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The bulk modulus reflects the deformation of rock macroscopically and plays a vital
role in geological exploration, oilfield development, and drilling. The bulk modulus
not only changes under different rock sizes, but also varies with joint roughness.
Therefore, it is very important to accurately estimate the bulk modulus of rough
jointed rock and evaluate its deformation. In this paper, the influence of joint
roughness and rock size on bulk modulus was discussed by regression analysis of
25 sets of simulation models. The research shows that with the increase of rock size,
the bulk modulus decreases exponentially, and with the rise of joint roughness, the
bulk modulus increases as a power function. With the rise of joint roughness, the
characteristic size of bulk modulus increases exponentially, and the characteristic
bulk modulus increases as a power function. The paper gives the specific forms of
these relations.
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1 Introduction

Bulk modulus is one of the key mechanical parameters of rock. It is of great significance to
study this mechanical parameter to reduce the risk of drilling, rock mining and reservoir
development. Most of the studies on rock elastic parameters adopt Gassmann equation or Biot
theory. For example, Hou et al. (Hou et al., 2019) proposed a new physical model for calculating
the dry rock bulk modulus. Some scholars determined the bulk modulus by LRM linear fitting
method (Liu et al., 2019a). Huang et al. (Huang et al., 2018) proposed amethod to obtain a high-
precision bulk modulus. Tang et al. (Tang et al., 2020) used the second and third-order
resonance mode measurements of the DARS system to estimate the bulk modulus. These
research results lay a theoretical foundation for accurately obtaining the bulk modulus. In the
process of geological exploration and oil-gas field development, scholars have studied the bulk
modulus from the aspects of formation pressure, confining pressure, ground stress, and
temperature. In terms of formation pressure, Chen et al. (Chao et al., 2022) derived and
established a direct inversion method of bulk modulus, which realized the quantitative
prediction of shale formation bulk modulus. Yin et al. (Yin et al., 2014) measured the full-
field strain fields and time-to-fracture of the marble under static-dynamic coupling load. Based
on the laboratory ultrasonic measurement results, the influence of pressure difference on static
and dynamic bulk modulus was analyzed (Yan et al., 2020). Yin et al. (Yin et al., 2020)
investigated the dynamic compressive behaviour of gas-containing coals with gas pressure and
static axial preloading using a modified Split Hopkinson Pressure Bar (SHPB) system. In terms
of confining pressure, Che et al. (Che et al., 2022) deduced the bulk modulus under different
confining pressure based on the mechanism of the Gassmann model. In terms of stress, Wang
et al. (Wang et al., 2021) found that there is a correlation between bulk modulus and stress, and
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TABLE 1 Simulation plans.

Plan 6 Plan 7 Plan 8 Plan 9 Plan 10

Size 100 mm Size 200 mm Size 300 mm Size 400 mm Size 500 mm

Plan 1 JRC = 1.6 1.6 × 100 1.6 × 200 1.6 × 300 1.6 × 400 1.6 × 500

Plan 2 JRC = 2.6 2.6 × 100 2.6 × 200 2.6 × 300 2.6 × 400 2.6 × 500

Plan 3 JRC = 3.6 3.6 × 100 3.6 × 200 3.6 × 300 3.6 × 400 3.6 × 500

Plan 4 JRC = 4.6 4.6 × 100 4.6 × 200 4.6 × 300 4.6 × 400 4.6 × 500

Plan 5 JRC = 5.6 5.6 × 100 5.6 × 200 5.6 × 300 5.6 × 400 5.6 × 500

FIGURE 1
The loading and numerical models. (A) Loading method, (B) numerical models.

FIGURE 2
Stress-strain curves under different joint roughness coefficient.
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the bulkmodulus is often greater than 40 GPa in the high stress section
with rock burst. Qiao et al. (Qiao et al., 2018) proposed a non-linear
hyperbolic model between average stress and bulk modulus through
triaxial compression test. Rajaoalison et al. (Rajaoalison et al., 2020)
obtained the law of the bulk modulus and stress by ultrasonic non-
destructive method under different stress conditions. In terms of
temperature, Xiong et al. (Xiong et al., 2019) obtained that with
the increase in temperature, the bulk modulus of shale decreased.
Zou et al. (Guang et al., 2022) analyzed the influence of temperature on
the bulk modulus. Yu et al. (Yu et al., 2022) conducted dynamic
compression tests with four different impact rates on granite samples.
In the process of underground space excavation, accurate estimation
of the mechanical properties of rock is conducive to the stability
analysis of underground engineering. The above studies have

discussed the factors affecting bulk modulus in underground
engineering, but the mathematical relationship between them has
not been established.

There are defects such as joints, pores, and fissures in the rock, and
the influence of porosity on the bulk modulus has attracted the
attention of scholars. For example, Liu et al. (Liu et al., 2019b)
concluded that the bulk modulus has a high correlation with
porosity. Akbar et al. (Akbar et al., 2019) established the
relationship between bulk modulus and pore geometry and
structure. Khoshnevis-Zadeh et al. (Khoshnevis-Zadeh et al., 2019)
obtained the law that there is the highest correlation between bulk
modulus and porosity. Rock is a heterogeneous material, and the joint
roughness can affects the bulk modulus. The above scholars have
studied the influence of rock internal crack defects on the bulk

FIGURE 3
Stress strain curves of different size.

TABLE 2 Elastic modulus.

Elastic modulus (GPa)

Plan 6 Plan 7 Plan 8 Plan 9 Plan 10

Size 100 mm Size 200 mm Size 300 mm Size 400 mm Size 500 mm

Plan 1 JRC = 1.6 17.84 13.91 7.58 5.76 3.80

Plan 2 JRC = 2.6 23.52 16.34 9.39 8.34 5.58

Plan 3 JRC = 3.6 25.73 17.93 14.19 9.22 6.62

Plan 4 JRC = 4.6 28.33 22.17 16.03 10.28 8.65

Plan 5 JRC = 5.6 31.95 24.10 17.23 12.29 9.60
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TABLE 3 Poisson’s ratio.

Poisson’s ratio

Plan 6 Plan 7 Plan 8 Plan 9 Plan 10

Size 100 mm Size 200 mm Size 300 mm Size 400 mm Size 500 mm

Plan 1 JRC = 1.6 0.07 0.04 0.03 0.03 0.02

Plan 2 JRC = 2.6 0.06 0.07 0.07 0.03 0.04

Plan 3 JRC = 3.6 0.09 0.05 0.03 0.04 0.10

Plan 4 JRC = 4.6 0.13 0.10 0.13 0.13 0.12

Plan 5 JRC = 5.6 0.10 0.10 0.13 0.08 0.08

TABLE 4 Bulk modulus.

Bulk modulus (GPa)

Plan 6 Plan 7 Plan 8 Plan 9 Plan 10

Size 100 mm Size 200 mm Size 300 mm Size 400 mm Size 500 mm

Plan 1 JRC = 1.6 6.94 5.06 2.71 2.03 1.32

Plan 2 JRC = 2.6 8.89 6.29 3.67 2.94 2.02

Plan 3 JRC = 3.6 10.48 6.57 5.04 3.35 2.76

Plan 4 JRC = 4.6 12.59 9.24 7.29 4.57 3.79

Plan 5 JRC = 5.6 13.31 10.04 7.83 4.82 3.81

FIGURE 4
Fitting curves of rock size and bulk modulus.
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modulus but did not consider the influence of joint roughness on bulk
modulus and did not establish the relationship between joint
roughness and bulk modulus.

The size effect has always been the focus of rock mechanics.
Scholars have made some achievements in the size effect of bulk
modulus. For example, Li (Li et al., 2021) based on the normalized
results and obtained the law of the bulk modulus and diameter ratio of
Berea sandstone. Abedi Reza et al. (Reza et al., 2022) studied the
influence of statistical volume element size on inhomogeneity of
apparent properties. Some scholars have further studied the size
effect of rock mechanics parameters (Gao et al., 2018; Zhong et al.,
2021; Zhang et al., 2021) obtained the REV of fractured rock mass. Hu
et al. (Hu and Ma, 2021) established the size effect relationship
between uniaxial compressive and parallel joint spacing. The above
scholars studied the size effect of bulk modulus from different aspects
and confirmed that the size effect of bulk modulus does exist. In
summary, the bulk modulus with rough joints is size-dependent, and
there is little research on this field. Therefore, it is particularly
important in engineering to deeply analyze the law of bulk

modulus changing with size and obtain the relationship
between them.

Therefore, this paper explores the influence of joint
roughness and rock size on rock bulk modulus. The
relationship between bulk modulus and rock size, joint
roughness are acquired. The relationships between the
characteristic size of bulk modulus, characteristic bulk
modulus and joint roughness are described.

2 Numerical simulation plans

The numerical simulations are carried out in two aspects. 1)
Effect of rock size on bulk modulus, which rock sizes are set to 100,
200, 300, 400, and 500 mm, and the corresponding simulation
plans are 1–5. 2) The effect of joint roughness on the bulk modulus,
which the roughness values are set to 1.6, 2.6, 3.6, 4.6, and 5.6, and
the corresponding simulation plans are 6–10. A total of
10 simulation plans were set up, and 25 numerical models were
established in this simulation, as shown in Table 1. The rock
mechanical parameters, boundary conditions, and loading
conditions in these numerical simulations refer to section 2.2 in
reference (Hu et al., 2021).

In the paper, the elastic modulus of rock was 8,000 MPa, the
compressive strength was 60 MPa, and the cohesion was 1.2 MPa; the
elastic modulus of joint was .01 MPa, the compressive strength was
.01 MPa, and the friction angle was 10° (Hu et al., 2021). The RFPA
software was used in the study, and the numerical model was shown in
Figure 1. The displacement loading method is adopted with the
displacement of the upper and lower surfaces of .01 mm and the
displacement of both sides of 0 mm (Hu et al., 2021).

3 Numerical simulation analysis

3.1 Stress-strain curves analysis

The stress-strain curves of rock failure under different sizes in
research content 1) were shown in Figure 2, and Figures 2A–E
represent different roughness. The stress-strain curves of rock
failure under different joint roughness in research content 2) were
shown in Figure 3, and Figures 3A–E represent different rock sizes.

TABLE 5 Fitting Equations of bulk modulus and rock sizes.

Roughness Fitting formula R2

1.6 K(l) � 1.2 + 11.78e−l/161.91 0.972

2.6 K(l) � 1.47 + 13.9e−l183.8 0.983

3.6 K(l) � 1.8 + 15.86e−l/218.1 0.99

4.6 K(l) � 1.9 + 17.71e−l/263.05 0.984

5.6 K(l) � 2.06 + 20.11e−l/374.65 0.985

TABLE 6 Values of parameters a、b、c.

Roughness 1.6 2.6 3.6 4.6 5.6

Parameter

A 1.2 1.47 1.8 1.9 2.06

B 11.78 13.9 15.86 17.71 20.11

C 161.91 183.8 218.1 263.05 374.65

FIGURE 5
Fitting curve of parameters and joint roughness coefficient.
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Figures 2, 3 show that the stress-strain curves have a long
compaction stage, which are due to the compaction deformation
caused by the closure of fracture defects in rock. The axial stress of
rock increases linearly with the increase of strain and enters the stage
of linear elastic deformation. This stage is elastic deformation, and the
slope of the stress-strain curve corresponding to this stage can be used
to characterize the elastic modulus. When the axial stress increases to a
certain value, the stress-strain curve begins to show a jagged shape. At
this time, many new cracks were generated inside the rock, and the
deformation increased and entered the unstable deformation stage.
The ratio of 50% of the peak strength of rock to its strain at this stage
can be used to characterize the secant modulus. When the axial stress
increases to exceed the ultimate stress of the rock, the stress-strain
curve has a sharp decline stage, and brittle failure occurs.

Whether it is based on the elastic deformation stage in the stress-
strain curve to obtain the elastic modulus or the elastic deformation
and inelastic deformation stage to obtain the secant modulus, it is an

TABLE 7 Bulk modulus.

Numerical plans Size/mm Bulk modulus/GPa

Plan 1 Plan 2 Plan 3 Plan4 Plan 5

JRC = 1.6 JRC = 2.6 JRC = 3.6 JRC = 4.6 JRC = 5.6

6 100 6.94 8.89 10.48 12.59 13.31

7 200 5.06 6.29 6.57 9.24 10.04

8 300 2.71 3.67 5.04 7.29 7.83

9 400 2.03 2.94 3.35 4.57 4.82

10 500 1.32 2.02 2.76 3.79 3.81

FIGURE 6
Fitting curves of bulk modulus and roughness.

TABLE 8 Fitting relationship.

Size L/mm Fitting formula R2

100 K(JRC) � 5.11JRC0.57 0.987

200 K(JRC) � 3.5JRC0.71 0.894

300 K(JRC) � 1.91JRC0.83 0.96

400 K(JRC) � 1.46JRC0.78 0.96

500 K(JRC) � 0.93JRC0.92 0.942
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expression of the rock deformation characteristics. The slope of the
elastic stage of the stress-strain curve in Figures 2, 3 show that the
elastic modulus are affected by size and joint roughness.

According to Figure 2, the peak strength varies with size. When
joint roughness is constant, the peak strength is negatively correlated
with the rock size. Taking Figure 2E as an example, when the rock size
increases, the longitudinal distance of the stress-strain curve of rock is
larger and has certain discreteness. From the variation of the peak
strength of rock with joint roughness in Figure 3, under the same rock
size, the peak strength of rock increases with the increase of joint
roughness.

3.2 Influence of the size effect of bulk
modulus

When the rock conducts uniaxial compression test, the axial
and radial deformation have a certain deformation extent, and
the volume also changes. The calculation of bulk modulus is
related to Poisson’s ratio and the elastic modulus. The formula is
as follows:

K � E

3 1 − 2]( ) (1)

Where E is the elastic modulus, unit: GPa; ν is the Poisson’s ratio.

To study the influence of rock size on bulk modulus. Firstly,
according to Figure 2, the elastic modulus E (the slope of the linear
elastic on the stress-strain curve) are solved, as shown in Table 2.
Secondly, the value of Poisson’s ratio ν are obtained by selecting the
ratio of transverse strain and longitudinal strain within the elastic
range on the stress-strain curves, as shown in Table 3. Finally, the bulk
modulus K are solved according to Eq. 1, as shown in Table 4.

Table 2 shows that when the rock size and joint roughness
changes, the elastic modulus will be affectted. When the size
increases, the elastic modulus decreases, they are negatively
correlated. When the joint roughness increases, the elastic modulus
increases, they are positively correlated. Table 4 shows that rock size
will affect the bulk modulus. According to Table 4, the scatter plots of
bulk modulus and rock size were drawn, and the corresponding curves
were fitted, as shown in Figure 4.

Combined with Figure 4 and Table 4, the curve of the joint
roughness of 3.6 were analyzed. When the rock size is 100 mm, the
bulk modulus is 7.02 GPa. When the rock size increases to 500 mm,
the bulk modulus decreases to 2.01 GPa, and the bulk modulus
decreases by 71%. This indicates that rock size is negatively
correlated with bulk modulus. With the increase in rock size, the
change range of bulk modulus is smaller, and the curve tends to be
stable, showing an exponential decay trend.

The regression curve formula are listed in Table 5, which can
better illustrate this relationship. The coefficients of determination are

TABLE 9 Values of parameters d and f.

Size/mm 100 200 300 400 500

Parameter

D 5.11 3.5 1.91 1.46 0.93

F 0.57 0.71 0.83 0.78 0.92

FIGURE 7
Fitting curve of parameters and rock size.
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all greater than .9, which prove that the fitting relationships are
reasonable.

Table 5 shows that the rock size and bulk modulus conform to the
exponential function relationship, and their relationship is
proposed as:

K l( ) � a + be−l/c, (2)
where K(l) is the bulk modulus, unit: GPa; l is the rock size, unit: mm;
a, b, and c are parameters.

The parameters a, b and c in Table 5 are summarized in Table 6,
and then the relationships between parameters and joint roughness are
fitted, as shown in Figure 5.

According to Figure 5, the relationships between parameters and
joint roughness are sorted out, as follows:

a � 0.99JRC0.43 (3)
b � 9.29 + JRC0.43 (4)

c � 145.69 + 7.33eJRC/1.63 (5)
The relationships between parameters and joint roughness are

sorted out, and the special relationship between bulk modulus and
rock size is obtained:

K l( ) � 0.99JRC0.43 + 9.29 + JRC0.43( )e−l/ 145.69+7.33eJRC/1.63( ), (6)

Eq. 6 proposes the mathematical relationship between bulk
modulus and rock size, and quantitatively analyzes the size effect
of joint roughness on bulk modulus. When the joint roughness is
determined, the corresponding bulk modulus under any rock size can
be obtained, which is beneficial to be applied in engineering practice.

3.3 Size effect of joint roughness on bulk
modulus

According to the stress-strain curves in Figure 3, the bulk modulus
were counted in Table 7.

Table 7 shows that the joint roughness affects the bulk modulus.
The scatter plots of bulk modulus and joint roughness are drawn by
Table 7, and the corresponding curves are fitted, as shown in Figure 6.

Combined with Table 7 and Figure 6, the effect of joint
roughness on the bulk modulus is analyzed. When the rock size
is 500 mm, and the joint roughness is 1.6, the bulk modulus is
5.45 GPa. When the joint roughness increased to 5.6, the bulk
modulus increased to 9.41 GPa. This shows that the bulk
modulus shows an increasing trend with the increase in joint
roughness, and there are positively correlated. As the rock size
increases, the bulk modulus changes more, and the fitting curves
show an increasing trend. The formula of the regression curves is
listed in Table 8.

Table 8 shows that the bulk modulus and joint roughness conform
to the Power function relationship, and their relationship is
proposed as:

K JRC( )� dJRCf, (7)
where K (JRC) is the bulk modulus, unit: GPa; JRC is the joint
roughness, d and f are parameters.

TABLE 10 Characteristic size of bulk modulus.

— — — — —

Roughness 1.6 2.6 3.6 4.6 5.6

Characteristic size/mm 321.32 371.87 432.71 501.62 629.56

FIGURE 8
Fitting curve between the CSBM and JRC.
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The parameters d and f in Table 8 are summarized in Table 9, and
then the relationships between parameters and rock size are fitted, as
shown in Figure 7.

According to Figure 7, the relationship between d, f and rock size
are obtained, as follows:

d � 0.07 + 7.97e−l/22.51, (8)
f � 0.17l0.27, (9)

Where d, f are parameters, l is the rock size, unit: mm.
The relationships between parameters and joint roughness are

sorted out, and the special relationship between bulk modulus and
joint roughness is obtained:

K JRC( ) � 0.07 + 7.97e−l/22.51( )JRC 0.17l0.27( ), (10)

Eq. 10 quantitatively describes the relationship between bulk
modulus and joint roughness. When the rock size is determined,
the corresponding bulk modulus under any kind of joint roughness
can be obtained. It provides certain theoretical support for the
evaluation of rock engineering safety and stability.

3.4 Mathematical models of characteristic
size and characteristic bulk modulus with
joint roughness

The size effect refers to the phenomenon that the mechanical
parameters represented by strength decrease regularly with the
increase of rock size. Scholars generally calls REV, that is, the
mechanical parameters of the rock gradually tend to be stable as
the rock size increases to a certain value, and it does not change
significantly. In-depth study of the influence of REV provides
guidances for setting rock mechanics parameters in rock
engineering. The characteristic size of bulk modulus (CSBM) can
be used to characterize the size effect of bulk modulus. The method of
quantitative calculation of bulk modulus characteristic size and joint
roughness in Reference (Liang et al., 2013). The formula is as follows:

k| | � be −l/c( )
c

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣, (11)

k| |≤ r, (12)

l≥ ln
b

c
( ) − ln r[ ]c. (13)

Where r is the absolute value of the acceptable slope.

3.4.1 Relationship between joint roughness and
CSBM

The CSBM when the joint roughness are 1.6, 2.6, 3.6, 4.6 and
5.6 were calculated. The results were summarized in Table 10. The data

were fitted and the fitting curve of the CSBM and the joint roughness
was drawn, as shown in Figure 8.

Figure 8 shows that the CSBM increases with the increase of joint
roughness. The fitting relationship is an exponential
relationship. Therefore, the following special relation is obtained:

L � 219.49 + 61.71e−JRC/2.97 (14)
Where L is the CSBM, unit: mm; JRC is the joint roughness.

3.4.2 Mathematical model of CBM and joint
roughness

The method of calculating the characteristic bulk modulus (CBM)
is to substitute the value of the CSBM in Table 10 into Eq. 6, and the
CBM with different characteristic sizes can be obtained. The
calculation results were listed in Table 11. The obtained results
were fitted, and the curve of the CBM and joint roughness were
drawn, as shown in Figure 9.

Figure 9 shows that the CBM increases with the decreases of joint
roughness. The fitting relationship is a power function. Therefore, the
following special relation is obtained:

K JRC( ) � 2.24 + 0.26eJRC/2.76, (15)
where K (JRC) is the CBM, unit: GPa.

3.5 Experimental verification analysis

To verify the general applicability of Eq. 6, the algorithm of elastic
modulus and Poisson’s ratio in Section 3.2 of Liu (Liu et al., 2018) is
cited, as shown in Figure 10. The rock sizes selected in the laboratory
test in Reference (Liu et al., 2018) are 80 mm, 90 mm, 100 mm and
110 mm, respectively. The height-diameter ratios are 1.0, 1.2, 1.4 and
1.6, respectively. The data in Table 1 of Section 4.1 in Reference (Liu
et al., 2018) are combined and summarized in Table 12. Finally, the
bulk modulus K of rock samples in Reference (Liu et al., 2018) is
calculated according to the algorithm in Section 3.2 of this paper, as
shown in Table 12.

From the data in Table 12, a scatter plot of the bulk modulus and
length to diameter ratio was drawn, and their fitted curves were drawn,
as shown in Figure 11.

The relationship between the bulk modulus and length to diameter
ratio is obtained in Figure 11 as follows:

K LDR( ) � 3.78 + 1.77eLDR/0.2 (16)
where K (LDR) is the bulk modulus of the rock, unit: GPa; LDR is
length to diameter ratio.

The functional type of Eq. 16 conforms to the mathematical model
proposed in Eq. Eq. 6. Therefore, the numerical simulations are
consistent with the experimental conclusion. The verification shows
that the mathematical model proposed in Eq. 6 is reasonable for
solving the corresponding bulk modulus under different rock size.

4 Discussion

This chapter establishes the following four relationships based on
the effect of joint roughness and rock size on bulk modulus: 1) bulk

TABLE 11 Characteristic bulk modulus.

— — — — —

Roughness 1.6 2.6 3.6 4.6 5.6

CBM (GPa) 2.72 2.89 3.15 3.65 4.19
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FIGURE 9
Fitting curve of CBM.

FIGURE 10
Elastic modulus and Poisson’s ratio.
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modulus and rock size; 2) bulk modulus and joint roughness; 3) CSBM
and joint roughness; 4) CBM and joint roughness.

1) Relationship between the bulk modulus and rock size

Rock size affects the bulk modulus. The changes of bulk modulus
after different rock sizes are analyzed, and a general formula of the
relationship between bulk modulus and rock size is put forward. Then,
the solution method of parameters in the general formula is given by
combining the changes of joint roughness. Then the solution of the
parameters in the general formula is combined with the change of joint
roughness.

In the existing research, there are few studies on the influence of
bulk modulus and rock size, mainly discussing the influence of aspect
ratio on bulk modulus (Li et al., 2021). Reference (Li et al., 2021)
obtained that the bulk modulus increases with the increase of aspect
ratio. However, the relationship between bulk modulus and rock size is
not established in the literature, and the influence of roughness change
is rarely considered in the size effect of bulk modulus.

2)Relationship between bulk modulus and joint roughness

The joint roughness affects the bulk modulus. The changes of bulk
modulus with different joint roughness are analyzed, and a general
formula of the relationship between bulk modulus and joint roughness
is proposed. Then, the solution method of parameters in the general
formula is given by combining the changes of rock size.

In view of the influence of internal defects on the bulk
modulus, scholars have mainly studied porosity (Akbar et al.,
2019) and cracks (Yan et al., 2020). For example, Reference (Yan
et al., 2020) established a relationship between porosity and bulk
modulus. Reference (Akbar et al., 2019) studied the relationship
between bulk modulus and cracks. However, the above literature
has not studied the influence of joint roughness on bulk modulus
and has not established the relationship between bulk modulus
and joint roughness. Scholars rarely consider the influence of size
effect of rough jointed rock.

At the same time, this paper also carried out a verification study
based on the results of the laboratory test in literature (Liu et al., 2018).
The accuracy of the formula derivation and the applicability of the
formula in this paper are proved, and a solid verification foundation is
provided for the popularization and application of the subsequent
formula.

3) The relationship between CSBM, CBM and joint roughness

The relationships between the CSBM, CBM and joint roughness
are carried out based on Eq. 1. In the existing research, few scholars
have carried out in-depth study of these two relationships. The
establishment of these four relationships in this study reveals the
size effect law of bulk modulus of rough jointed rock, which provides a
reference for the application of geological exploration, oilfield
development and drilling, and has important engineering
application value.

TABLE 12 Parameter values of rocks.

Length/mm E/GPa ν K/GPa

80 7.487 0.233 4.68

90 8.483 0.265 6.02

100 9.425 0.352 10.61

110 10.59 0.424 23.22

FIGURE 11
Fitting curves of bulk modulus and length to diameter ratio.
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5 Conclusion

The joint roughness has influence on the size effect of the bulk
modulus, which is rarely explored. In this paper, the following
conclusions are obtained by numerical simulations:

1) The relationship between the bulk modulus and size of the rock
with rough joints is

K l( ) � a + be−l/c

By solving the parameters, a, b and c, the specific formula is

K l( ) � 0.99JRC0.43 + 9.29 + JRC0.43( )e−l/ 145.69+7.33eJRC/1.63( )

2) The relationship between bulk modulus and joint roughness is

K JRC( )� dJRCf

By solving the parameters d and f, the specific formula is

K JRC( ) � 0.07 + 7.97e−l/22.51( )JRC 0.17l0.27( )

3) The CSBM is related to joint roughness. The following specific
forms are given based on the simulation:

L � 219.49 + 61.71e−JRC/2.97

4) The CBM of rock is related to joint roughness. The following
specific forms are given based on the simulation:

K JRC( ) � 2.24 + 0.26eJRC/2.76
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