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The effect of various parameters on the flexural strength (FS) of ultra-high-
performance concrete (UHPC) is an intricate mechanism due to the involvement
of several inter-dependent raw ingredients. In this digital era, novel artificial
intelligence (Al) approaches, especially machine learning (ML) techniques, are
gaining popularity for predicting the properties of concrete composites due to
their better precision than typical regression models. In addition, the developed
ML models in the literature for FS of UHPC are minimal, with limited input
parameters. Hence, this research aims to predict the FS of UHPC considering
extensive input parameters (21) and evaluate each their effect on its strength by
applying advanced ML approaches. Consequently, this paper involves the application
of ML approaches, i.e., Support Vector Machine (SVM), Multi-Layer Perceptron (MLP),
and Gradient Boosting (GB), to predict the FS of UHPC. The GB approach is more
effective in predicting the FS of UHPC precisely than the SVM and MLP algorithms, as
evident from the outcomes of the current study. The ensembled GB model
determination coefficient (R?) is 0.91, higher than individual SVM with 0.75 and
individual MLP with 0.71. Moreover, the precision of applied models is validated by
employing the k-fold cross-validation technique. The validity of algorithms is
ensured by statistical means, i.e, mean absolute error and root mean square
errors. The exploration of input parameters (raw materials) impact on FS of UHPC
is also made with the help of SHAP analysis. It is revealed from the SHAP analysis that
the steel fiber content feature has the highest influence on the FS of UHPC.
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Abbreviations: Al, Artificial Intelligence; ANN, Artificial Neural Network; FA, Fly Ash; FS, Flexural Strength; GB,
Gradient Boosting; GEP, Gene Expression Programming; GGBFS, Ground Granulated Blast Slag Furnace;
MAE, Mean Absolute Error; ML, Machine Learning; MLP, Multi-Layer Perceptron; R? Determination
Coefficient; RMSE, Root Mean Square Error; SCM, Supplementary Cementitious Material; SHAP, SHapley
Additive exPlanations; SVM, Support Vector Machine; UHPC, Ultra-High-Performance Concrete.
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Introduction

The development of a new generation of concrete named ultra-
high-performance concrete (UHPC) is based on four principles
that include 1. Microstructure improvement; ii. Reduction in
porosity; iii. Enhancement in toughness; and iv. Increase in
homogeneity (Shi et al., 2015; Wu et al.,, 2016). The significantly
higher strength (i.e., more than 150 MPa) of UHPC, superior
durability, and toughness are well known (Habel et al., 2006;
Park et al., 2012). Hence, UHPC is potentially applicable as a
precast structural component in bridges and various industrial
products to have lightweight, durable, flexible, and aesthetic
structures (Schmidt and Fehling, 2005; Wang et al., 2015). For
achieving these superior properties of UHPC, low water-to-cement
ratio, higher cement content, fine powders (silica fume, quartz,
etc.), high-range water-reducing admixtures, and well-graded
aggregates are deployed to get minimum lowest porosity with
good consolidation and flow, and more particle packing density
(Zhang and Ali, 2021; Ali et al., 2022b). Various studies have been
conducted in the recent past to determine UHPC mechanical
properties having different mix designs and ingredients (Yu
et al., 2014; Yoo and Banthia, 2016; Zhou et al., 2018). Precisely,
the incorporation of eco-friendly supplementary cementitious
materials (SCMs), like; ground granulated blast slag furnaces
(GGBFS), fly ash (FA) etc., has gained the attention of
researchers (Chen et al., 2018; Khan et al., 2018; Khan and Alj,
2019; Zhang et al., 2019; Jiang et al., 2020a; Arshad et al., 2020;
Jiang et al., 2020b; Jiang et al., 2022a; Jiang et al., 2022b; Tariq et al.,
2022). Plain UHPC has brittle nature that may restrict its
applications (Wang et al., 2015; Le Hoang and Fehling, 2017;
Jiang et al., 2020b; Larsen and Thorstensen, 2020; Raza et al.,
2022b). Hence different fibers, including artificial and steel fibers,
have been commonly incorporated to enhance composites” impact
resistance and ductility (Zhang and Huang, 2022). Multiple
researchers have explored the addition of steel/synthetic/natural
fibers to concrete as reinforcement for improving characteristics
like fatigue resistance, toughness, ductility, and resist propagation
of cracks in concrete (Cao et al., 2018; Ali et al., 2021; Li et al.,
2021b; Cao and Khan, 2021; Deifalla et al., 2021; Khan et al., 2021;
Xie et al., 2021; Ali et al., 2022a; Khan et al., 2022a; Li et al., 2022b;
Ali et al., 2022¢; Ali et al., 2022d; Farooqi and Ali, 2022; Hu et al,,
2022; Meng et al,, 2022; Zhang N et al., 2022). Steel fibers are
incorporated post-cracking
phenomenon and toughness (Deifalla, 2020; Li et al., 2021a; Li
et al., 2022a; Raza et al., 2022a; Khan et al., 2022b; Khan et al.,
2022¢; Khan et al., 2022d). However, researchers have also reported

into concrete to enhance its

that fibers do not help improve the UHPC compressive strength,
whereas the matrix particle packing density and cement hydration
degree have a more significant role in the development of UHPC
strength (Liang et al., 2018; Arora et al, 2019; Larsen and
Thorstensen, 2020; Baili et al., 2022; El Ouni et al., 2022; Zheng
et al., 2022). Such research findings highlight the information
lacking to predict the UHPC behavior having different mixture
ingredients. So, there is a need of modelling for developing a
relationship among input parameters and the outcomes (Huang
et al., 2022).

Recently, due to the recent advancements in Artificial
Intelligence (AI), Machine Learning (ML) techniques have come
out as an interesting tool for modelling that is suitable for a wide-
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ranging variety of scientific domains such as materials engineering
(Worden and Manson, 2007; Cao and Li, 2018; Cui et al., 2018;
Musumeci et al., 2018; Ebid and Deifalla, 2021; Andalib et al., 2022;
Nawaz et al., 2022; Pandey et al., 2022). Keeping this in mind, an
inclination has recently been made towards employing ML
approaches for concrete strength prediction (Aiyer et al., 2014;
Asteris et al., 2016; Sonebi et al., 2016; Dutta et al., 2017; Bayrami,
2022; Sarkhani Benemaran et al., 2022; Shah et al,, 2022; Wang
et al., 2022; Wang and Wu, 2022). These approaches may be used
for numerous applications such as classification, regression,
clustering, and correlation (Nehdi et al, 2001; Nguyen et al,
2020; Asri et al., 2022; De-Prado-Gil et al., 2022; Kumar and
Kumar, 2022). Due to the development in ML techniques, it is
thus easier to determine the concrete strength (Balf et al., 2021;
Kovacevi¢ et al., 2021; Zhang Z et al., 2022). Mahjoubi et al. (2022a)
performed an auto-tune learning framework for UHPC prediction
and considered different multiple-function models (Mahjoubi
et al, 2021; Mahjoubi et al., 2022b). Marani et al. (2020)
employed the Gradient Boosting (GB) ML approach for the
compressive strength prediction of UHPC. The research was
conducted on 28days of concrete strength prediction in
significantly less time. The study concluded with the highly
precise prediction of UHPC compressive strength, having an R®
of 0.96. Lu et al. (2019) have applied the Support Vector Machine
(SVM) modelling approach to determine the lithium-slag effect on
the properties of cementitious mortar and resulted in an 11%
enhanced and improved prediction performance of SVM with
respect to other ML models. Similarly, Solhmirzaei et al. (2020)
also reported the effective prediction of SVM modelling in the case
of shear capacity for UHPC beams. Abellin-Garcia (2020)
employed the four-layer Multi-Layer Perceptron (MLP) for
predicting the UHPC compressive strength and resulted in the
satisfactory capability of MLP for strength prediction. A similar
type of finding was also found in the literature for MLP modelling
prediction (Abelldn-Garcia et al., 2020; Fan et al., 2021; Abellan-
Garcfa and Garcia-Castano, 2022). Although, the application of
these algorithms for UHPC compressive strength is reported
several times in the literature; however, the employment of these
models for predicting the flexural strength of UHPC has limited.
Further, the available studies have considered a limited number of
variables for prediction modelling. Moreover, applying a post hoc
model-agnostic technique called SHapley Additive exPlanations
(SHAP) provides insight into ML algorithms (Lundberg and Lee,
2017; Lauritsen et al., 2020; Johnsen et al., 2021). The interpretation
of correlation among characteristics and a structure in different
domains like; material science (Lauritsen et al., 2020; Johnsen et al.,
2021), nanophotonic structures behavior (Yeung et al., 2020), low-
alloy steel corrosion rate (Yan et al., 2020), inorganic materials
synthesis (Tang et al., 2020), finances (Mokhtari et al., 2019), text
classification (Zhao et al, 2020), and biomedical engineering
(Lundberg et al, 2018), may be achieved effectively by the
application of SHAP. But the employment of ML with SHAP for
the flexural properties of UHPC is not common enough yet.

Importance of current study

For evaluating the superior properties of UHPC, the laboratory
procedures for its manufacturing and testing, such as specimen
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FIGURE 1

Violin plots distribution of the input parameters.

casting, curing, and testing, are a major concern in terms of high
cost and time consumption. Modern methods of ML are now
gaining attention to predict the UHPC mechanical behavior to
avoid the issues mentioned above. The current study focuses on
the FS prediction of UHPC considering extensive input
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parameters (21) by employing ML techniques which are still
limited in the literature. The importance of this study is the
prediction of UHPC FS by using both ensemble ML techniques
(i.e., Gradient Boosting) and individual ML techniques (i.e., SVM
and MLP) along with the exploration of raw ingredients effect and
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interaction by applying SHAP analysis. A total of 21 input factors,
i.e., the content and type of cement, its compressive strength and
strength class, the content of fine and coarse aggregates, the
content of fly ash, slag, silica fume, limestone powder, nano
silica, quartz powder and super-plasticizer, the maximum size
of aggregates, water content, content, length and diameter of
polystyrene and steel fiber, and time of curing, are considered
for FS as an output parameter. The anaconda navigator software is
used with Python programming to execute the required prediction
models. The data training of twenty boosting sub-models is done
for ensembled ML models to achieve maximum precision.
Moreover, the test data is confirmed by employing k-Fold
cross-validation in combination with MAE, R?* and RMSE.
Further, the performance of statistical checks is used to
compare individual and ensemble models. At last, the SHAP
analysis is also included to analyze the contribution level for
every input factor toward the FS of UHPC. This is aimed at
ensuring the accuracy of this study. The effective, efficient and
economical design for durable structures can be achieved by
precisely predicting concrete properties, which would ultimately
reduce the time consumption in selecting adequate materials.
Also, the application of SHAP analysis is significant for
illustrating raw ingredients’ impact on the FS of UHPC. The
employed prediction approaches enable researchers to devise
novel materials smartly."

Dataset description

A total of 317 data points are used for running the employed
algorithms. The UHPC database used to run the algorithms for
predicting its FS is extracted from the available literature (Soroush
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and Bao, 2021). A total of 21 input factors, i.e., (i) the cement content
(kg/m?), (ii) cement type and strength class, (iii) cement compressive
strength (MPa), (iv) fine aggregates content (kg/m’), (v) coarse
aggregates content (kg/m?), (vi) fly ash content (kg/m?), (vii) slag
content (kg/m?), (viii) silica fume content (kg/m?), (ix) limestone
powder content (kg/m?), (x) nano silica content (kg/m?), (xi) quartz
powder content (kg/m?), (xii) super-plasticizer content (kg/m?), (xiii)
the maximum size of aggregates (mm), (xiv) water content (kg/m?),
(xv) polystyrene fiber content (%), (xvi) steel fiber content (%), (xvii)
polystyrene fiber length (mm), (xviii) steel fiber length (mm), (xix)
polystyrene fiber diameter (mm), (xx) steel fiber diameter (mm), and
(xxi) time of curing (days), are considered for flexural strength as an
output parameter. Figure 1 illustrates the violin plot distribution
against considered input parameters. Furthermore, the graphs
provide the output parameter’s relative frequency dispersion, as
presented in Figure 2. Relative frequency distributions are essential
in recognizing a database’s typical value. In regression analysis, the
VIF, i.e., Variance Inflation Factor, is the multicollinearity severity. In
current data, the correlation was weak (i.e., less than 0.5) for most of
the input parameters; therefore, in this situation, there would be no
multicollinearity issues as the result of microscopic differences. In the
case of stronger correlation (i.e., near to 1), the multicollinearity issues
would be higher, and the input variables would have a significantly
higher impact that ultimately would influence the outcomes and may
offer less precise findings (Amin et al., 2022; Pan et al., 2022).

Brief methodology and employed
machine learning algorithms

Anaconda navigator software python coding plays a significant
role in running all the applied algorithms. The data was split into two
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FIGURE 3
SVM model implementation process (Muzzammel and Raza, 2020).

parts, i.e., 70% as training data and 30% as model testing data. The
k-fold cross-validation technique is adopted for the validation of the
required algorithm. For the reduction in data complexity, the data pre-
processing approach is adopted. The pre-processing of data for data
mining resolves a critical issue from the renowned knowledge
discovery out of data procedure. Data preparation involves data
reduction techniques for decreasing the complexity of data by
identifying and eliminating noisy and inappropriate data items.
The analysis model is made with the help of error distribution and
regression methods. In addition, the SHAP analysis was also
performed because the considered input factors have a significant
effect on output. Consequently, the impact of all the input factors is
evaluated to estimate the FS of UHPC via SHAP analysis. Statistical
checks have also been applied to assess the level of accuracy of
employed algorithms. The implementation processes for the
employed algorithms are presented below.
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Support vector machine

Support Vector Machine (SVM) is an algorithm used to
connect learning models employed for data evaluation in the
case of both classification and regression. An SVM approach
describes the samples as space points drawn so that a distinct
vector bifurcates the different classification patterns with the
highest possible gap. Figure 3 shows the execution technique for
the SVM model. This algorithm is utilized to evaluate the strength
of the material, considering the impact of various parameters. The
optimization technique is adopted to determine the SVM model’s
parameters.

Multi-layer perceptron

A Multi-Layer Perceptron (MLP) is an ANN type which
converts a set of input parameters into an output. A targeted
graph connects many input-node layers among input and
output layers (Umeonyiagu and Nwobi-Okoye, 2015a;
Umeonyiagu and Nwobi-Okoye, 2015b; Abubakar and Tabra,
2020). Backpropagation is used in MLP to train the network
(Boukhatem et al., 2012). It may also use for connecting several
loops in a targeted graph, with unidirectional moving signals across
the nodes. Each entity (except input nodes) owns its distinct non-
linear activation function (Abellin-Garcia, 2020). MLPs use
backpropagation during learning methods (Boukhatem et al,
2012). MLP is usually regarded as an AI technique due to using
several neuron layers (Bikku, 2020). MLP is generally utilized in
studies of imputation, supervised learning, pure science, and
parallel distributed processing. Image recognition, machine
translation, and speech recognition are their applications. To
start with, the selection of predictors is made by the algorithm
utilized during the whole phase of regression for locating the
Variance Inflation Factor (VIF). VIF then identifies the change
in the predicted regression coefficient due to collinearity (Lin et al.,
2011; Kroll and Song, 2013). The MLP model procedural flowchart
is shown in Figure 4.

Gradient boosting

Friedman (2001) recommended this
i.e., gradient boosting (GB), for regression and classification. The
GB approach is similar to other boosting approaches, but the
regression is limited. In this approach, the random selection for

ensemble technique,

each iteration of the training set is made, and its validation by the
base model is done, as shown in Figure 5. In the case of GB, the
precision level of execution and speed may be improved by sub-
sampling of the training set randomly, which aids in avoiding
overfitting. A more regression speed for fitting more minor model
data on every iteration can be achieved by having a smaller fraction of
training data. GB regression requires n-trees and shrinkage rate tuning
factors, where n-trees express the grown trees’ quantity. It may be
noted here that the value of n trees must not be minimal, and the
learning rate, i.e., shrinkage factor, is applicable in the case of every
expansion tree.
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K-fold cross-validation approach (Zou et al.,, 2022).

K-fold cross-validation outcomes and
statistical metrics

The application of k-fold and statistical checks is also made for
validating ML models in use (Figure 6). Conventionally, the k-fold
cross-validation method is employed to evaluate the practicability
of an approach by randomly dividing and distributing the related
data into ten sub-groups. Nine groups are utilized for training ML
models, whereas one is used for their validation. The ML method is
highly precise when there are fewer errors, i.e., MAPE, RMSE, and
MAE, and higher R* value. Furthermore, this method must be
repeated ten times to attain the desired result. This bulk quantity
work is a major reason behind the highly precise model. In
addition, Nazar et al. (2022) derived the below-mentioned
equations, i.e., Eq. 1 and Eq. 2, to evaluate the performance of
prediction approaches statistically. These equations are also
applied in the current study.
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Where; P; = anticipated values;n = number of data points;T; =

experimental values;A = actual values; and.F = predicted values.

Results and discussion
Support vector machine model output

Figure 7 depicts that the SVM model offers a more precise
relationship between the experimental and predicted UHPC FS

results upon comparison with the MLP algorithm, which results in
a 0.75 R? value. It may be noted here that the vertical and horizontal
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axes depict the predicted and experimental values, respectively, in the
case of FS. Figure 8 illustrates data distribution, representing the
difference between the actual and predicted outcomes. Here, the
horizontal axis depicts the dataset for testing or training the
models, whereas the predicted FS values are shown on the vertical
axis. Based on this distribution, the highest, lowest, and average values
are 13.3, 2.99, and 0.02 MPa, respectively. Moreover, 63.16% of values
are found from 0.02 to 3 MPa, 22.11% of values are found from 3 MPa
to 6 MPa, and the remaining 14.74% of values are more than 6 MPa.
Furthermore, in Figure 9, the additional statistics like the lowest,
mean, highest, median, first, and third quartile values for predicted
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and experimental outcomes from the test data set are shown. It is
evident from the graph data that a difference is there between the
actual and predicted results. Jueyendah et al. (2021) also reported
similar findings for SVM with a higher correlation coefficient and
lesser errors in the FS prediction of cementitious mortar.

Multi-layer perceptron model outcome

Figure 10 depicts the relationships between the actual and
predicted UHPC FS values. This relationship provides 0.71 as the

frontiersin.org


https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2022.1114510

Qian et al.

50
45
40
35
30
25
20
15
10

Flexural strength (MPa)

FIGURE 9

SVM

©39.55

23.02
19.85
16.23

B Experimental (MPa) M Predictions (MPa)

Box plot for actual and predicted results—SVM model.

Predicted flexural strength (MPa)

FIGURE 10

® Predicted (MPa)

——Linear (Predicted (MPa))

y=0.6617x + 6.8039
R?=0.7196
.

20 25 30 35 40 45 50

Experimental flexural strength (MPa)

Experimental and predicted results for UHPC FS—MLP model.

=o=Experimental (MPa)

MLP

® Predicted (MPa)  =e@=Errors

Flexural strength (MPa)

FIGURE 11

Data set

Difference of errors among actual and predicted UHPC FS—MLP

model.

Frontiers in Materials

10.3389/fmats.2022.1114510

MLP
50
45
40 39.77
35 35.78
30
25 23.8 23.56
20 19.1 19.75

1537
15 12.6
10

Flexural strength (MPa)

6.46

H Experimental (MPa) H Predictions (MPa)

FIGURE 12
Box plot for actual and predicted results—MLP model.

determination coefficient (R*) value. It may be noted here that the
vertical and horizontal axes depict the predicted and experimental
values, respectively, in the case of FS. Figure 11 shows the difference
between the actual and predicted outcomes. Here, the horizontal axis
depicts the dataset for testing or training the models, whereas the
predicted FS values are shown on the vertical axis. The difference
shows the higher values, ie., 9.96 MPa, and lower values,
i.e., 0.04 MPa. Furthermore, it is found that the 57.89% difference
in data lies from 0.04 to 3 MPa, and 22.11% of data lies from 3 to
6 MPa. Where only 20% of data is found which is more 6 MPa. In
Figure 12, the box plot depicts the statistical information like the
maximum, mean, minimum, first and third quartile and median
values for the experimental and estimated results from the test
dataset. The difference between actual and predicted outcomes can
be seen from the values on the graph. Abelldn-Garcia (2020)
performed MLP analysis demonstrating an acceptable precision for
the compressive strength of UHPC.

Gradient boosting model outcome

Figure 13 shows the outcome of the GB model depicting a
strengthened and improved relation with experimental results in
the case of UHPC FS as compared to SVM and MLP prediction
models. It may be noted here that the vertical and horizontal axes
depict the predicted and experimental values, respectively, in the case
of FS. Also, it comes out with a 0.97 R* value, which contrasts with
SVM and MLP predictions. The visuals for error distribution are
presented in Figure 14, an additional point of interest. Here, the
horizontal axis depicts the dataset for testing or training the models,
whereas the predicted FS values are shown on the vertical axis. The
variation gives data with a minimum of 0MPa, an average of
1.71 MPa, and a maximum of 11 MPa. Furthermore, it is observed
that 91.58% of data lies from 0 to 3 MPa, 5.26% of data lies from 3 to
6 MPa, and the remaining 3.16% of data is found to be more than
6 MPa. Additionally, more statistical information is illustrated in the
Box Plot shown in Figure 15, showing the lowest, mean, highest,
median, first, and third quartile values for predicted and experimental
test set outcomes. The difference between the expected and actual
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results is represented graphically. Marani and Nehdi (2020) also
employed the GB algorithm for predicting the compressive strength
of cementitious composites integrated with phase change materials. It
was concluded that the GB model shows the maximum precision
among all the considered algorithms. In the current study, the output
precision from the GB algorithm is higher for flexural strength,
contrary to both SVM and MLP algorithms.

K-statistical checks and k-fold analysis

The statistics extracted from the algorithms are provided in
Table 1. A check named the k-fold cross-validation test is applied
as a standard for determining of model’s legitimacy. For the
investigation of outcomes, the statistical checks, i.e., R*, RMSE, and
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MAE, are considered. Likewise, the highest RMSE and MAE in SVM
models come out as 9.76 and 7.85 MPa, as presented in Figure 16. As
per this check, the RMSE and MAE values in the case of MLP models
are higher, i.e., 9.82 and 8.68 MPa, respectively, as shown in Figure 17.
But, in the case of boosting, the higher RMSE and MAE values come
out as 6.14 MPa and 4.45 MPa, respectively, as illustrated in Figure 18.

Discussion

The current work explains the flexural strength performance in
prediction for 3 ML models. The support vector machine (SVM),
multi-layer perceptron (MLP), and gradient boosting (GB) are
employed for the analysis. Although SVM and MLP come under the
umbrella of individual machine learning approaches, the accuracy of their
prediction outcomes is observed to be in an acceptable range. The GB
comes under the umbrella of ensemble machine learning techniques,
which usually undergo the splitting process of the model into twenty sub-
models to optimize the accurate result. Figure 19 shows the boosting sub-
model outcome. It is observed that the input factors and data points
numbers have a considerable effect on desired results. Accordingly, the
input data’s relative frequency distribution and descriptive statistics to
determine their impact on the outcome are incorporated into the study. A
satisfactory correlation is observed between experimental and predicted
results for UHPC FS from all the models employed. The k-fold cross-
validation method assesses the legitimacy of models.

The application of advanced machine learning techniques is
gaining attention nowadays in various engineering fields (Chen
et al, 2022). In the recent past, several studies have been
conducted by employing different algorithms to predict various
properties of other cementitious materials such as Recycled
Rice Husk Ash
Concrete, and Fly Ash-Based Concrete etc. The number of

Aggregate Concrete, Geopolymer Concrete,

considered input parameters was from 5 to 9, and the minimum
number of considered dataset points was 98. It may be noted from
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SVM model statistical analysis.
TABLE 1 Statistics derived from the employed models. Table 2 that the dataset points range from 98 to 357 in numbers. The

details from the different studies regarding the employment of ML
algorithms (GEP, Bagging Regressor, AdaBoost, Random Forest) for
predicting various properties of different cementitious composites

Statistical checks Algorithms

(compressive, splitting-tensile and shear strengths) are summarized in

2
R 075 071 091 the literature and are presented in Table 2. The maximum data points
RMSE (MPa) 3.0 42 24 and the number of input parameters extracted from this literature-
based summary in Table 2 are 357 and 9, respectively. However, in the
MAE (MPa) 3.9 3.4 17 . )
current study, as also demonstrated in the first row of Table 2 in
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FIGURE 18
GB model statistical analysis.

comparison with other reported studies, a total of 317 data points are
considered, and 21 input parameters are taken for the flexural strength
prediction of UHPC which is in the acceptable range of prediction.

SHAP analysis

The current research provides an in-depth explanation of the
ML algorithm and interactions and dependencies for every feature.

Frontiers in Materials

The application of the SHAP tree explainer on the entire dataset
and an enhanced illustration of influences of global features by
merging SHAP local explanations are also provided. The tree-like
SHAP prediction technique, named TreeExplainer, is applied
(Lundberg et al., 2019). In this method, the interior structure of
tree-based models is explored, which is summing up of a
calculations set linked with the tree model leaf node, leading to
low-order complexity (Lundberg et al, 2019). The model
interpretation is made for UHPC FS by applying SHAP. The
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FIGURE 19
Boosting sub-models result.

TABLE 2 Literature-based summary of ML models with details of parameters.

10.3389/fmats.2022.1114510

value, which is more or less the same as curing time, which is in
third place in terms of more SHAP value, as shown in Figure 20. In
cementitious concrete composites, more curing time would come
up with improved bonds and strengths of the matrix, thus
contributing to its better mechanical characteristics. It may be
due to the more binders in UHPC, i.e., fly ash, silica fume, slag etc.,
due to which more curing time is required by the process of
hydration, which would ultimately result in improved FS.
Subsequently, the water and super-plasticizer contents have the
fourth and fifth highest SHAP values, respectively. The strength of
UHPC mainly depends on the theory of particle packing density;
hence there is a requirement to have limited water content, and the
super-plasticizer plays the main role in the development of
strength. Meanwhile, the quarts and silica fume also influence
UHPC FS. Other features like limestone powder content, coarse
aggregate content, contents of slag, nano-silica, sand and fly-ash
fine/coarse aggregates, and steel fibers length influence the UHPC
FS slightly. All the mentioned features have a specific impact on
UHPC FS.

Similarly, Figure 21 illustrates the correlation for the
importance of features UHPC FS. It can be noted that the
enhancing steel fiber content is increasing the UHPC FS and
vice versa. As far as the water content is concerned, it is

Recommended ML Predicted properties Material type Data No. of input Reference
approach points parameters
GB Flexural Strength UHPC 317 21 Current Study
GEP Ultimate Axial Capacity Concrete-Filled Steel 227 6 Javed et al. (2020)
Tubes
Bagging Regressor Compressive Strength Geopolymer Concrete 371 9 Zou et al. (2022)
Bagging Regressor Split-Tensile Strength Recycled Aggregate 166 9 Zhu et al. (2022)
Concrete
GEP Compressive Strength Rice Husk Ash Concrete 192 6 Iftikhar et al.
(2022)
AdaBoost Compressive and Split-Tensile Recycled Aggregate 344 9 Shang et al.
Strength Concrete (2022)
Bagging Regressor Compressive Strength Geopolymer Concrete 154 9 Ahmad et al.
(2022)
Bagging Regressor Compressive Strength Fly Ash-Based Concrete 98 7 Song et al. (2021)
Bagging Regressor Compressive Strength Fly Ash-Based Concrete 270 8 Ahmad et al.
(2021)
Random Forest Compressive Strength High-Strength Concrete 357 5 Farooq et al.
(2020)

relationship of different features with UHPC FS is depicted by the
SHAP values, as presented in Figure 20. It is observed that the
highest SHAP value is for steel fiber content for UHPC FS
prediction. It is renowned that the bridging mechanism is
achieved by incorporating steel fibers, ultimately enhancing the
strength factors (Deifalla et al., 2021). Consequently, enhancing
steel fiber content would produce a higher FS of UHPC. In the
second place, the maximum aggregate size has the highest SHAP
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influencing negatively, as it can be seen from Figure 21 that the
increasing water content results in the reduction of UHPC FS.
However, in the case of cement content, it shows a positive
influence which means the more the content of cement is, the
higher will be the FS of UHPC. Similarly, enhancing silica fume
content results in more FS of UHPC. The dataset employed in this
study is the basis for the conducted prediction, and highly accurate
outcomes may be achieved by having more data points.
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Conclusion

To assess the improved properties of UHPC, the laboratory
procedures for its manufacturing and testing, such as specimen
casting, curing, and testing, are a major concern point in terms of
excessive cost and time consumption. Modern Al methods especially
machine learning (ML) are now gaining attention to predict the
mechanical behavior of UHPC. In this study, flexural strength (FS)
estimation of UHPC is done by applying both ensemble techniques
(i.e., gradient boosting) and individual techniques (i.e., SVM and
MLP) along with the exploration of raw ingredients effect and
interaction by applying SHAP analysis. A total of 21 input
parameters are considered, i.e., the cement content (kg/m?),
cement type and strength class, cement compressive strength
(MPa), fine aggregates content (kg/m’), coarse aggregates content
(kg/m?), fly ash content (kg/m?), slag content (kg/m?), silica fume
content (kg/m?), limestone powder content (kg/m?), nano silica
content (kg/m®), quartz powder content (kg/m?), super-plasticizer
content (kg/m®), the maximum size of aggregates (mm), water
content (kg/m?®), polystyrene fiber content (%), steel fiber content
(%), polystyrene fiber length (mm), steel fiber length (mm),
polystyrene fiber diameter (mm), steel fiber diameter (mm), and
time of curing (days). The following conclusions are drawn based on
the study findings:

« The employed ensemble machine learning algorithm (Gradient
boosting) successfully predicted FS of UHPC using python coding
with higher accuracy of R* value than that of individual algorithms
(SVM and MLP). Twenty sub models with 10-200 predictors are
used to optimize the FS prediction of UHPC.
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Curing time =7 Superplasticizer content = 45.9 ' Silica fume content = 44 Water content = 2(

o The gradient boosting (GB) algorithm is superior in precision
with a low error rate (MAE = 1.7) as to that of SVM (MAE = 3.9)
and MLP (MAE = 3.4) algorithms.

o The higher R* of 0.91 is attained through a relationship of
experimental and predicted values in the GB algorithm, which
depicts its higher precision for FS of UHPC than that of SVM
(R* = 0.75) and MLP (R* = 0.71) algorithms.

« The validity of the applied algorithms is also ensured with the
help of RMSE and k-fold cross-validation. It is found that RMSE
for the GB algorithm is 2.4, which is lower than that of the SVM
(RMSE = 3.0) and MLP (RMSE = 4.2) algorithms

o The influence of all the considered input factors on the FS of
UHPC is determined by SHAP analysis, which reveals that the
steel fiber content feature has the highest impact on UHPC FS.
This is due to the bridging effect of steel fibers that ultimately
results in improved FS.

o In general, employing ensembled machine learning approaches
provides a cost-effective and better way to analyze the
characteristics of complex materials like ultra-high-performance
concrete. The current research would give academics in civil
engineering in-depth insight into adopting adequate ML models
to predict the strength properties of any concrete type. Further, this
work explains the importance of input parameters for the targeted
outcome using ML approaches.

UHPC is a modern cementitious composite with enhanced
mechanical properties compared to conventional concrete. The
research interest towards the exploration of UHPC is gaining
popularity day by day. However, based on this study’s outcomes,
the following future recommendations are proposed:

frontiersin.org


https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2022.1114510

Qian et al.

o The nature of the correlation between the raw components of
UHPC mix design and its characteristics is a major parameter
influencing the model selection. This non-linear relation requires
the application of ML algorithms. But optimizing applied
algorithms through metaheuristic models is an effective way to
attain more accurate results and enhanced processes.

« Although a suitable dataset is being considered in this research;
however, a further extended dataset should be taken to improve
the effectiveness of applied algorithms.

the dataset

experimental evaluations can enhance the performance of ML

 Furthermore, increasing quantity through
algorithms for highly accurate prediction.

o Moreover, increasing the type of input parameters, like the
chemical formation of raw components and the climatic
impacts (i.e., humidity and temperature), can result in more
precision of ML models. Additionally, this study aimed to
predict UHPC flexural strength, so its other parameters
would also be taken in ML prediction.

o The application of hybrid ANN and SVM models can also be
explored for predicting UHPC characteristics regarding the

Although it will

computation time, applying these models on an expanded

database with appropriate feature selection will provide

process and precision. improve the

highly accurate results.

The detailed exploration of UHPC load-slip modelling in terms
of steel fibers impacts regarding the age of the matrix and
strength needs to be explored.
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