on parameters like fiber content,

geometry, mix design, w/c ratio, and supplementary

cementitious material contents Furthermore, there is

limited knowledge on durability, steel fiber

hybridization, life cycle assessment (LCA), bonding

mechanisms, and life cycle cost analysis (LCCA) for

steel fiber-reinforced UHPC. Hence, steel fiber-

reinforced UHPC should be further explored in detail.

Based on the review conducted on steel fiber-reinforced

UHPC, the following prospects for this research domain are

proposed:

• For a better comprehensive understanding from the joint

efforts of the research community, the future evaluation of

all variables and testing mechanisms, in parallel, should be

explored.

• It is also evident that researchers from different cultures

would not agree to utilize a single standard among the

already available guides. Therefore, considering the

development of multiple standards for UHPC, the

comparison studies among different proposed standards,

by keeping all other parameters constant, will benefit

scientific discussions by relating the novel research with

existing ones (Larsen and Thorstensen, 2020).

• Furthermore, for the provision of a scientific basis for

improving the performance, the UHPC load–slip

modeling should also be explored comprehensively in

terms of steel fiber effects regarding matrix age and

compressive strength, fracture, damage of the matrix

along the fiber and at the anchorage end, concrete

macro-properties, slip-hardening, and incomplete

straightening (Deng et al., 2022).

• In the literature, some recent studies show the feasibility of

using steel fiber-reinforced UHPC in 3D printing (Van

Tuan et al., 2011a; Arunothayan et al., 2020). Arunothayan

et al. (2020) concluded that utilizing fiber-reinforced

UHPC has enhanced shape retention ability compared

to conventional concrete. Despite the available data on

the 3D printing of UHPC, its manufacturing is still

dependent on dedicated printing with specific

configurations, such as the flow rate, nozzle type, and

pumping specifications. It might not be feasible for

various printing configurations and cementitious mixes

(Arunothayan et al., 2020). As practitioners over the globe

find it difficult to create 3D printing with UHPC, much

effort is required to gain accessible information on utilizing

steel fiber-reinforced UHPC for large-scale production of

structural components using 3D printing technology.

• Additionally, a detailed, in-depth analysis of the bonding

mechanism between steel fibers and the UHPC matrix

should also be made to get a clear idea of UHPC’s

mechanical characteristics for its structural applications.

• The durability evaluation in extreme ageing/

environmental/climatic conditions is also required, with

numerous coupling effects to have an insight into UHPC’s

full utilization throughout the structure’s design life.
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• Although the effect of deformed steel fibers in UHPC

shows better bonding, as revealed from single pullout

strength testing, the mechanical characteristics in the

case of deformed fibers are less than those of straight

fibers in some scenarios (Gong et al., 2022). Therefore,

further investigation should also be conducted to validate

the deformed steel fibers’ effectiveness.

• Cracks in UHPC usually resulted in debonding among steel

and the surrounded UHPCmatrix that may damage the inert

coating on surface of steel and accelerate corrosion. So, to

address this issue, the concept of self-healing cracks is

important in UHPC to attain long-term durability. The

cement hydration low degree may be attributed to self-

healing of UHPC. Moreover, the fibers, other than steel,

like carbon fibers, mineral fibers, and synthetic fibers,

possess unique impacts on UHPC performance. Hence,

incorporating such fibers to avoid corrosion in the case of

steel and to improve UHPC performance as per their

properties needs to be explored.

• Further research on the treatment of fibers, both

chemically and physically, for enhancing the bonding

mechanism between the fiber and matrix is highly

recommended in the future.

• Although some studies have been carried out on using hybrid

fibers in UHPC, analytical and experimental investigations to

explore the effect of hybrid fibers on UHPC are still lacking.

The synergistic mechanism of hybrid fibers is still not clear.

Therefore, further research is required to optimize the

combination of the hybrid fiber to enhance the UHPC’s

mechanical characteristics, microstructure, and durability.

• The concept of hybridization of steel fibers in a way to

incorporate a combination of steel fibers of varying lengths

and shapes (Khan et al., 2022b) should also be further explored

to resist the initiation and propagation of cracks in UHPC.

• Furthermore, various researchers likeWang et al. (2022) and

Khan et al. (2022c) used various machine learning (ML)

techniques under the concept of artificial intelligence (AI) to

predict the mechanical properties (i.e., compressive and

flexural strengths) of UHPC. However, there is still a gap

in the employment of ML approaches for optimization of

different variables, such as the fiber length, shape, content,

mix design, w/c ratio, and supplementary cementitious

material contents, considered in the design of steel fiber-

reinforced UHPC to conserve natural resources and reduce

the consumption of time, efforts, and cost, which is

necessary to be covered (Xu Y. et al., 2021; Farooq et al.,

2021; Wang et al., 2022).

• In the recent two decades, UHPC has been utilized in

various countries for structural and non-structural

applications. However, due to the higher cost of UHPC

and the non-availability of its design codes, the application

of UHPC in the construction industry is still limited.

Therefore, future studies are required to reduce the

UHPC cost for its wide-ranging practical

implementation. Furthermore, the life cycle cost analysis

(LCCA) of steel fiber-reinforced UHPC is also necessary

before its applicability on large-scale production.

• Lastly, multiple studies were carried out to balance material

mixes by adopting locally available raw and waste materials

to reduce the quantity of cement, SP, and steel fibers [208].

With lesser environmental impacts, UHPC would be much

more effective to implement by the construction industry.

Hence, the knowledge of steel fiber-reinforced UHPC life

cycle assessment (LCA) is also important to be explored

before its practical applicability in the construction sector.
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